UPdate tests/lbpm_BlobAnalysis

This commit is contained in:
James McClure 2015-03-20 12:27:00 -04:00
parent 7ae8922466
commit a0b24b9934

243
tests/lbpm_BlobAnalysis.cpp Normal file
View File

@ -0,0 +1,243 @@
/*
This code computes TCAT averages on a blob-by-blob basis in parallel
It requires that the blobs be labeled using BlobIdentify.cpp
James E. McClure 2015
*/
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <iostream>
#include <exception>
#include <stdexcept>
#include <fstream>
#include "Domain.h"
#include "TwoPhase.h"
#include "common/MPI_Helpers.h"
#include "common/Utilities.h"
inline void ReadBlobLabel(char *FILENAME, int *Data, int N)
{
int n;
int value;
ifstream File(FILENAME,ios::binary);
if (File.good()){
for (n=0; n<N; n++){
// Write the two density values
File.read((char*) &value, sizeof(value));
Data[n] = value;
}
}
else {
for (n=0; n<N; n++) Data[n] = 1.2e-34;
}
File.close();
}
struct BlobTwoPhase{
int COUNT=26; // number of averages to compute for each blob
BlobTwoPhase(int size){
NBLOBS=size;
Data = new double [size*COUNT];
}
~(BlobTwoPhase){
delete [] Data;
}
int NBLOBS;
double *Data;
// if modified -- make sure to adjust COUNT so that
// there is enough memory to save all the averages
double Vn(int IDX){return Data[COUNT*IDX]}
double pan(int IDX){return Data[COUNT*IDX+1]}
double awn(int IDX){return Data[COUNT*IDX+2]}
double ans(int IDX){return Data[COUNT*IDX+3]}
double Jwn(int IDX){return Data[COUNT*IDX+4]}
double Kwn(int IDX){return Data[COUNT*IDX+5]}
double lwns(int IDX){return Data[COUNT*IDX+6]}
double cwns(int IDX){return Data[COUNT*IDX+7]}
double vanx(int IDX){return Data[COUNT*IDX+8]}
double vany(int IDX){return Data[COUNT*IDX+9]}
double vanz(int IDX){return Data[COUNT*IDX+10]}
double vawnx(int IDX){return Data[COUNT*IDX+11]}
double vawny(int IDX){return Data[COUNT*IDX+12]}
double vawnz(int IDX){return Data[COUNT*IDX+13]}
double Gwnxx(int IDX){return Data[COUNT*IDX+14]}
double Gwnyy(int IDX){return Data[COUNT*IDX+15]}
double Gwnzz(int IDX){return Data[COUNT*IDX+16]}
double Gwnxy(int IDX){return Data[COUNT*IDX+17]}
double Gwnxz(int IDX){return Data[COUNT*IDX+18]}
double Gwnyz(int IDX){return Data[COUNT*IDX+19]}
double Gnsxx(int IDX){return Data[COUNT*IDX+20]}
double Gnsyy(int IDX){return Data[COUNT*IDX+22]}
double Gnszz(int IDX){return Data[COUNT*IDX+23]}
double Gnsxy(int IDX){return Data[COUNT*IDX+23]}
double Gnsxz(int IDX){return Data[COUNT*IDX+24]}
double Gnsyz(int IDX){return Data[COUNT*IDX+25]}
};
int main(int argc, char **argv)
{
//*****************************************
// ***** MPI STUFF ****************
//*****************************************
// Initialize MPI
int rank,nprocs;
MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
MPI_Comm_size(MPI_COMM_WORLD,&nprocs);
// parallel domain size (# of sub-domains)
int nprocx,nprocy,nprocz;
int iproc,jproc,kproc;
int Nx,Ny,Nz,N,nspheres;
double Lx,Ly,Lz;
int BC; // type of boundary condition applied: 0-periodic, 1-pressure/velocity
int nblobs_global; // number of blobs in the global system
// Get the global number of blobs from arguments
if (nargc > 1){
nblobs_global = atoi(argv[1]);
if (rank==0) printf("Number of global blobs is: %i \n",nblobs_global);
}
else{
ERROR("Number of blobs was not specified");
}
int *CubeList;
if (rank==0){
//.......................................................................
// Reading the domain information file
//.......................................................................
ifstream domain("Domain.in");
domain >> nprocx;
domain >> nprocy;
domain >> nprocz;
domain >> Nx;
domain >> Ny;
domain >> Nz;
domain >> nspheres;
domain >> Lx;
domain >> Ly;
domain >> Lz;
//.......................................................................
}
//.................................................
MPI_Barrier(MPI_COMM_WORLD);
// Computational domain
MPI_Bcast(&Nx,1,MPI_INT,0,MPI_COMM_WORLD);
MPI_Bcast(&Ny,1,MPI_INT,0,MPI_COMM_WORLD);
MPI_Bcast(&Nz,1,MPI_INT,0,MPI_COMM_WORLD);
MPI_Bcast(&nprocx,1,MPI_INT,0,MPI_COMM_WORLD);
MPI_Bcast(&nprocy,1,MPI_INT,0,MPI_COMM_WORLD);
MPI_Bcast(&nprocz,1,MPI_INT,0,MPI_COMM_WORLD);
MPI_Bcast(&nspheres,1,MPI_INT,0,MPI_COMM_WORLD);
MPI_Bcast(&Lx,1,MPI_DOUBLE,0,MPI_COMM_WORLD);
MPI_Bcast(&Ly,1,MPI_DOUBLE,0,MPI_COMM_WORLD);
MPI_Bcast(&Lz,1,MPI_DOUBLE,0,MPI_COMM_WORLD);
MPI_Barrier(MPI_COMM_WORLD);
//.................................................
Domain Dm(Nx,Ny,Nz,rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BC);
TwoPhase Averages(Dm);
BlobTwoPhase BlobAverages(nblobs_global);
//.......................................................................
// Filenames used
char LocalRankString[8];
char LocalRankFilename[40];
char LocalRestartFile[40];
char tmpstr[10];
sprintf(LocalRankString,"%05d",rank);
sprintf(LocalRankFilename,"%s%s","ID.",LocalRankString);
sprintf(LocalRestartFile,"%s%s","Restart.",LocalRankString);
//...........................................................................
if (rank == 0) cout << "Reading in domain from signed distance function..." << endl;
//.......................................................................
sprintf(LocalRankFilename,"%s%s","SignDist.",LocalRankString);
ReadBinaryFile(LocalRankFilename, Averages.SDs.data, N);
MPI_Barrier(MPI_COMM_WORLD);
if (rank == 0) cout << "Domain set." << endl;
//.......................................................................
sprintf(LocalRankFilename,"%s%s","BlobLabel.",LocalRankString);
ReadBlobFile(LocalRankFilename, Averages.BlobLabel.data, N);
MPI_Barrier(MPI_COMM_WORLD);
if (rank == 0) cout << "BlobLabel set." << endl;
//.......................................................................
//copies of data needed to perform checkpointing from cpu
double *Den, *DistEven, *DistOdd;
Den = new double[2*N];
DistEven = new double[10*N];
DistOdd = new double[9*N];
//.........................................................................
if (rank==0) printf("Reading restart file! \n");
// Read in the restart file to CPU buffers
ReadCheckpoint(LocalRestartFile, Den, DistEven, DistOdd, N);
MPI_Barrier(MPI_COMM_WORLD);
//.........................................................................
// Populate the arrays needed to perform averaging
for (int n=0; n<Nx*Ny*Nz; n++){
double phi,da,db,press,vx,vy,vz;
double f0,f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f15,f16,f17,f18;
da = Den[n];
db = Den[N+n];
f0 = DistEven[n];
f2 = DistEven[N+n];
f4 = DistEven[2*N+n];
f6 = DistEven[3*N+n];
f8 = DistEven[4*N+n];
f10 = DistEven[5*N+n];
f12 = DistEven[6*N+n];
f14 = DistEven[7*N+n];
f16 = DistEven[8*N+n];
f18 = DistEven[9*N+n];
//........................................................................
f1 = DistOdd[n];
f3 = DistOdd[1*N+n];
f5 = DistOdd[2*N+n];
f7 = DistOdd[3*N+n];
f9 = DistOdd[4*N+n];
f11 = DistOdd[5*N+n];
f13 = DistOdd[6*N+n];
f15 = DistOdd[7*N+n];
f17 = DistOdd[8*N+n];
//.................Compute the velocity...................................
press = 0.3333333333333333*(f0+f2+f1+f4+f3+f6+f5+f8+f7+f10+
f9+f12+f11+f14+f13+f16+f15+f18+f17);
vx = f1-f2+f7-f8+f9-f10+f11-f12+f13-f14;
vy = f3-f4+f7-f8-f9+f10+f15-f16+f17-f18;
vz = f5-f6+f11-f12-f13+f14+f15-f16-f17+f18;
Averages.Phase.data[n]=(da-db)/(da+db);
Averages.Phase_tplus.data[n]=(da-db)/(da+db);
Averages.Phase_tminus.data[n]=(da-db)/(da+db);
Averages.Press.data[n]=press;
Averages.Vel_x.data[n]=vx;
Averages.Vel_y.data[n]=vy;
Averages.Vel_z.data[n]=vz;
}
// Count the number of cubes for each blob
for (k=0;k<Nz;k++){
for (j=0;j<Ny;j++){
for (i=1;i<Nx;i++){
}
}
}
/* Averages.Initialize();
Averages.ComputeDelPhi();
Averages.ColorToSignedDistance(beta,Averages.Phase.data,Averages.SDn.data);
Averages.UpdateMeshValues();
Averages.ComputeLocal();
Averages.Reduce();
Averages.PrintAll(timestep);
*/
// ****************************************************
MPI_Barrier(MPI_COMM_WORLD);
MPI_Finalize();
// ****************************************************
}