From a39ceffec54ea46f3e2a7978b4d85b4db5a0105b Mon Sep 17 00:00:00 2001 From: James E McClure Date: Thu, 2 Sep 2021 14:32:53 -0400 Subject: [PATCH] working on multiline eqs in docs --- docs/source/userGuide/models/color/index.rst | 99 +++++++++++++++++++- 1 file changed, 98 insertions(+), 1 deletion(-) diff --git a/docs/source/userGuide/models/color/index.rst b/docs/source/userGuide/models/color/index.rst index ead0ada9..db45f8c3 100644 --- a/docs/source/userGuide/models/color/index.rst +++ b/docs/source/userGuide/models/color/index.rst @@ -66,10 +66,89 @@ Model Formulation **************************** -The relaxation parameters are determined from the relaxation time: +Two LBEs are constructed to model the mass transport, incorporating the anti-diffusion .. math:: :nowrap: + $$ + \\begin{eqnarray} + A_q(\bm{x} + \bm{\xi}_q \delta t, t+\delta t) &=& w_q N_a \Big[1 + \frac{\bm{u} \cdot \bm{\xi}_q}{c_s^2} + + \beta \frac{N_b}{N_a+N_b} \bm{n} \cdot \bm{\xi}_q\Big] \; + \\ + B_q(\bm{x} + \bm{\xi}_q \delta t, t+\delta t) &=& + w_q N_b \Big[1 + \frac{\bm{u} \cdot \bm{\xi}_q}{c_s^2} + - \beta \frac{N_a}{N_a+N_b} \bm{n} \cdot \bm{\xi}_q\Big]\;, + \\end{eqnarray} + $$ + +The number density is obtained directly for each fluid as the sum of the mass transport distributions +.. math:: + :nowrap: + + $$ + \\begin{equation} + N_a = \sum_q A_q\;, \quad N_b = \sum_q B_q\; + \\end{equation} + $$ + + +The phase indicator field is then defined as +.. math:: + :nowrap: + + $$ + \\begin{equation} + \phi = \frac{N_a-N_b}{N_a+N_b} + \\end{equation} + $$ + +The local fluid viscosity and density are determined based on linear interpolation + +.. math:: + :nowrap: + + $$ + \\begin{equation} + \nu = \frac{(1+\phi) \nu_n}{2}+\frac{(1-\phi) \nu_w}{2} \;, + \\end{equation} + $$ + +.. math:: + :nowrap: + + $$ + \\begin{equation} + \rho_0 = \frac{(1+\phi) \rho_n}{2}+ \frac{(1-\phi) \rho_w}{2} \;, + \\end{equation} + $$ + +These values are then used to model the momentum transport. +The LBE governing momentum transport is defined based on a MRT relaxation process with additional +terms to account for the interfacial stresses +.. math:: + :nowrap: + + $$ + \\begin{equation} + f_q(\bm{x}_i + \bm{\xi}_q \delta t,t + \delta t) - f_q(\bm{x}_i,t) = \sum^{Q-1}_{k=0} M^{-1}_{qk} \lambda_{k} (m_k^{eq}-m_k) + t_q \bm{\xi}_q \cdot \frac{\bm{F}}{c_s^2} \;, + \\end{equation} + $$ + + +The moments are linearly indepdendent +.. math:: + :nowrap: + + $$ + \\begin{equation} + m_k = \sum_{q=0}^{18} M_{qk} f_q\;. + \\end{equation} + $$ + + +The relaxation parameters are determined from the relaxation time: +.. math:: + :nowrap: $$ \\begin{eqnarray} @@ -94,7 +173,25 @@ The non-zero equilibrium moments are defined as \\end{eqnarray} $$ +where the color gradient is determined from the phase indicator field +.. math:: + :nowrap: + $$ + \\begin{equation} + \textbf{C}=\nabla \phi\;. + \\end{equation} + $$ + +and the unit normal vector is +.. math:: + :nowrap: + + $$ + \\begin{equation} + \bm{n} = \frac{\textbf{C}}{|\textbf{C}|}\;. + \\end{equation} + $$ **************************** Boundary Conditions