Merge branch 'master' of https://github.com/JamesEMcClure/LBPM-WIA
This commit is contained in:
commit
ac797709ce
@ -21,6 +21,7 @@ using namespace std;
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Reading the domain information file
|
// Reading the domain information file
|
||||||
void read_domain( int rank, int nprocs, MPI_Comm comm,
|
void read_domain( int rank, int nprocs, MPI_Comm comm,
|
||||||
int& nprocx, int& nprocy, int& nprocz, int& nx, int& ny, int& nz,
|
int& nprocx, int& nprocy, int& nprocz, int& nx, int& ny, int& nz,
|
||||||
|
155
common/Domain.h
155
common/Domain.h
@ -24,7 +24,6 @@ void read_domain( int rank, int nprocs, MPI_Comm comm,
|
|||||||
int& nprocx, int& nprocy, int& nprocz, int& nx, int& ny, int& nz,
|
int& nprocx, int& nprocy, int& nprocz, int& nx, int& ny, int& nz,
|
||||||
int& nspheres, double& Lx, double& Ly, double& Lz );
|
int& nspheres, double& Lx, double& Ly, double& Lz );
|
||||||
|
|
||||||
|
|
||||||
//! Class to hold domain info
|
//! Class to hold domain info
|
||||||
struct Domain{
|
struct Domain{
|
||||||
// Default constructor
|
// Default constructor
|
||||||
@ -597,6 +596,160 @@ inline void ReadBinaryFile(char *FILENAME, double *Data, int N)
|
|||||||
File.close();
|
File.close();
|
||||||
|
|
||||||
}
|
}
|
||||||
|
inline double minmod(double &a, double &b){
|
||||||
|
|
||||||
|
double value;
|
||||||
|
|
||||||
|
value = a;
|
||||||
|
if ( a*b < 0.0) value=0.0;
|
||||||
|
else if (fabs(a) > fabs(b)) value = b;
|
||||||
|
|
||||||
|
return value;
|
||||||
|
}
|
||||||
|
|
||||||
|
inline double Eikonal(DoubleArray &Distance, char *ID, Domain &Dm, int timesteps){
|
||||||
|
|
||||||
|
/*
|
||||||
|
* This routine converts the data in the Distance array to a signed distance
|
||||||
|
* by solving the equation df/dt = sign(1-|grad f|), where Distance provides
|
||||||
|
* the values of f on the mesh associated with domain Dm
|
||||||
|
* It has been tested with segmented data initialized to values [-1,1]
|
||||||
|
* and will converge toward the signed distance to the surface bounding the associated phases
|
||||||
|
*
|
||||||
|
* Reference:
|
||||||
|
* Min C (2010) On reinitializing level set functions, Journal of Computational Physics 229
|
||||||
|
*/
|
||||||
|
|
||||||
|
int i,j,k;
|
||||||
|
double dt=0.1;
|
||||||
|
double Dx,Dy,Dz;
|
||||||
|
double Dxp,Dxm,Dyp,Dym,Dzp,Dzm;
|
||||||
|
double Dxxp,Dxxm,Dyyp,Dyym,Dzzp,Dzzm;
|
||||||
|
double sign,norm;
|
||||||
|
double LocalVar,GlobalVar,LocalMax,GlobalMax;
|
||||||
|
|
||||||
|
int xdim,ydim,zdim;
|
||||||
|
xdim=Dm.Nx-2;
|
||||||
|
ydim=Dm.Ny-2;
|
||||||
|
zdim=Dm.Nz-2;
|
||||||
|
fillHalo<double> fillData(Dm.Comm, Dm.rank_info,xdim,ydim,zdim,1,1,1,0,1);
|
||||||
|
|
||||||
|
// Arrays to store the second derivatives
|
||||||
|
DoubleArray Dxx(Dm.Nx,Dm.Ny,Dm.Nz);
|
||||||
|
DoubleArray Dyy(Dm.Nx,Dm.Ny,Dm.Nz);
|
||||||
|
DoubleArray Dzz(Dm.Nx,Dm.Ny,Dm.Nz);
|
||||||
|
|
||||||
|
int count = 0;
|
||||||
|
while (count < timesteps){
|
||||||
|
|
||||||
|
// Communicate the halo of values
|
||||||
|
fillData.fill(Distance);
|
||||||
|
|
||||||
|
// Compute second order derivatives
|
||||||
|
for (k=1;k<Dm.Nz-1;k++){
|
||||||
|
for (j=1;j<Dm.Ny-1;j++){
|
||||||
|
for (i=1;i<Dm.Nx-1;i++){
|
||||||
|
Dxx(i,j,k) = Distance(i+1,j,k) + Distance(i-1,j,k) - 2*Distance(i,j,k);
|
||||||
|
Dyy(i,j,k) = Distance(i,j+1,k) + Distance(i,j-1,k) - 2*Distance(i,j,k);
|
||||||
|
Dzz(i,j,k) = Distance(i,j,k+1) + Distance(i,j,k-1) - 2*Distance(i,j,k);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
fillData.fill(Dxx);
|
||||||
|
fillData.fill(Dyy);
|
||||||
|
fillData.fill(Dzz);
|
||||||
|
|
||||||
|
LocalMax=LocalVar=0.0;
|
||||||
|
// Execute the next timestep
|
||||||
|
for (k=1;k<Dm.Nz-1;k++){
|
||||||
|
for (j=1;j<Dm.Ny-1;j++){
|
||||||
|
for (i=1;i<Dm.Nx-1;i++){
|
||||||
|
|
||||||
|
int n = k*Dm.Nx*Dm.Ny + j*Dm.Nx + i;
|
||||||
|
|
||||||
|
sign = -1;
|
||||||
|
if (ID[n] == 1) sign = 1;
|
||||||
|
|
||||||
|
// local second derivative terms
|
||||||
|
Dxxp = minmod(Dxx(i,j,k),Dxx(i+1,j,k));
|
||||||
|
Dyyp = minmod(Dyy(i,j,k),Dyy(i,j+1,k));
|
||||||
|
Dzzp = minmod(Dzz(i,j,k),Dzz(i,j,k+1));
|
||||||
|
Dxxm = minmod(Dxx(i,j,k),Dxx(i-1,j,k));
|
||||||
|
Dyym = minmod(Dyy(i,j,k),Dyy(i,j-1,k));
|
||||||
|
Dzzm = minmod(Dzz(i,j,k),Dzz(i,j,k-1));
|
||||||
|
|
||||||
|
/* //............Compute upwind derivatives ...................
|
||||||
|
Dxp = Distance(i+1,j,k) - Distance(i,j,k) + 0.5*Dxxp;
|
||||||
|
Dyp = Distance(i,j+1,k) - Distance(i,j,k) + 0.5*Dyyp;
|
||||||
|
Dzp = Distance(i,j,k+1) - Distance(i,j,k) + 0.5*Dzzp;
|
||||||
|
|
||||||
|
|
||||||
|
Dxm = Distance(i,j,k) - Distance(i-1,j,k) + 0.5*Dxxm;
|
||||||
|
Dym = Distance(i,j,k) - Distance(i,j-1,k) + 0.5*Dyym;
|
||||||
|
Dzm = Distance(i,j,k) - Distance(i,j,k-1) + 0.5*Dzzm;
|
||||||
|
*/
|
||||||
|
Dxp = Distance(i+1,j,k)- Distance(i,j,k) - 0.5*Dxxp;
|
||||||
|
Dyp = Distance(i,j+1,k)- Distance(i,j,k) - 0.5*Dyyp;
|
||||||
|
Dzp = Distance(i,j,k+1)- Distance(i,j,k) - 0.5*Dzzp;
|
||||||
|
|
||||||
|
Dxm = Distance(i,j,k) - Distance(i-1,j,k) + 0.5*Dxxm;
|
||||||
|
Dym = Distance(i,j,k) - Distance(i,j-1,k) + 0.5*Dyym;
|
||||||
|
Dzm = Distance(i,j,k) - Distance(i,j,k-1) + 0.5*Dzzm;
|
||||||
|
|
||||||
|
// Compute upwind derivatives for Godunov Hamiltonian
|
||||||
|
if (sign < 0.0){
|
||||||
|
if (Dxp + Dxm > 0.f) Dx = Dxp*Dxp;
|
||||||
|
else Dx = Dxm*Dxm;
|
||||||
|
|
||||||
|
if (Dyp + Dym > 0.f) Dy = Dyp*Dyp;
|
||||||
|
else Dy = Dym*Dym;
|
||||||
|
|
||||||
|
if (Dzp + Dzm > 0.f) Dz = Dzp*Dzp;
|
||||||
|
else Dz = Dzm*Dzm;
|
||||||
|
}
|
||||||
|
else{
|
||||||
|
|
||||||
|
if (Dxp + Dxm < 0.f) Dx = Dxp*Dxp;
|
||||||
|
else Dx = Dxm*Dxm;
|
||||||
|
|
||||||
|
if (Dyp + Dym < 0.f) Dy = Dyp*Dyp;
|
||||||
|
else Dy = Dym*Dym;
|
||||||
|
|
||||||
|
if (Dzp + Dzm < 0.f) Dz = Dzp*Dzp;
|
||||||
|
else Dz = Dzm*Dzm;
|
||||||
|
}
|
||||||
|
|
||||||
|
//Dx = max(Dxp*Dxp,Dxm*Dxm);
|
||||||
|
//Dy = max(Dyp*Dyp,Dym*Dym);
|
||||||
|
//Dz = max(Dzp*Dzp,Dzm*Dzm);
|
||||||
|
|
||||||
|
norm=sqrt(Dx + Dy + Dz);
|
||||||
|
if (norm > 1.0) norm=1.0;
|
||||||
|
|
||||||
|
Distance(i,j,k) += dt*sign*(1.0 - norm);
|
||||||
|
LocalVar += dt*sign*(1.0 - norm);
|
||||||
|
|
||||||
|
if (fabs(dt*sign*(1.0 - norm)) > LocalMax)
|
||||||
|
LocalMax = fabs(dt*sign*(1.0 - norm));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
MPI_Allreduce(&LocalVar,&GlobalVar,1,MPI_DOUBLE,MPI_SUM,Dm.Comm);
|
||||||
|
MPI_Allreduce(&LocalMax,&GlobalMax,1,MPI_DOUBLE,MPI_MAX,Dm.Comm);
|
||||||
|
GlobalVar /= (Dm.Nx-2)*(Dm.Ny-2)*(Dm.Nz-2)*Dm.nprocx*Dm.nprocy*Dm.nprocz;
|
||||||
|
count++;
|
||||||
|
|
||||||
|
if (count%50 == 0 && Dm.rank==0 )
|
||||||
|
printf("Time=%i, Max variation=%f, Global variation=%f \n",count,GlobalMax,GlobalVar);
|
||||||
|
|
||||||
|
if (fabs(GlobalMax) < 1e-5){
|
||||||
|
if (Dm.rank==0) printf("Exiting with max tolerance of 1e-5 \n");
|
||||||
|
count=timesteps;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return GlobalVar;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
@ -18,294 +18,308 @@ int main(int argc, char **argv)
|
|||||||
// Initialize MPI
|
// Initialize MPI
|
||||||
int rank, nprocs;
|
int rank, nprocs;
|
||||||
MPI_Init(&argc,&argv);
|
MPI_Init(&argc,&argv);
|
||||||
|
|
||||||
MPI_Comm comm = MPI_COMM_WORLD;
|
MPI_Comm comm = MPI_COMM_WORLD;
|
||||||
MPI_Comm_rank(comm,&rank);
|
MPI_Comm_rank(comm,&rank);
|
||||||
MPI_Comm_size(comm,&nprocs);
|
MPI_Comm_size(comm,&nprocs);
|
||||||
{
|
{
|
||||||
|
|
||||||
int SOLID=atoi(argv[1]);
|
|
||||||
int NWP=atoi(argv[2]);
|
|
||||||
//char NWP,SOLID;
|
|
||||||
//SOLID=argv[1][0];
|
|
||||||
//NWP=argv[2][0];
|
|
||||||
if (rank==0){
|
|
||||||
printf("Solid Label: %i \n",SOLID);
|
|
||||||
printf("NWP Label: %i \n",NWP);
|
|
||||||
}
|
|
||||||
|
|
||||||
//.......................................................................
|
|
||||||
// Reading the domain information file
|
|
||||||
//.......................................................................
|
|
||||||
int nprocx, nprocy, nprocz, nx, ny, nz, nspheres;
|
|
||||||
double Lx, Ly, Lz;
|
|
||||||
int Nx,Ny,Nz;
|
|
||||||
int i,j,k,n;
|
|
||||||
int BC=0;
|
|
||||||
char Filename[40];
|
|
||||||
int xStart,yStart,zStart;
|
|
||||||
// char fluidValue,solidValue;
|
|
||||||
|
|
||||||
std::vector<char> solidValues;
|
|
||||||
std::vector<char> nwpValues;
|
|
||||||
std::string line;
|
|
||||||
|
|
||||||
if (rank==0){
|
bool MULTINPUT=false;
|
||||||
ifstream domain("Domain.in");
|
|
||||||
domain >> nprocx;
|
|
||||||
domain >> nprocy;
|
|
||||||
domain >> nprocz;
|
|
||||||
domain >> nx;
|
|
||||||
domain >> ny;
|
|
||||||
domain >> nz;
|
|
||||||
domain >> nspheres;
|
|
||||||
domain >> Lx;
|
|
||||||
domain >> Ly;
|
|
||||||
domain >> Lz;
|
|
||||||
|
|
||||||
ifstream image("Segmented.in");
|
int NWP,SOLID,rank_offset;
|
||||||
image >> Filename; // Name of data file containing segmented data
|
SOLID=atoi(argv[1]);
|
||||||
image >> Nx; // size of the binary file
|
NWP=atoi(argv[2]);
|
||||||
image >> Ny;
|
//char NWP,SOLID;
|
||||||
image >> Nz;
|
//SOLID=argv[1][0];
|
||||||
image >> xStart; // offset for the starting voxel
|
//NWP=argv[2][0];
|
||||||
image >> yStart;
|
if (rank==0){
|
||||||
image >> zStart;
|
printf("Solid Label: %i \n",SOLID);
|
||||||
|
printf("NWP Label: %i \n",NWP);
|
||||||
|
}
|
||||||
|
if (argc > 3){
|
||||||
|
rank_offset = atoi(argv[3]);
|
||||||
|
}
|
||||||
|
else{
|
||||||
|
MULTINPUT=true;
|
||||||
|
rank_offset=0;
|
||||||
|
}
|
||||||
|
|
||||||
}
|
//.......................................................................
|
||||||
MPI_Barrier(comm);
|
// Reading the domain information file
|
||||||
// Computational domain
|
//.......................................................................
|
||||||
//.................................................
|
int nprocx, nprocy, nprocz, nx, ny, nz, nspheres;
|
||||||
MPI_Bcast(&nx,1,MPI_INT,0,comm);
|
double Lx, Ly, Lz;
|
||||||
MPI_Bcast(&ny,1,MPI_INT,0,comm);
|
int Nx,Ny,Nz;
|
||||||
MPI_Bcast(&nz,1,MPI_INT,0,comm);
|
int i,j,k,n;
|
||||||
MPI_Bcast(&nprocx,1,MPI_INT,0,comm);
|
int BC=0;
|
||||||
MPI_Bcast(&nprocy,1,MPI_INT,0,comm);
|
char Filename[40];
|
||||||
MPI_Bcast(&nprocz,1,MPI_INT,0,comm);
|
int xStart,yStart,zStart;
|
||||||
MPI_Bcast(&nspheres,1,MPI_INT,0,comm);
|
// char fluidValue,solidValue;
|
||||||
MPI_Bcast(&Lx,1,MPI_DOUBLE,0,comm);
|
|
||||||
MPI_Bcast(&Ly,1,MPI_DOUBLE,0,comm);
|
|
||||||
MPI_Bcast(&Lz,1,MPI_DOUBLE,0,comm);
|
|
||||||
//.................................................
|
|
||||||
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
|
|
||||||
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
|
|
||||||
MPI_Bcast(&Nz,1,MPI_INT,0,comm);
|
|
||||||
MPI_Bcast(&xStart,1,MPI_INT,0,comm);
|
|
||||||
MPI_Bcast(&yStart,1,MPI_INT,0,comm);
|
|
||||||
MPI_Bcast(&zStart,1,MPI_INT,0,comm);
|
|
||||||
//.................................................
|
|
||||||
MPI_Barrier(comm);
|
|
||||||
|
|
||||||
// Check that the number of processors >= the number of ranks
|
std::vector<char> solidValues;
|
||||||
if ( rank==0 ) {
|
std::vector<char> nwpValues;
|
||||||
printf("Number of MPI ranks required: %i \n", nprocx*nprocy*nprocz);
|
std::string line;
|
||||||
printf("Number of MPI ranks used: %i \n", nprocs);
|
|
||||||
printf("Full domain size: %i x %i x %i \n",nx*nprocx,ny*nprocy,nz*nprocz);
|
|
||||||
}
|
|
||||||
if ( nprocs < nprocx*nprocy*nprocz ){
|
|
||||||
ERROR("Insufficient number of processors");
|
|
||||||
}
|
|
||||||
char *SegData = NULL;
|
|
||||||
// Rank=0 reads the entire segmented data and distributes to worker processes
|
|
||||||
if (rank==0){
|
|
||||||
printf("Dimensions of segmented image: %i x %i x %i \n",Nx,Ny,Nz);
|
|
||||||
SegData = new char[Nx*Ny*Nz];
|
|
||||||
FILE *SEGDAT = fopen(Filename,"rb");
|
|
||||||
if (SEGDAT==NULL) ERROR("Error reading segmented data");
|
|
||||||
size_t ReadSeg;
|
|
||||||
ReadSeg=fread(SegData,1,Nx*Ny*Nz,SEGDAT);
|
|
||||||
if (ReadSeg != size_t(Nx*Ny*Nz)) printf("lbpm_segmented_decomp: Error reading segmented data (rank=%i)\n",rank);
|
|
||||||
fclose(SEGDAT);
|
|
||||||
printf("Read segmented data from %s \n",Filename);
|
|
||||||
}
|
|
||||||
MPI_Barrier(comm);
|
|
||||||
|
|
||||||
// Get the rank info
|
if (rank==0){
|
||||||
int N = (nx+2)*(ny+2)*(nz+2);
|
ifstream domain("Domain.in");
|
||||||
Domain Dm(nx,ny,nz,rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BC);
|
domain >> nprocx;
|
||||||
for (k=0;k<nz+2;k++){
|
domain >> nprocy;
|
||||||
for (j=0;j<ny+2;j++){
|
domain >> nprocz;
|
||||||
for (i=0;i<nx+2;i++){
|
domain >> nx;
|
||||||
n = k*(nx+2)*(ny+2)+j*(nx+2)+i;
|
domain >> ny;
|
||||||
Dm.id[n] = 1;
|
domain >> nz;
|
||||||
|
domain >> nspheres;
|
||||||
|
domain >> Lx;
|
||||||
|
domain >> Ly;
|
||||||
|
domain >> Lz;
|
||||||
|
|
||||||
|
ifstream image("Segmented.in");
|
||||||
|
image >> Filename; // Name of data file containing segmented data
|
||||||
|
image >> Nx; // size of the binary file
|
||||||
|
image >> Ny;
|
||||||
|
image >> Nz;
|
||||||
|
image >> xStart; // offset for the starting voxel
|
||||||
|
image >> yStart;
|
||||||
|
image >> zStart;
|
||||||
|
|
||||||
|
}
|
||||||
|
MPI_Barrier(comm);
|
||||||
|
// Computational domain
|
||||||
|
//.................................................
|
||||||
|
MPI_Bcast(&nx,1,MPI_INT,0,comm);
|
||||||
|
MPI_Bcast(&ny,1,MPI_INT,0,comm);
|
||||||
|
MPI_Bcast(&nz,1,MPI_INT,0,comm);
|
||||||
|
MPI_Bcast(&nprocx,1,MPI_INT,0,comm);
|
||||||
|
MPI_Bcast(&nprocy,1,MPI_INT,0,comm);
|
||||||
|
MPI_Bcast(&nprocz,1,MPI_INT,0,comm);
|
||||||
|
MPI_Bcast(&nspheres,1,MPI_INT,0,comm);
|
||||||
|
MPI_Bcast(&Lx,1,MPI_DOUBLE,0,comm);
|
||||||
|
MPI_Bcast(&Ly,1,MPI_DOUBLE,0,comm);
|
||||||
|
MPI_Bcast(&Lz,1,MPI_DOUBLE,0,comm);
|
||||||
|
//.................................................
|
||||||
|
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
|
||||||
|
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
|
||||||
|
MPI_Bcast(&Nz,1,MPI_INT,0,comm);
|
||||||
|
MPI_Bcast(&xStart,1,MPI_INT,0,comm);
|
||||||
|
MPI_Bcast(&yStart,1,MPI_INT,0,comm);
|
||||||
|
MPI_Bcast(&zStart,1,MPI_INT,0,comm);
|
||||||
|
//.................................................
|
||||||
|
MPI_Barrier(comm);
|
||||||
|
|
||||||
|
// Check that the number of processors >= the number of ranks
|
||||||
|
if ( rank==0 ) {
|
||||||
|
printf("Number of MPI ranks required: %i \n", nprocx*nprocy*nprocz);
|
||||||
|
printf("Number of MPI ranks used: %i \n", nprocs);
|
||||||
|
printf("Full domain size: %i x %i x %i \n",nx*nprocx,ny*nprocy,nz*nprocz);
|
||||||
|
}
|
||||||
|
if ( nprocs < nprocx*nprocy*nprocz ){
|
||||||
|
ERROR("Insufficient number of processors");
|
||||||
|
}
|
||||||
|
char *SegData = NULL;
|
||||||
|
// Rank=0 reads the entire segmented data and distributes to worker processes
|
||||||
|
if (rank==0){
|
||||||
|
printf("Dimensions of segmented image: %i x %i x %i \n",Nx,Ny,Nz);
|
||||||
|
SegData = new char[Nx*Ny*Nz];
|
||||||
|
FILE *SEGDAT = fopen(Filename,"rb");
|
||||||
|
if (SEGDAT==NULL) ERROR("Error reading segmented data");
|
||||||
|
size_t ReadSeg;
|
||||||
|
ReadSeg=fread(SegData,1,Nx*Ny*Nz,SEGDAT);
|
||||||
|
if (ReadSeg != size_t(Nx*Ny*Nz)) printf("lbpm_segmented_decomp: Error reading segmented data (rank=%i)\n",rank);
|
||||||
|
fclose(SEGDAT);
|
||||||
|
printf("Read segmented data from %s \n",Filename);
|
||||||
|
}
|
||||||
|
MPI_Barrier(comm);
|
||||||
|
|
||||||
|
// Get the rank info
|
||||||
|
int N = (nx+2)*(ny+2)*(nz+2);
|
||||||
|
Domain Dm(nx,ny,nz,rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BC);
|
||||||
|
for (k=0;k<nz+2;k++){
|
||||||
|
for (j=0;j<ny+2;j++){
|
||||||
|
for (i=0;i<nx+2;i++){
|
||||||
|
n = k*(nx+2)*(ny+2)+j*(nx+2)+i;
|
||||||
|
Dm.id[n] = 1;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
Dm.CommInit(comm);
|
||||||
Dm.CommInit(comm);
|
|
||||||
|
|
||||||
// number of sites to use for periodic boundary condition transition zone
|
// number of sites to use for periodic boundary condition transition zone
|
||||||
int z_transition_size = (nprocz*nz - (Nz - zStart))/2;
|
int z_transition_size = (nprocz*nz - (Nz - zStart))/2;
|
||||||
if (z_transition_size < 0) z_transition_size=0;
|
if (z_transition_size < 0) z_transition_size=0;
|
||||||
|
|
||||||
// Set up the sub-domains
|
// Set up the sub-domains
|
||||||
if (rank==0){
|
if (rank==0){
|
||||||
printf("Distributing subdomains across %i processors \n",nprocs);
|
printf("Distributing subdomains across %i processors \n",nprocs);
|
||||||
printf("Process grid: %i x %i x %i \n",Dm.nprocx,Dm.nprocy,Dm.nprocz);
|
printf("Process grid: %i x %i x %i \n",Dm.nprocx,Dm.nprocy,Dm.nprocz);
|
||||||
printf("Subdomain size: %i \n",N);
|
printf("Subdomain size: %i \n",N);
|
||||||
printf("Size of transition region: %i \n", z_transition_size);
|
printf("Size of transition region: %i \n", z_transition_size);
|
||||||
char *tmp;
|
char *tmp;
|
||||||
tmp = new char[N];
|
tmp = new char[N];
|
||||||
for (int kp=0; kp<nprocz; kp++){
|
for (int kp=0; kp<nprocz; kp++){
|
||||||
for (int jp=0; jp<nprocy; jp++){
|
for (int jp=0; jp<nprocy; jp++){
|
||||||
for (int ip=0; ip<nprocx; ip++){
|
for (int ip=0; ip<nprocx; ip++){
|
||||||
// rank of the process that gets this subdomain
|
// rank of the process that gets this subdomain
|
||||||
int rnk = kp*Dm.nprocx*Dm.nprocy + jp*Dm.nprocx + ip;
|
int rnk = kp*Dm.nprocx*Dm.nprocy + jp*Dm.nprocx + ip;
|
||||||
// Pack and send the subdomain for rnk
|
// Pack and send the subdomain for rnk
|
||||||
for (k=0;k<nz+2;k++){
|
|
||||||
for (j=0;j<ny+2;j++){
|
|
||||||
for (i=0;i<nx+2;i++){
|
|
||||||
int x = xStart + ip*nx + i-1;
|
|
||||||
int y = yStart + jp*ny + j-1;
|
|
||||||
// int z = zStart + kp*nz + k-1;
|
|
||||||
int z = zStart + kp*nz + k-1 - z_transition_size;
|
|
||||||
if (z<zStart) z=zStart;
|
|
||||||
if (!(z<Nz)) z=Nz-1;
|
|
||||||
int nlocal = k*(nx+2)*(ny+2) + j*(nx+2) + i;
|
|
||||||
int nglobal = z*Nx*Ny+y*Nx+x;
|
|
||||||
tmp[nlocal] = SegData[nglobal];
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if (rnk==0){
|
|
||||||
for (k=0;k<nz+2;k++){
|
for (k=0;k<nz+2;k++){
|
||||||
for (j=0;j<ny+2;j++){
|
for (j=0;j<ny+2;j++){
|
||||||
for (i=0;i<nx+2;i++){
|
for (i=0;i<nx+2;i++){
|
||||||
|
int x = xStart + ip*nx + i-1;
|
||||||
|
int y = yStart + jp*ny + j-1;
|
||||||
|
// int z = zStart + kp*nz + k-1;
|
||||||
|
int z = zStart + kp*nz + k-1 - z_transition_size;
|
||||||
|
if (z<zStart) z=zStart;
|
||||||
|
if (!(z<Nz)) z=Nz-1;
|
||||||
int nlocal = k*(nx+2)*(ny+2) + j*(nx+2) + i;
|
int nlocal = k*(nx+2)*(ny+2) + j*(nx+2) + i;
|
||||||
Dm.id[nlocal] = tmp[nlocal];
|
int nglobal = z*Nx*Ny+y*Nx+x;
|
||||||
|
tmp[nlocal] = SegData[nglobal];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
if (rnk==0){
|
||||||
else{
|
for (k=0;k<nz+2;k++){
|
||||||
printf("Sending data to process %i \n", rnk);
|
for (j=0;j<ny+2;j++){
|
||||||
MPI_Send(tmp,N,MPI_CHAR,rnk,15,comm);
|
for (i=0;i<nx+2;i++){
|
||||||
|
int nlocal = k*(nx+2)*(ny+2) + j*(nx+2) + i;
|
||||||
|
Dm.id[nlocal] = tmp[nlocal];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else{
|
||||||
|
printf("Sending data to process %i \n", rnk);
|
||||||
|
MPI_Send(tmp,N,MPI_CHAR,rnk,15,comm);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
else{
|
||||||
else{
|
// Recieve the subdomain from rank = 0
|
||||||
// Recieve the subdomain from rank = 0
|
printf("Ready to recieve data %i at process %i \n", N,rank);
|
||||||
printf("Ready to recieve data %i at process %i \n", N,rank);
|
MPI_Recv(Dm.id,N,MPI_CHAR,0,15,comm,MPI_STATUS_IGNORE);
|
||||||
MPI_Recv(Dm.id,N,MPI_CHAR,0,15,comm,MPI_STATUS_IGNORE);
|
}
|
||||||
|
MPI_Barrier(comm);
|
||||||
|
|
||||||
|
nx+=2; ny+=2; nz+=2;
|
||||||
|
N=nx*ny*nz;
|
||||||
|
|
||||||
|
if (rank==0) printf("All sub-domains recieved \n");
|
||||||
|
for (k=0;k<nz;k++){
|
||||||
|
for (j=0;j<ny;j++){
|
||||||
|
for (i=0;i<nx;i++){
|
||||||
|
n = k*nx*ny+j*nx+i;
|
||||||
|
if (Dm.id[n]==char(SOLID)) Dm.id[n] = 0;
|
||||||
|
else if (Dm.id[n]==char(NWP)) Dm.id[n] = 1;
|
||||||
|
else Dm.id[n] = 2;
|
||||||
|
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (rank==0) printf("Domain set \n");
|
||||||
|
|
||||||
|
int count = 0;
|
||||||
|
int total = 0;
|
||||||
|
int countGlobal = 0;
|
||||||
|
int totalGlobal = 0;
|
||||||
|
for (k=1;k<nz-1;k++){
|
||||||
|
for (j=1;j<ny-1;j++){
|
||||||
|
for (i=1;i<nx-1;i++){
|
||||||
|
n=k*nx*ny+j*nx+i;
|
||||||
|
total++;
|
||||||
|
if (Dm.id[n] == 0){
|
||||||
|
count++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
MPI_Allreduce(&count,&countGlobal,1,MPI_INT,MPI_SUM,comm);
|
||||||
|
MPI_Allreduce(&total,&totalGlobal,1,MPI_INT,MPI_SUM,comm);
|
||||||
|
|
||||||
|
|
||||||
|
float porosity = float(totalGlobal-countGlobal)/totalGlobal;
|
||||||
|
if (rank==0) printf("Porosity=%f\n",porosity);
|
||||||
|
|
||||||
|
if (rank==0){
|
||||||
|
int xstart = xStart; // Is this correct?
|
||||||
|
int ystart = yStart;
|
||||||
|
int zstart = zStart;
|
||||||
|
//totalGlobal=(Nx-xstart)*(Ny-ystart)*(Nz-zstart);
|
||||||
|
countGlobal = 0;
|
||||||
|
for (k=zstart; k<zstart+nprocz*(nz-2); k++){
|
||||||
|
for (j=ystart; j<ystart+nprocy*(ny-2); j++){
|
||||||
|
for (i=xstart; i<xstart+nprocx*(nx-2); i++){
|
||||||
|
|
||||||
|
n=k*Nx*Ny+j*Nx+i;
|
||||||
|
if (n < Nx*Ny*Nz){
|
||||||
|
if (SegData[n] == char(SOLID)){
|
||||||
|
countGlobal++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
float porosity = float(totalGlobal-countGlobal)/totalGlobal;
|
||||||
|
printf("Original Porosity=%f\n",porosity);
|
||||||
|
}
|
||||||
|
|
||||||
|
count = 0;
|
||||||
|
total = 0;
|
||||||
|
countGlobal = 0;
|
||||||
|
totalGlobal = 0;
|
||||||
|
for (k=1;k<nz-1;k++){
|
||||||
|
for (j=1;j<ny-1;j++){
|
||||||
|
for (i=1;i<nx-1;i++){
|
||||||
|
n=k*nx*ny+j*nx+i;
|
||||||
|
if (Dm.id[n] != 0) total++;
|
||||||
|
if (Dm.id[n] == 2) count++;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
MPI_Allreduce(&count,&countGlobal,1,MPI_INT,MPI_SUM,comm);
|
||||||
|
MPI_Allreduce(&total,&totalGlobal,1,MPI_INT,MPI_SUM,comm);
|
||||||
|
float saturation = float(countGlobal)/totalGlobal;
|
||||||
|
if (rank==0) printf("wetting phase saturation=%f\n",saturation);
|
||||||
|
|
||||||
|
|
||||||
|
char LocalRankFilename[40];
|
||||||
|
|
||||||
|
sprintf(LocalRankFilename,"ID.%05i",rank+rank_offset);
|
||||||
|
FILE *ID = fopen(LocalRankFilename,"wb");
|
||||||
|
fwrite(Dm.id,1,N,ID);
|
||||||
|
// fwrite(Distance.get(),8,Distance.length(),ID);
|
||||||
|
fclose(ID);
|
||||||
|
|
||||||
|
if (!MULTINPUT){
|
||||||
|
|
||||||
|
if (rank==0) printf("Writing symmetric domain reflection\n");
|
||||||
|
MPI_Barrier(comm);
|
||||||
|
int symrank,sympz;
|
||||||
|
sympz = 2*nprocz - Dm.kproc -1;
|
||||||
|
symrank = sympz*nprocx*nprocy + Dm.jproc*nprocx + Dm.iproc;
|
||||||
|
|
||||||
|
// DoubleArray SymDist(nx,ny,nz);
|
||||||
|
char *symid;
|
||||||
|
symid = new char [N];
|
||||||
|
for (k=0;k<nz;k++){
|
||||||
|
for (j=0;j<ny;j++){
|
||||||
|
for (i=0;i<nx;i++){
|
||||||
|
n=k*nx*ny+j*nx+i;
|
||||||
|
int nsym=(nz-k-1)*nx*ny+j*nx+i;
|
||||||
|
symid[nsym] = Dm.id[n];
|
||||||
|
//SymDist(i,j,nz-k-1)=Distance(i,j,k);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
sprintf(LocalRankFilename,"ID.%05i",symrank);
|
||||||
|
FILE *SYMID = fopen(LocalRankFilename,"wb");
|
||||||
|
// fwrite(SymDist.get(),8,SymDist.length(),SYMDIST);
|
||||||
|
fwrite(symid,1,N,SYMID);
|
||||||
|
fclose(SYMID);
|
||||||
|
}
|
||||||
}
|
}
|
||||||
MPI_Barrier(comm);
|
MPI_Barrier(comm);
|
||||||
|
MPI_Finalize();
|
||||||
nx+=2; ny+=2; nz+=2;
|
|
||||||
N=nx*ny*nz;
|
|
||||||
|
|
||||||
if (rank==0) printf("All sub-domains recieved \n");
|
|
||||||
for (k=0;k<nz;k++){
|
|
||||||
for (j=0;j<ny;j++){
|
|
||||||
for (i=0;i<nx;i++){
|
|
||||||
n = k*nx*ny+j*nx+i;
|
|
||||||
if (Dm.id[n]==char(SOLID)) Dm.id[n] = 0;
|
|
||||||
else if (Dm.id[n]==char(NWP)) Dm.id[n] = 1;
|
|
||||||
else Dm.id[n] = 2;
|
|
||||||
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if (rank==0) printf("Domain set \n");
|
|
||||||
|
|
||||||
int count = 0;
|
|
||||||
int total = 0;
|
|
||||||
int countGlobal = 0;
|
|
||||||
int totalGlobal = 0;
|
|
||||||
for (k=1;k<nz-1;k++){
|
|
||||||
for (j=1;j<ny-1;j++){
|
|
||||||
for (i=1;i<nx-1;i++){
|
|
||||||
n=k*nx*ny+j*nx+i;
|
|
||||||
total++;
|
|
||||||
if (Dm.id[n] == 0){
|
|
||||||
count++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
MPI_Allreduce(&count,&countGlobal,1,MPI_INT,MPI_SUM,comm);
|
|
||||||
MPI_Allreduce(&total,&totalGlobal,1,MPI_INT,MPI_SUM,comm);
|
|
||||||
|
|
||||||
|
|
||||||
float porosity = float(totalGlobal-countGlobal)/totalGlobal;
|
|
||||||
if (rank==0) printf("Porosity=%f\n",porosity);
|
|
||||||
|
|
||||||
if (rank==0){
|
|
||||||
int xstart = xStart; // Is this correct?
|
|
||||||
int ystart = yStart;
|
|
||||||
int zstart = zStart;
|
|
||||||
//totalGlobal=(Nx-xstart)*(Ny-ystart)*(Nz-zstart);
|
|
||||||
countGlobal = 0;
|
|
||||||
for (k=zstart; k<zstart+nprocz*(nz-2); k++){
|
|
||||||
for (j=ystart; j<ystart+nprocy*(ny-2); j++){
|
|
||||||
for (i=xstart; i<xstart+nprocx*(nx-2); i++){
|
|
||||||
|
|
||||||
n=k*Nx*Ny+j*Nx+i;
|
|
||||||
if (n < Nx*Ny*Nz){
|
|
||||||
if (SegData[n] == char(SOLID)){
|
|
||||||
countGlobal++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
float porosity = float(totalGlobal-countGlobal)/totalGlobal;
|
|
||||||
printf("Original Porosity=%f\n",porosity);
|
|
||||||
}
|
|
||||||
|
|
||||||
count = 0;
|
|
||||||
total = 0;
|
|
||||||
countGlobal = 0;
|
|
||||||
totalGlobal = 0;
|
|
||||||
for (k=1;k<nz-1;k++){
|
|
||||||
for (j=1;j<ny-1;j++){
|
|
||||||
for (i=1;i<nx-1;i++){
|
|
||||||
n=k*nx*ny+j*nx+i;
|
|
||||||
if (Dm.id[n] != 0) total++;
|
|
||||||
if (Dm.id[n] == 2) count++;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
MPI_Allreduce(&count,&countGlobal,1,MPI_INT,MPI_SUM,comm);
|
|
||||||
MPI_Allreduce(&total,&totalGlobal,1,MPI_INT,MPI_SUM,comm);
|
|
||||||
float saturation = float(countGlobal)/totalGlobal;
|
|
||||||
if (rank==0) printf("wetting phase saturation=%f\n",saturation);
|
|
||||||
|
|
||||||
|
|
||||||
char LocalRankFilename[40];
|
|
||||||
|
|
||||||
sprintf(LocalRankFilename,"ID.%05i",rank);
|
|
||||||
FILE *ID = fopen(LocalRankFilename,"wb");
|
|
||||||
fwrite(Dm.id,1,N,ID);
|
|
||||||
// fwrite(Distance.get(),8,Distance.length(),ID);
|
|
||||||
fclose(ID);
|
|
||||||
|
|
||||||
if (rank==0) printf("Writing symmetric domain reflection\n");
|
|
||||||
MPI_Barrier(comm);
|
|
||||||
int symrank,sympz;
|
|
||||||
sympz = 2*nprocz - Dm.kproc -1;
|
|
||||||
symrank = sympz*nprocx*nprocy + Dm.jproc*nprocx + Dm.iproc;
|
|
||||||
|
|
||||||
// DoubleArray SymDist(nx,ny,nz);
|
|
||||||
char *symid;
|
|
||||||
symid = new char [N];
|
|
||||||
for (k=0;k<nz;k++){
|
|
||||||
for (j=0;j<ny;j++){
|
|
||||||
for (i=0;i<nx;i++){
|
|
||||||
n=k*nx*ny+j*nx+i;
|
|
||||||
int nsym=(nz-k-1)*nx*ny+j*nx+i;
|
|
||||||
symid[nsym] = Dm.id[n];
|
|
||||||
//SymDist(i,j,nz-k-1)=Distance(i,j,k);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
sprintf(LocalRankFilename,"ID.%05i",symrank);
|
|
||||||
FILE *SYMID = fopen(LocalRankFilename,"wb");
|
|
||||||
// fwrite(SymDist.get(),8,SymDist.length(),SYMDIST);
|
|
||||||
fwrite(symid,1,N,SYMID);
|
|
||||||
fclose(SYMID);
|
|
||||||
}
|
|
||||||
MPI_Barrier(comm);
|
|
||||||
MPI_Finalize();
|
|
||||||
}
|
}
|
||||||
|
@ -26,162 +26,6 @@ inline void MeanFilter(DoubleArray &Mesh){
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
inline double minmod(double &a, double &b){
|
|
||||||
|
|
||||||
double value;
|
|
||||||
|
|
||||||
value = a;
|
|
||||||
if ( a*b < 0.0) value=0.0;
|
|
||||||
else if (fabs(a) > fabs(b)) value = b;
|
|
||||||
|
|
||||||
return value;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
inline double Eikonal(DoubleArray &Distance, char *ID, Domain &Dm, int timesteps){
|
|
||||||
|
|
||||||
/*
|
|
||||||
* This routine converts the data in the Distance array to a signed distance
|
|
||||||
* by solving the equation df/dt = sign(1-|grad f|), where Distance provides
|
|
||||||
* the values of f on the mesh associated with domain Dm
|
|
||||||
* It has been tested with segmented data initialized to values [-1,1]
|
|
||||||
* and will converge toward the signed distance to the surface bounding the associated phases
|
|
||||||
*
|
|
||||||
* Reference:
|
|
||||||
* Min C (2010) On reinitializing level set functions, Journal of Computational Physics 229
|
|
||||||
*/
|
|
||||||
|
|
||||||
int i,j,k;
|
|
||||||
double dt=0.1;
|
|
||||||
double Dx,Dy,Dz;
|
|
||||||
double Dxp,Dxm,Dyp,Dym,Dzp,Dzm;
|
|
||||||
double Dxxp,Dxxm,Dyyp,Dyym,Dzzp,Dzzm;
|
|
||||||
double sign,norm;
|
|
||||||
double LocalVar,GlobalVar,LocalMax,GlobalMax;
|
|
||||||
|
|
||||||
int xdim,ydim,zdim;
|
|
||||||
xdim=Dm.Nx-2;
|
|
||||||
ydim=Dm.Ny-2;
|
|
||||||
zdim=Dm.Nz-2;
|
|
||||||
fillHalo<double> fillData(Dm.Comm, Dm.rank_info,xdim,ydim,zdim,1,1,1,0,1);
|
|
||||||
|
|
||||||
// Arrays to store the second derivatives
|
|
||||||
DoubleArray Dxx(Dm.Nx,Dm.Ny,Dm.Nz);
|
|
||||||
DoubleArray Dyy(Dm.Nx,Dm.Ny,Dm.Nz);
|
|
||||||
DoubleArray Dzz(Dm.Nx,Dm.Ny,Dm.Nz);
|
|
||||||
|
|
||||||
int count = 0;
|
|
||||||
while (count < timesteps){
|
|
||||||
|
|
||||||
// Communicate the halo of values
|
|
||||||
fillData.fill(Distance);
|
|
||||||
|
|
||||||
// Compute second order derivatives
|
|
||||||
for (k=1;k<Dm.Nz-1;k++){
|
|
||||||
for (j=1;j<Dm.Ny-1;j++){
|
|
||||||
for (i=1;i<Dm.Nx-1;i++){
|
|
||||||
Dxx(i,j,k) = Distance(i+1,j,k) + Distance(i-1,j,k) - 2*Distance(i,j,k);
|
|
||||||
Dyy(i,j,k) = Distance(i,j+1,k) + Distance(i,j-1,k) - 2*Distance(i,j,k);
|
|
||||||
Dzz(i,j,k) = Distance(i,j,k+1) + Distance(i,j,k-1) - 2*Distance(i,j,k);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
fillData.fill(Dxx);
|
|
||||||
fillData.fill(Dyy);
|
|
||||||
fillData.fill(Dzz);
|
|
||||||
|
|
||||||
LocalMax=LocalVar=0.0;
|
|
||||||
// Execute the next timestep
|
|
||||||
for (k=1;k<Dm.Nz-1;k++){
|
|
||||||
for (j=1;j<Dm.Ny-1;j++){
|
|
||||||
for (i=1;i<Dm.Nx-1;i++){
|
|
||||||
|
|
||||||
int n = k*Dm.Nx*Dm.Ny + j*Dm.Nx + i;
|
|
||||||
|
|
||||||
sign = -1;
|
|
||||||
if (ID[n] == 1) sign = 1;
|
|
||||||
|
|
||||||
// local second derivative terms
|
|
||||||
Dxxp = minmod(Dxx(i,j,k),Dxx(i+1,j,k));
|
|
||||||
Dyyp = minmod(Dyy(i,j,k),Dyy(i,j+1,k));
|
|
||||||
Dzzp = minmod(Dzz(i,j,k),Dzz(i,j,k+1));
|
|
||||||
Dxxm = minmod(Dxx(i,j,k),Dxx(i-1,j,k));
|
|
||||||
Dyym = minmod(Dyy(i,j,k),Dyy(i,j-1,k));
|
|
||||||
Dzzm = minmod(Dzz(i,j,k),Dzz(i,j,k-1));
|
|
||||||
|
|
||||||
/* //............Compute upwind derivatives ...................
|
|
||||||
Dxp = Distance(i+1,j,k) - Distance(i,j,k) + 0.5*Dxxp;
|
|
||||||
Dyp = Distance(i,j+1,k) - Distance(i,j,k) + 0.5*Dyyp;
|
|
||||||
Dzp = Distance(i,j,k+1) - Distance(i,j,k) + 0.5*Dzzp;
|
|
||||||
|
|
||||||
|
|
||||||
Dxm = Distance(i,j,k) - Distance(i-1,j,k) + 0.5*Dxxm;
|
|
||||||
Dym = Distance(i,j,k) - Distance(i,j-1,k) + 0.5*Dyym;
|
|
||||||
Dzm = Distance(i,j,k) - Distance(i,j,k-1) + 0.5*Dzzm;
|
|
||||||
*/
|
|
||||||
Dxp = Distance(i+1,j,k)- Distance(i,j,k) - 0.5*Dxxp;
|
|
||||||
Dyp = Distance(i,j+1,k)- Distance(i,j,k) - 0.5*Dyyp;
|
|
||||||
Dzp = Distance(i,j,k+1)- Distance(i,j,k) - 0.5*Dzzp;
|
|
||||||
|
|
||||||
Dxm = Distance(i,j,k) - Distance(i-1,j,k) + 0.5*Dxxm;
|
|
||||||
Dym = Distance(i,j,k) - Distance(i,j-1,k) + 0.5*Dyym;
|
|
||||||
Dzm = Distance(i,j,k) - Distance(i,j,k-1) + 0.5*Dzzm;
|
|
||||||
|
|
||||||
// Compute upwind derivatives for Godunov Hamiltonian
|
|
||||||
if (sign < 0.0){
|
|
||||||
if (Dxp + Dxm > 0.f) Dx = Dxp*Dxp;
|
|
||||||
else Dx = Dxm*Dxm;
|
|
||||||
|
|
||||||
if (Dyp + Dym > 0.f) Dy = Dyp*Dyp;
|
|
||||||
else Dy = Dym*Dym;
|
|
||||||
|
|
||||||
if (Dzp + Dzm > 0.f) Dz = Dzp*Dzp;
|
|
||||||
else Dz = Dzm*Dzm;
|
|
||||||
}
|
|
||||||
else{
|
|
||||||
|
|
||||||
if (Dxp + Dxm < 0.f) Dx = Dxp*Dxp;
|
|
||||||
else Dx = Dxm*Dxm;
|
|
||||||
|
|
||||||
if (Dyp + Dym < 0.f) Dy = Dyp*Dyp;
|
|
||||||
else Dy = Dym*Dym;
|
|
||||||
|
|
||||||
if (Dzp + Dzm < 0.f) Dz = Dzp*Dzp;
|
|
||||||
else Dz = Dzm*Dzm;
|
|
||||||
}
|
|
||||||
|
|
||||||
//Dx = max(Dxp*Dxp,Dxm*Dxm);
|
|
||||||
//Dy = max(Dyp*Dyp,Dym*Dym);
|
|
||||||
//Dz = max(Dzp*Dzp,Dzm*Dzm);
|
|
||||||
|
|
||||||
norm=sqrt(Dx + Dy + Dz);
|
|
||||||
if (norm > 1.0) norm=1.0;
|
|
||||||
|
|
||||||
Distance(i,j,k) += dt*sign*(1.0 - norm);
|
|
||||||
LocalVar += dt*sign*(1.0 - norm);
|
|
||||||
|
|
||||||
if (fabs(dt*sign*(1.0 - norm)) > LocalMax)
|
|
||||||
LocalMax = fabs(dt*sign*(1.0 - norm));
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
MPI_Allreduce(&LocalVar,&GlobalVar,1,MPI_DOUBLE,MPI_SUM,Dm.Comm);
|
|
||||||
MPI_Allreduce(&LocalMax,&GlobalMax,1,MPI_DOUBLE,MPI_MAX,Dm.Comm);
|
|
||||||
GlobalVar /= (Dm.Nx-2)*(Dm.Ny-2)*(Dm.Nz-2)*Dm.nprocx*Dm.nprocy*Dm.nprocz;
|
|
||||||
count++;
|
|
||||||
|
|
||||||
if (count%50 == 0 && Dm.rank==0 )
|
|
||||||
printf("Time=%i, Max variation=%f, Global variation=%f \n",count,GlobalMax,GlobalVar);
|
|
||||||
|
|
||||||
if (fabs(GlobalMax) < 1e-5){
|
|
||||||
if (Dm.rank==0) printf("Exiting with max tolerance of 1e-5 \n");
|
|
||||||
count=timesteps;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return GlobalVar;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
int main(int argc, char **argv)
|
int main(int argc, char **argv)
|
||||||
{
|
{
|
||||||
|
Loading…
Reference in New Issue
Block a user