This commit is contained in:
James E McClure 2017-04-18 19:14:02 -04:00
commit ac797709ce
4 changed files with 432 additions and 420 deletions

View File

@ -21,6 +21,7 @@ using namespace std;
// Reading the domain information file
void read_domain( int rank, int nprocs, MPI_Comm comm,
int& nprocx, int& nprocy, int& nprocz, int& nx, int& ny, int& nz,

View File

@ -24,7 +24,6 @@ void read_domain( int rank, int nprocs, MPI_Comm comm,
int& nprocx, int& nprocy, int& nprocz, int& nx, int& ny, int& nz,
int& nspheres, double& Lx, double& Ly, double& Lz );
//! Class to hold domain info
struct Domain{
// Default constructor
@ -597,6 +596,160 @@ inline void ReadBinaryFile(char *FILENAME, double *Data, int N)
File.close();
}
inline double minmod(double &a, double &b){
double value;
value = a;
if ( a*b < 0.0) value=0.0;
else if (fabs(a) > fabs(b)) value = b;
return value;
}
inline double Eikonal(DoubleArray &Distance, char *ID, Domain &Dm, int timesteps){
/*
* This routine converts the data in the Distance array to a signed distance
* by solving the equation df/dt = sign(1-|grad f|), where Distance provides
* the values of f on the mesh associated with domain Dm
* It has been tested with segmented data initialized to values [-1,1]
* and will converge toward the signed distance to the surface bounding the associated phases
*
* Reference:
* Min C (2010) On reinitializing level set functions, Journal of Computational Physics 229
*/
int i,j,k;
double dt=0.1;
double Dx,Dy,Dz;
double Dxp,Dxm,Dyp,Dym,Dzp,Dzm;
double Dxxp,Dxxm,Dyyp,Dyym,Dzzp,Dzzm;
double sign,norm;
double LocalVar,GlobalVar,LocalMax,GlobalMax;
int xdim,ydim,zdim;
xdim=Dm.Nx-2;
ydim=Dm.Ny-2;
zdim=Dm.Nz-2;
fillHalo<double> fillData(Dm.Comm, Dm.rank_info,xdim,ydim,zdim,1,1,1,0,1);
// Arrays to store the second derivatives
DoubleArray Dxx(Dm.Nx,Dm.Ny,Dm.Nz);
DoubleArray Dyy(Dm.Nx,Dm.Ny,Dm.Nz);
DoubleArray Dzz(Dm.Nx,Dm.Ny,Dm.Nz);
int count = 0;
while (count < timesteps){
// Communicate the halo of values
fillData.fill(Distance);
// Compute second order derivatives
for (k=1;k<Dm.Nz-1;k++){
for (j=1;j<Dm.Ny-1;j++){
for (i=1;i<Dm.Nx-1;i++){
Dxx(i,j,k) = Distance(i+1,j,k) + Distance(i-1,j,k) - 2*Distance(i,j,k);
Dyy(i,j,k) = Distance(i,j+1,k) + Distance(i,j-1,k) - 2*Distance(i,j,k);
Dzz(i,j,k) = Distance(i,j,k+1) + Distance(i,j,k-1) - 2*Distance(i,j,k);
}
}
}
fillData.fill(Dxx);
fillData.fill(Dyy);
fillData.fill(Dzz);
LocalMax=LocalVar=0.0;
// Execute the next timestep
for (k=1;k<Dm.Nz-1;k++){
for (j=1;j<Dm.Ny-1;j++){
for (i=1;i<Dm.Nx-1;i++){
int n = k*Dm.Nx*Dm.Ny + j*Dm.Nx + i;
sign = -1;
if (ID[n] == 1) sign = 1;
// local second derivative terms
Dxxp = minmod(Dxx(i,j,k),Dxx(i+1,j,k));
Dyyp = minmod(Dyy(i,j,k),Dyy(i,j+1,k));
Dzzp = minmod(Dzz(i,j,k),Dzz(i,j,k+1));
Dxxm = minmod(Dxx(i,j,k),Dxx(i-1,j,k));
Dyym = minmod(Dyy(i,j,k),Dyy(i,j-1,k));
Dzzm = minmod(Dzz(i,j,k),Dzz(i,j,k-1));
/* //............Compute upwind derivatives ...................
Dxp = Distance(i+1,j,k) - Distance(i,j,k) + 0.5*Dxxp;
Dyp = Distance(i,j+1,k) - Distance(i,j,k) + 0.5*Dyyp;
Dzp = Distance(i,j,k+1) - Distance(i,j,k) + 0.5*Dzzp;
Dxm = Distance(i,j,k) - Distance(i-1,j,k) + 0.5*Dxxm;
Dym = Distance(i,j,k) - Distance(i,j-1,k) + 0.5*Dyym;
Dzm = Distance(i,j,k) - Distance(i,j,k-1) + 0.5*Dzzm;
*/
Dxp = Distance(i+1,j,k)- Distance(i,j,k) - 0.5*Dxxp;
Dyp = Distance(i,j+1,k)- Distance(i,j,k) - 0.5*Dyyp;
Dzp = Distance(i,j,k+1)- Distance(i,j,k) - 0.5*Dzzp;
Dxm = Distance(i,j,k) - Distance(i-1,j,k) + 0.5*Dxxm;
Dym = Distance(i,j,k) - Distance(i,j-1,k) + 0.5*Dyym;
Dzm = Distance(i,j,k) - Distance(i,j,k-1) + 0.5*Dzzm;
// Compute upwind derivatives for Godunov Hamiltonian
if (sign < 0.0){
if (Dxp + Dxm > 0.f) Dx = Dxp*Dxp;
else Dx = Dxm*Dxm;
if (Dyp + Dym > 0.f) Dy = Dyp*Dyp;
else Dy = Dym*Dym;
if (Dzp + Dzm > 0.f) Dz = Dzp*Dzp;
else Dz = Dzm*Dzm;
}
else{
if (Dxp + Dxm < 0.f) Dx = Dxp*Dxp;
else Dx = Dxm*Dxm;
if (Dyp + Dym < 0.f) Dy = Dyp*Dyp;
else Dy = Dym*Dym;
if (Dzp + Dzm < 0.f) Dz = Dzp*Dzp;
else Dz = Dzm*Dzm;
}
//Dx = max(Dxp*Dxp,Dxm*Dxm);
//Dy = max(Dyp*Dyp,Dym*Dym);
//Dz = max(Dzp*Dzp,Dzm*Dzm);
norm=sqrt(Dx + Dy + Dz);
if (norm > 1.0) norm=1.0;
Distance(i,j,k) += dt*sign*(1.0 - norm);
LocalVar += dt*sign*(1.0 - norm);
if (fabs(dt*sign*(1.0 - norm)) > LocalMax)
LocalMax = fabs(dt*sign*(1.0 - norm));
}
}
}
MPI_Allreduce(&LocalVar,&GlobalVar,1,MPI_DOUBLE,MPI_SUM,Dm.Comm);
MPI_Allreduce(&LocalMax,&GlobalMax,1,MPI_DOUBLE,MPI_MAX,Dm.Comm);
GlobalVar /= (Dm.Nx-2)*(Dm.Ny-2)*(Dm.Nz-2)*Dm.nprocx*Dm.nprocy*Dm.nprocz;
count++;
if (count%50 == 0 && Dm.rank==0 )
printf("Time=%i, Max variation=%f, Global variation=%f \n",count,GlobalMax,GlobalVar);
if (fabs(GlobalMax) < 1e-5){
if (Dm.rank==0) printf("Exiting with max tolerance of 1e-5 \n");
count=timesteps;
}
}
return GlobalVar;
}
#endif

View File

@ -24,8 +24,12 @@ int main(int argc, char **argv)
MPI_Comm_size(comm,&nprocs);
{
int SOLID=atoi(argv[1]);
int NWP=atoi(argv[2]);
bool MULTINPUT=false;
int NWP,SOLID,rank_offset;
SOLID=atoi(argv[1]);
NWP=atoi(argv[2]);
//char NWP,SOLID;
//SOLID=argv[1][0];
//NWP=argv[2][0];
@ -33,6 +37,13 @@ int main(int argc, char **argv)
printf("Solid Label: %i \n",SOLID);
printf("NWP Label: %i \n",NWP);
}
if (argc > 3){
rank_offset = atoi(argv[3]);
}
else{
MULTINPUT=true;
rank_offset=0;
}
//.......................................................................
// Reading the domain information file
@ -274,12 +285,14 @@ int main(int argc, char **argv)
char LocalRankFilename[40];
sprintf(LocalRankFilename,"ID.%05i",rank);
sprintf(LocalRankFilename,"ID.%05i",rank+rank_offset);
FILE *ID = fopen(LocalRankFilename,"wb");
fwrite(Dm.id,1,N,ID);
// fwrite(Distance.get(),8,Distance.length(),ID);
fclose(ID);
if (!MULTINPUT){
if (rank==0) printf("Writing symmetric domain reflection\n");
MPI_Barrier(comm);
int symrank,sympz;
@ -306,6 +319,7 @@ int main(int argc, char **argv)
fwrite(symid,1,N,SYMID);
fclose(SYMID);
}
}
MPI_Barrier(comm);
MPI_Finalize();
}

View File

@ -26,162 +26,6 @@ inline void MeanFilter(DoubleArray &Mesh){
}
}
inline double minmod(double &a, double &b){
double value;
value = a;
if ( a*b < 0.0) value=0.0;
else if (fabs(a) > fabs(b)) value = b;
return value;
}
inline double Eikonal(DoubleArray &Distance, char *ID, Domain &Dm, int timesteps){
/*
* This routine converts the data in the Distance array to a signed distance
* by solving the equation df/dt = sign(1-|grad f|), where Distance provides
* the values of f on the mesh associated with domain Dm
* It has been tested with segmented data initialized to values [-1,1]
* and will converge toward the signed distance to the surface bounding the associated phases
*
* Reference:
* Min C (2010) On reinitializing level set functions, Journal of Computational Physics 229
*/
int i,j,k;
double dt=0.1;
double Dx,Dy,Dz;
double Dxp,Dxm,Dyp,Dym,Dzp,Dzm;
double Dxxp,Dxxm,Dyyp,Dyym,Dzzp,Dzzm;
double sign,norm;
double LocalVar,GlobalVar,LocalMax,GlobalMax;
int xdim,ydim,zdim;
xdim=Dm.Nx-2;
ydim=Dm.Ny-2;
zdim=Dm.Nz-2;
fillHalo<double> fillData(Dm.Comm, Dm.rank_info,xdim,ydim,zdim,1,1,1,0,1);
// Arrays to store the second derivatives
DoubleArray Dxx(Dm.Nx,Dm.Ny,Dm.Nz);
DoubleArray Dyy(Dm.Nx,Dm.Ny,Dm.Nz);
DoubleArray Dzz(Dm.Nx,Dm.Ny,Dm.Nz);
int count = 0;
while (count < timesteps){
// Communicate the halo of values
fillData.fill(Distance);
// Compute second order derivatives
for (k=1;k<Dm.Nz-1;k++){
for (j=1;j<Dm.Ny-1;j++){
for (i=1;i<Dm.Nx-1;i++){
Dxx(i,j,k) = Distance(i+1,j,k) + Distance(i-1,j,k) - 2*Distance(i,j,k);
Dyy(i,j,k) = Distance(i,j+1,k) + Distance(i,j-1,k) - 2*Distance(i,j,k);
Dzz(i,j,k) = Distance(i,j,k+1) + Distance(i,j,k-1) - 2*Distance(i,j,k);
}
}
}
fillData.fill(Dxx);
fillData.fill(Dyy);
fillData.fill(Dzz);
LocalMax=LocalVar=0.0;
// Execute the next timestep
for (k=1;k<Dm.Nz-1;k++){
for (j=1;j<Dm.Ny-1;j++){
for (i=1;i<Dm.Nx-1;i++){
int n = k*Dm.Nx*Dm.Ny + j*Dm.Nx + i;
sign = -1;
if (ID[n] == 1) sign = 1;
// local second derivative terms
Dxxp = minmod(Dxx(i,j,k),Dxx(i+1,j,k));
Dyyp = minmod(Dyy(i,j,k),Dyy(i,j+1,k));
Dzzp = minmod(Dzz(i,j,k),Dzz(i,j,k+1));
Dxxm = minmod(Dxx(i,j,k),Dxx(i-1,j,k));
Dyym = minmod(Dyy(i,j,k),Dyy(i,j-1,k));
Dzzm = minmod(Dzz(i,j,k),Dzz(i,j,k-1));
/* //............Compute upwind derivatives ...................
Dxp = Distance(i+1,j,k) - Distance(i,j,k) + 0.5*Dxxp;
Dyp = Distance(i,j+1,k) - Distance(i,j,k) + 0.5*Dyyp;
Dzp = Distance(i,j,k+1) - Distance(i,j,k) + 0.5*Dzzp;
Dxm = Distance(i,j,k) - Distance(i-1,j,k) + 0.5*Dxxm;
Dym = Distance(i,j,k) - Distance(i,j-1,k) + 0.5*Dyym;
Dzm = Distance(i,j,k) - Distance(i,j,k-1) + 0.5*Dzzm;
*/
Dxp = Distance(i+1,j,k)- Distance(i,j,k) - 0.5*Dxxp;
Dyp = Distance(i,j+1,k)- Distance(i,j,k) - 0.5*Dyyp;
Dzp = Distance(i,j,k+1)- Distance(i,j,k) - 0.5*Dzzp;
Dxm = Distance(i,j,k) - Distance(i-1,j,k) + 0.5*Dxxm;
Dym = Distance(i,j,k) - Distance(i,j-1,k) + 0.5*Dyym;
Dzm = Distance(i,j,k) - Distance(i,j,k-1) + 0.5*Dzzm;
// Compute upwind derivatives for Godunov Hamiltonian
if (sign < 0.0){
if (Dxp + Dxm > 0.f) Dx = Dxp*Dxp;
else Dx = Dxm*Dxm;
if (Dyp + Dym > 0.f) Dy = Dyp*Dyp;
else Dy = Dym*Dym;
if (Dzp + Dzm > 0.f) Dz = Dzp*Dzp;
else Dz = Dzm*Dzm;
}
else{
if (Dxp + Dxm < 0.f) Dx = Dxp*Dxp;
else Dx = Dxm*Dxm;
if (Dyp + Dym < 0.f) Dy = Dyp*Dyp;
else Dy = Dym*Dym;
if (Dzp + Dzm < 0.f) Dz = Dzp*Dzp;
else Dz = Dzm*Dzm;
}
//Dx = max(Dxp*Dxp,Dxm*Dxm);
//Dy = max(Dyp*Dyp,Dym*Dym);
//Dz = max(Dzp*Dzp,Dzm*Dzm);
norm=sqrt(Dx + Dy + Dz);
if (norm > 1.0) norm=1.0;
Distance(i,j,k) += dt*sign*(1.0 - norm);
LocalVar += dt*sign*(1.0 - norm);
if (fabs(dt*sign*(1.0 - norm)) > LocalMax)
LocalMax = fabs(dt*sign*(1.0 - norm));
}
}
}
MPI_Allreduce(&LocalVar,&GlobalVar,1,MPI_DOUBLE,MPI_SUM,Dm.Comm);
MPI_Allreduce(&LocalMax,&GlobalMax,1,MPI_DOUBLE,MPI_MAX,Dm.Comm);
GlobalVar /= (Dm.Nx-2)*(Dm.Ny-2)*(Dm.Nz-2)*Dm.nprocx*Dm.nprocy*Dm.nprocz;
count++;
if (count%50 == 0 && Dm.rank==0 )
printf("Time=%i, Max variation=%f, Global variation=%f \n",count,GlobalMax,GlobalVar);
if (fabs(GlobalMax) < 1e-5){
if (Dm.rank==0) printf("Exiting with max tolerance of 1e-5 \n");
count=timesteps;
}
}
return GlobalVar;
}
int main(int argc, char **argv)
{