Merge branch 'master' into greyscale_dev
This commit is contained in:
commit
b4f4607db0
@ -18,8 +18,7 @@ SET( TEST_MAX_PROCS 16 )
|
||||
|
||||
|
||||
# Initialize the project
|
||||
PROJECT( ${PROJ} LANGUAGES CXX )
|
||||
|
||||
PROJECT( ${PROJ} LANGUAGES CXX)
|
||||
|
||||
# Prevent users from building in place
|
||||
IF ("${CMAKE_CURRENT_SOURCE_DIR}" STREQUAL "${CMAKE_CURRENT_BINARY_DIR}" )
|
||||
|
@ -53,19 +53,32 @@ void ElectroChemistryAnalyzer::Basic(ScaLBL_IonModel &Ion, ScaLBL_Poisson &Poiss
|
||||
Poisson.getElectricPotential(ElectricalPotential);
|
||||
|
||||
/* local sub-domain averages */
|
||||
double rho_avg_local[Ion.number_ion_species];
|
||||
double rho_mu_avg_local[Ion.number_ion_species];
|
||||
double rho_mu_fluctuation_local[Ion.number_ion_species];
|
||||
double rho_psi_avg_local[Ion.number_ion_species];
|
||||
double rho_psi_fluctuation_local[Ion.number_ion_species];
|
||||
double *rho_avg_local;
|
||||
double *rho_mu_avg_local;
|
||||
double *rho_mu_fluctuation_local;
|
||||
double *rho_psi_avg_local;
|
||||
double *rho_psi_fluctuation_local;
|
||||
/* global averages */
|
||||
double rho_avg_global[Ion.number_ion_species];
|
||||
double rho_mu_avg_global[Ion.number_ion_species];
|
||||
double rho_mu_fluctuation_global[Ion.number_ion_species];
|
||||
double rho_psi_avg_global[Ion.number_ion_species];
|
||||
double rho_psi_fluctuation_global[Ion.number_ion_species];
|
||||
double *rho_avg_global;
|
||||
double *rho_mu_avg_global;
|
||||
double *rho_mu_fluctuation_global;
|
||||
double *rho_psi_avg_global;
|
||||
double *rho_psi_fluctuation_global;
|
||||
|
||||
for (int ion=0; ion<Ion.number_ion_species; ion++){
|
||||
/* local sub-domain averages */
|
||||
rho_avg_local = new double [Ion.number_ion_species];
|
||||
rho_mu_avg_local = new double [Ion.number_ion_species];
|
||||
rho_mu_fluctuation_local = new double [Ion.number_ion_species];
|
||||
rho_psi_avg_local = new double [Ion.number_ion_species];
|
||||
rho_psi_fluctuation_local = new double [Ion.number_ion_species];
|
||||
/* global averages */
|
||||
rho_avg_global = new double [Ion.number_ion_species];
|
||||
rho_mu_avg_global = new double [Ion.number_ion_species];
|
||||
rho_mu_fluctuation_global = new double [Ion.number_ion_species];
|
||||
rho_psi_avg_global = new double [Ion.number_ion_species];
|
||||
rho_psi_fluctuation_global = new double [Ion.number_ion_species];
|
||||
|
||||
for (size_t ion=0; ion<Ion.number_ion_species; ion++){
|
||||
rho_avg_local[ion] = 0.0;
|
||||
rho_mu_avg_local[ion] = 0.0;
|
||||
rho_psi_avg_local[ion] = 0.0;
|
||||
@ -90,7 +103,7 @@ void ElectroChemistryAnalyzer::Basic(ScaLBL_IonModel &Ion, ScaLBL_Poisson &Poiss
|
||||
}
|
||||
}
|
||||
|
||||
for (int ion=0; ion<Ion.number_ion_species; ion++){
|
||||
for (size_t ion=0; ion<Ion.number_ion_species; ion++){
|
||||
rho_mu_fluctuation_local[ion] = 0.0;
|
||||
rho_psi_fluctuation_local[ion] = 0.0;
|
||||
/* Compute averages for each ion */
|
||||
@ -108,7 +121,7 @@ void ElectroChemistryAnalyzer::Basic(ScaLBL_IonModel &Ion, ScaLBL_Poisson &Poiss
|
||||
|
||||
if (Dm->rank()==0){
|
||||
fprintf(TIMELOG,"%i ",timestep);
|
||||
for (int ion=0; ion<Ion.number_ion_species; ion++){
|
||||
for (size_t ion=0; ion<Ion.number_ion_species; ion++){
|
||||
fprintf(TIMELOG,"%.8g ",rho_avg_global[ion]);
|
||||
fprintf(TIMELOG,"%.8g ",rho_mu_avg_global[ion]);
|
||||
fprintf(TIMELOG,"%.8g ",rho_psi_avg_global[ion]);
|
||||
@ -147,7 +160,7 @@ void ElectroChemistryAnalyzer::WriteVis( ScaLBL_IonModel &Ion, ScaLBL_Poisson &P
|
||||
visData[0].mesh = std::make_shared<IO::DomainMesh>( Dm->rank_info,Dm->Nx-2,Dm->Ny-2,Dm->Nz-2,Dm->Lx,Dm->Ly,Dm->Lz );
|
||||
auto ElectricPotential = std::make_shared<IO::Variable>();
|
||||
std::vector<shared_ptr<IO::Variable>> IonConcentration;
|
||||
for (int ion=0; ion<Ion.number_ion_species; ion++){
|
||||
for (size_t ion=0; ion<Ion.number_ion_species; ion++){
|
||||
IonConcentration.push_back(std::make_shared<IO::Variable>());
|
||||
}
|
||||
auto VxVar = std::make_shared<IO::Variable>();
|
||||
@ -163,8 +176,8 @@ void ElectroChemistryAnalyzer::WriteVis( ScaLBL_IonModel &Ion, ScaLBL_Poisson &P
|
||||
}
|
||||
|
||||
if (vis_db->getWithDefault<bool>( "save_concentration", true )){
|
||||
for (int ion=0; ion<Ion.number_ion_species; ion++){
|
||||
sprintf(VisName,"IonConcentration_%i",ion+1);
|
||||
for (size_t ion=0; ion<Ion.number_ion_species; ion++){
|
||||
sprintf(VisName,"IonConcentration_%zu",ion+1);
|
||||
IonConcentration[ion]->name = VisName;
|
||||
IonConcentration[ion]->type = IO::VariableType::VolumeVariable;
|
||||
IonConcentration[ion]->dim = 1;
|
||||
@ -199,8 +212,8 @@ void ElectroChemistryAnalyzer::WriteVis( ScaLBL_IonModel &Ion, ScaLBL_Poisson &P
|
||||
}
|
||||
|
||||
if (vis_db->getWithDefault<bool>( "save_concentration", true )){
|
||||
for (int ion=0; ion<Ion.number_ion_species; ion++){
|
||||
sprintf(VisName,"IonConcentration_%i",ion+1);
|
||||
for (size_t ion=0; ion<Ion.number_ion_species; ion++){
|
||||
sprintf(VisName,"IonConcentration_%zu",ion+1);
|
||||
IonConcentration[ion]->name = VisName;
|
||||
ASSERT(visData[0].vars[1+ion]->name==VisName);
|
||||
Array<double>& IonConcentrationData = visData[0].vars[1+ion]->data;
|
||||
|
@ -47,8 +47,6 @@ void FreeEnergyAnalyzer::SetParams(){
|
||||
|
||||
void FreeEnergyAnalyzer::Basic(ScaLBL_FreeLeeModel &LeeModel, int timestep){
|
||||
|
||||
int i,j,k;
|
||||
|
||||
if (Dm->rank()==0){
|
||||
fprintf(TIMELOG,"%i ",timestep);
|
||||
/*for (int ion=0; ion<Ion.number_ion_species; ion++){
|
||||
@ -78,7 +76,6 @@ void FreeEnergyAnalyzer::Basic(ScaLBL_FreeLeeModel &LeeModel, int timestep){
|
||||
void FreeEnergyAnalyzer::WriteVis( ScaLBL_FreeLeeModel &LeeModel, std::shared_ptr<Database> input_db, int timestep){
|
||||
|
||||
auto vis_db = input_db->getDatabase( "Visualization" );
|
||||
char VisName[40];
|
||||
|
||||
std::vector<IO::MeshDataStruct> visData;
|
||||
fillHalo<double> fillData(Dm->Comm,Dm->rank_info,{Dm->Nx-2,Dm->Ny-2,Dm->Nz-2},{1,1,1},0,1);
|
||||
|
@ -120,6 +120,7 @@ double MorphOpen(DoubleArray &SignDist, signed char *id, std::shared_ptr<Domain>
|
||||
sendtag = recvtag = 7;
|
||||
|
||||
int ii,jj,kk;
|
||||
int imin,jmin,kmin,imax,jmax,kmax;
|
||||
int Nx = nx;
|
||||
int Ny = ny;
|
||||
int Nz = nz;
|
||||
@ -128,17 +129,13 @@ double MorphOpen(DoubleArray &SignDist, signed char *id, std::shared_ptr<Domain>
|
||||
double void_fraction_new=1.0;
|
||||
double void_fraction_diff_old = 1.0;
|
||||
double void_fraction_diff_new = 1.0;
|
||||
|
||||
// Increase the critical radius until the target saturation is met
|
||||
double deltaR=0.05; // amount to change the radius in voxel units
|
||||
double Rcrit_old;
|
||||
|
||||
int imin,jmin,kmin,imax,jmax,kmax;
|
||||
|
||||
if (ErodeLabel == 1){
|
||||
VoidFraction = 1.0 - VoidFraction;
|
||||
}
|
||||
|
||||
// Increase the critical radius until the target saturation is met
|
||||
double deltaR=0.05; // amount to change the radius in voxel units
|
||||
double Rcrit_old = maxdistGlobal;
|
||||
double Rcrit_new = maxdistGlobal;
|
||||
|
||||
while (void_fraction_new > VoidFraction)
|
||||
@ -406,6 +403,7 @@ double MorphDrain(DoubleArray &SignDist, signed char *id, std::shared_ptr<Domain
|
||||
sendtag = recvtag = 7;
|
||||
*/
|
||||
int ii,jj,kk;
|
||||
int imin,jmin,kmin,imax,jmax,kmax;
|
||||
int Nx = nx;
|
||||
int Ny = ny;
|
||||
int Nz = nz;
|
||||
@ -417,10 +415,7 @@ double MorphDrain(DoubleArray &SignDist, signed char *id, std::shared_ptr<Domain
|
||||
|
||||
// Increase the critical radius until the target saturation is met
|
||||
double deltaR=0.05; // amount to change the radius in voxel units
|
||||
double Rcrit_old;
|
||||
|
||||
int imin,jmin,kmin,imax,jmax,kmax;
|
||||
|
||||
double Rcrit_old = maxdistGlobal;
|
||||
double Rcrit_new = maxdistGlobal;
|
||||
//if (argc>2){
|
||||
// Rcrit_new = strtod(argv[2],NULL);
|
||||
@ -457,7 +452,6 @@ double MorphDrain(DoubleArray &SignDist, signed char *id, std::shared_ptr<Domain
|
||||
for (kk=kmin; kk<kmax; kk++){
|
||||
for (jj=jmin; jj<jmax; jj++){
|
||||
for (ii=imin; ii<imax; ii++){
|
||||
int nn = kk*nx*ny+jj*nx+ii;
|
||||
double dsq = double((ii-i)*(ii-i)+(jj-j)*(jj-j)+(kk-k)*(kk-k));
|
||||
if (ID(ii,jj,kk) == 2 && dsq <= (Rcrit_new+1)*(Rcrit_new+1)){
|
||||
LocalNumber+=1.0;
|
||||
@ -578,7 +572,7 @@ double MorphDrain(DoubleArray &SignDist, signed char *id, std::shared_ptr<Domain
|
||||
// nwp
|
||||
phase(i,j,k) = -1.0;
|
||||
}
|
||||
else{
|
||||
else{i
|
||||
// treat solid as WP since films can connect
|
||||
phase(i,j,k) = 1.0;
|
||||
}
|
||||
|
@ -729,7 +729,6 @@ runAnalysis::runAnalysis( ScaLBL_ColorModel &ColorModel)
|
||||
|
||||
d_comm = ColorModel.Dm->Comm.dup();
|
||||
d_Np = ColorModel.Np;
|
||||
bool Regular = false;
|
||||
|
||||
auto input_db = ColorModel.db;
|
||||
auto db = input_db->getDatabase( "Analysis" );
|
||||
|
@ -1046,29 +1046,28 @@ void ScaLBL_Communicator::SetupBounceBackList(IntArray &Map, signed char *id, in
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int *bb_dist_tmp = new int [local_count];
|
||||
int *bb_interactions_tmp = new int [local_count];
|
||||
ScaLBL_AllocateDeviceMemory((void **) &bb_dist, sizeof(int)*local_count);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &bb_interactions, sizeof(int)*local_count);
|
||||
int *fluid_boundary_tmp;
|
||||
double *lattice_weight_tmp;
|
||||
float *lattice_cx_tmp;
|
||||
float *lattice_cy_tmp;
|
||||
float *lattice_cz_tmp;
|
||||
if(SlippingVelBC==true){
|
||||
fluid_boundary_tmp = new int [local_count];
|
||||
lattice_weight_tmp = new double [local_count];
|
||||
lattice_cx_tmp = new float [local_count];
|
||||
lattice_cy_tmp = new float [local_count];
|
||||
lattice_cz_tmp = new float [local_count];
|
||||
ScaLBL_AllocateDeviceMemory((void **) &fluid_boundary, sizeof(int)*local_count);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &lattice_weight, sizeof(double)*local_count);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &lattice_cx, sizeof(float)*local_count);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &lattice_cy, sizeof(float)*local_count);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &lattice_cz, sizeof(float)*local_count);
|
||||
}
|
||||
|
||||
int *fluid_boundary_tmp;
|
||||
double *lattice_weight_tmp;
|
||||
float *lattice_cx_tmp;
|
||||
float *lattice_cy_tmp;
|
||||
float *lattice_cz_tmp;
|
||||
/* allocate memory for bounce-back sites */
|
||||
fluid_boundary_tmp = new int [local_count];
|
||||
lattice_weight_tmp = new double [local_count];
|
||||
lattice_cx_tmp = new float [local_count];
|
||||
lattice_cy_tmp = new float [local_count];
|
||||
lattice_cz_tmp = new float [local_count];
|
||||
ScaLBL_AllocateDeviceMemory((void **) &fluid_boundary, sizeof(int)*local_count);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &lattice_weight, sizeof(double)*local_count);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &lattice_cx, sizeof(float)*local_count);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &lattice_cy, sizeof(float)*local_count);
|
||||
ScaLBL_AllocateDeviceMemory((void **) &lattice_cz, sizeof(float)*local_count);
|
||||
|
||||
local_count=0;
|
||||
for (k=1;k<Nz-1;k++){
|
||||
for (j=1;j<Ny-1;j++){
|
||||
@ -1081,78 +1080,78 @@ void ScaLBL_Communicator::SetupBounceBackList(IntArray &Map, signed char *id, in
|
||||
neighbor=Map(i-1,j,k);
|
||||
if (neighbor==-1){
|
||||
bb_interactions_tmp[local_count] = (i-1) + (j)*Nx + (k)*Nx*Ny;
|
||||
if(SlippingVelBC==true){
|
||||
//if(SlippingVelBC==true){
|
||||
fluid_boundary_tmp[local_count] = idx;
|
||||
lattice_weight_tmp[local_count] = 1.0/18.0;
|
||||
lattice_cx_tmp[local_count] = -1.0;
|
||||
lattice_cy_tmp[local_count] = 0.0;
|
||||
lattice_cz_tmp[local_count] = 0.0;
|
||||
}
|
||||
//}
|
||||
bb_dist_tmp[local_count++]=idx + 2*Np;
|
||||
}
|
||||
|
||||
neighbor=Map(i+1,j,k);
|
||||
if (neighbor==-1){
|
||||
bb_interactions_tmp[local_count] = (i+1) + (j)*Nx + (k)*Nx*Ny;
|
||||
if(SlippingVelBC==true){
|
||||
//if(SlippingVelBC==true){
|
||||
fluid_boundary_tmp[local_count] = idx;
|
||||
lattice_weight_tmp[local_count] = 1.0/18.0;
|
||||
lattice_cx_tmp[local_count] = 1.0;
|
||||
lattice_cy_tmp[local_count] = 0.0;
|
||||
lattice_cz_tmp[local_count] = 0.0;
|
||||
}
|
||||
//}
|
||||
bb_dist_tmp[local_count++] = idx + 1*Np;
|
||||
}
|
||||
|
||||
neighbor=Map(i,j-1,k);
|
||||
if (neighbor==-1){
|
||||
bb_interactions_tmp[local_count] = (i) + (j-1)*Nx + (k)*Nx*Ny;
|
||||
if(SlippingVelBC==true){
|
||||
//if(SlippingVelBC==true){
|
||||
fluid_boundary_tmp[local_count] = idx;
|
||||
lattice_weight_tmp[local_count] = 1.0/18.0;
|
||||
lattice_cx_tmp[local_count] = 0.0;
|
||||
lattice_cy_tmp[local_count] = -1.0;
|
||||
lattice_cz_tmp[local_count] = 0.0;
|
||||
}
|
||||
//}
|
||||
bb_dist_tmp[local_count++]=idx + 4*Np;
|
||||
}
|
||||
|
||||
neighbor=Map(i,j+1,k);
|
||||
if (neighbor==-1){
|
||||
bb_interactions_tmp[local_count] = (i) + (j+1)*Nx + (k)*Nx*Ny;
|
||||
if(SlippingVelBC==true){
|
||||
//if(SlippingVelBC==true){
|
||||
fluid_boundary_tmp[local_count] = idx;
|
||||
lattice_weight_tmp[local_count] = 1.0/18.0;
|
||||
lattice_cx_tmp[local_count] = 0.0;
|
||||
lattice_cy_tmp[local_count] = 1.0;
|
||||
lattice_cz_tmp[local_count] = 0.0;
|
||||
}
|
||||
//}
|
||||
bb_dist_tmp[local_count++]=idx + 3*Np;
|
||||
}
|
||||
|
||||
neighbor=Map(i,j,k-1);
|
||||
if (neighbor==-1){
|
||||
bb_interactions_tmp[local_count] = (i) + (j)*Nx + (k-1)*Nx*Ny;
|
||||
if(SlippingVelBC==true){
|
||||
//if(SlippingVelBC==true){
|
||||
fluid_boundary_tmp[local_count] = idx;
|
||||
lattice_weight_tmp[local_count] = 1.0/18.0;
|
||||
lattice_cx_tmp[local_count] = 0.0;
|
||||
lattice_cy_tmp[local_count] = 0.0;
|
||||
lattice_cz_tmp[local_count] = -1.0;
|
||||
}
|
||||
//}
|
||||
bb_dist_tmp[local_count++]=idx + 6*Np;
|
||||
}
|
||||
|
||||
neighbor=Map(i,j,k+1);
|
||||
if (neighbor==-1){
|
||||
bb_interactions_tmp[local_count] = (i) + (j)*Nx + (k+1)*Nx*Ny;
|
||||
if(SlippingVelBC==true){
|
||||
//if(SlippingVelBC==true){
|
||||
fluid_boundary_tmp[local_count] = idx;
|
||||
lattice_weight_tmp[local_count] = 1.0/18.0;
|
||||
lattice_cx_tmp[local_count] = 0.0;
|
||||
lattice_cy_tmp[local_count] = 0.0;
|
||||
lattice_cz_tmp[local_count] = 1.0;
|
||||
}
|
||||
//}
|
||||
bb_dist_tmp[local_count++]=idx + 5*Np;
|
||||
}
|
||||
}
|
||||
@ -1170,156 +1169,156 @@ void ScaLBL_Communicator::SetupBounceBackList(IntArray &Map, signed char *id, in
|
||||
neighbor=Map(i-1,j-1,k);
|
||||
if (neighbor==-1){
|
||||
bb_interactions_tmp[local_count] = (i-1) + (j-1)*Nx + (k)*Nx*Ny;
|
||||
if(SlippingVelBC==true){
|
||||
//if(SlippingVelBC==true){
|
||||
fluid_boundary_tmp[local_count] = idx;
|
||||
lattice_weight_tmp[local_count] = 1.0/36.0;
|
||||
lattice_cx_tmp[local_count] = -1.0;
|
||||
lattice_cy_tmp[local_count] = -1.0;
|
||||
lattice_cz_tmp[local_count] = 0.0;
|
||||
}
|
||||
//}
|
||||
bb_dist_tmp[local_count++]=idx + 8*Np;
|
||||
}
|
||||
|
||||
neighbor=Map(i+1,j+1,k);
|
||||
if (neighbor==-1) {
|
||||
bb_interactions_tmp[local_count] = (i+1) + (j+1)*Nx + (k)*Nx*Ny;
|
||||
if(SlippingVelBC==true){
|
||||
//if(SlippingVelBC==true){
|
||||
fluid_boundary_tmp[local_count] = idx;
|
||||
lattice_weight_tmp[local_count] = 1.0/36.0;
|
||||
lattice_cx_tmp[local_count] = 1.0;
|
||||
lattice_cy_tmp[local_count] = 1.0;
|
||||
lattice_cz_tmp[local_count] = 0.0;
|
||||
}
|
||||
//}
|
||||
bb_dist_tmp[local_count++]=idx + 7*Np;
|
||||
}
|
||||
|
||||
neighbor=Map(i-1,j+1,k);
|
||||
if (neighbor==-1){
|
||||
bb_interactions_tmp[local_count] = (i-1) + (j+1)*Nx + (k)*Nx*Ny;
|
||||
if(SlippingVelBC==true){
|
||||
//if(SlippingVelBC==true){
|
||||
fluid_boundary_tmp[local_count] = idx;
|
||||
lattice_weight_tmp[local_count] = 1.0/36.0;
|
||||
lattice_cx_tmp[local_count] = -1.0;
|
||||
lattice_cy_tmp[local_count] = 1.0;
|
||||
lattice_cz_tmp[local_count] = 0.0;
|
||||
}
|
||||
//}
|
||||
bb_dist_tmp[local_count++]=idx + 10*Np;
|
||||
}
|
||||
|
||||
neighbor=Map(i+1,j-1,k);
|
||||
if (neighbor==-1){
|
||||
bb_interactions_tmp[local_count] = (i+1) + (j-1)*Nx + (k)*Nx*Ny;
|
||||
if(SlippingVelBC==true){
|
||||
//if(SlippingVelBC==true){
|
||||
fluid_boundary_tmp[local_count] = idx;
|
||||
lattice_weight_tmp[local_count] = 1.0/36.0;
|
||||
lattice_cx_tmp[local_count] = 1.0;
|
||||
lattice_cy_tmp[local_count] = -1.0;
|
||||
lattice_cz_tmp[local_count] = 0.0;
|
||||
}
|
||||
//}
|
||||
bb_dist_tmp[local_count++]=idx + 9*Np;
|
||||
}
|
||||
|
||||
neighbor=Map(i-1,j,k-1);
|
||||
if (neighbor==-1) {
|
||||
bb_interactions_tmp[local_count] = (i-1) + (j)*Nx + (k-1)*Nx*Ny;
|
||||
if(SlippingVelBC==true){
|
||||
//if(SlippingVelBC==true){
|
||||
fluid_boundary_tmp[local_count] = idx;
|
||||
lattice_weight_tmp[local_count] = 1.0/36.0;
|
||||
lattice_cx_tmp[local_count] = -1.0;
|
||||
lattice_cy_tmp[local_count] = 0.0;
|
||||
lattice_cz_tmp[local_count] = -1.0;
|
||||
}
|
||||
//}
|
||||
bb_dist_tmp[local_count++]=idx + 12*Np;
|
||||
}
|
||||
|
||||
neighbor=Map(i+1,j,k+1);
|
||||
if (neighbor==-1){
|
||||
bb_interactions_tmp[local_count] = (i+1) + (j)*Nx + (k+1)*Nx*Ny;
|
||||
if(SlippingVelBC==true){
|
||||
//if(SlippingVelBC==true){
|
||||
fluid_boundary_tmp[local_count] = idx;
|
||||
lattice_weight_tmp[local_count] = 1.0/36.0;
|
||||
lattice_cx_tmp[local_count] = 1.0;
|
||||
lattice_cy_tmp[local_count] = 0.0;
|
||||
lattice_cz_tmp[local_count] = 1.0;
|
||||
}
|
||||
//}
|
||||
bb_dist_tmp[local_count++]=idx + 11*Np;
|
||||
}
|
||||
|
||||
neighbor=Map(i-1,j,k+1);
|
||||
if (neighbor==-1) {
|
||||
bb_interactions_tmp[local_count] = (i-1) + (j)*Nx + (k+1)*Nx*Ny;
|
||||
if(SlippingVelBC==true){
|
||||
//if(SlippingVelBC==true){
|
||||
fluid_boundary_tmp[local_count] = idx;
|
||||
lattice_weight_tmp[local_count] = 1.0/36.0;
|
||||
lattice_cx_tmp[local_count] = -1.0;
|
||||
lattice_cy_tmp[local_count] = 0.0;
|
||||
lattice_cz_tmp[local_count] = 1.0;
|
||||
}
|
||||
//}
|
||||
bb_dist_tmp[local_count++]=idx + 14*Np;
|
||||
}
|
||||
|
||||
neighbor=Map(i+1,j,k-1);
|
||||
if (neighbor==-1) {
|
||||
bb_interactions_tmp[local_count] = (i+1) + (j)*Nx + (k-1)*Nx*Ny;
|
||||
if(SlippingVelBC==true){
|
||||
//if(SlippingVelBC==true){
|
||||
fluid_boundary_tmp[local_count] = idx;
|
||||
lattice_weight_tmp[local_count] = 1.0/36.0;
|
||||
lattice_cx_tmp[local_count] = 1.0;
|
||||
lattice_cy_tmp[local_count] = 0.0;
|
||||
lattice_cz_tmp[local_count] = -1.0;
|
||||
}
|
||||
//}
|
||||
bb_dist_tmp[local_count++]=idx + 13*Np;
|
||||
}
|
||||
|
||||
neighbor=Map(i,j-1,k-1);
|
||||
if (neighbor==-1){
|
||||
bb_interactions_tmp[local_count] = (i) + (j-1)*Nx + (k-1)*Nx*Ny;
|
||||
if(SlippingVelBC==true){
|
||||
//if(SlippingVelBC==true){
|
||||
fluid_boundary_tmp[local_count] = idx;
|
||||
lattice_weight_tmp[local_count] = 1.0/36.0;
|
||||
lattice_cx_tmp[local_count] = 0.0;
|
||||
lattice_cy_tmp[local_count] = -1.0;
|
||||
lattice_cz_tmp[local_count] = -1.0;
|
||||
}
|
||||
//}
|
||||
bb_dist_tmp[local_count++]=idx + 16*Np;
|
||||
}
|
||||
|
||||
neighbor=Map(i,j+1,k+1);
|
||||
if (neighbor==-1){
|
||||
bb_interactions_tmp[local_count] = (i) + (j+1)*Nx + (k+1)*Nx*Ny;
|
||||
if(SlippingVelBC==true){
|
||||
//if(SlippingVelBC==true){
|
||||
fluid_boundary_tmp[local_count] = idx;
|
||||
lattice_weight_tmp[local_count] = 1.0/36.0;
|
||||
lattice_cx_tmp[local_count] = 0.0;
|
||||
lattice_cy_tmp[local_count] = 1.0;
|
||||
lattice_cz_tmp[local_count] = 1.0;
|
||||
}
|
||||
//}
|
||||
bb_dist_tmp[local_count++]=idx + 15*Np;
|
||||
}
|
||||
|
||||
neighbor=Map(i,j-1,k+1);
|
||||
if (neighbor==-1){
|
||||
bb_interactions_tmp[local_count] = (i) + (j-1)*Nx + (k+1)*Nx*Ny;
|
||||
if(SlippingVelBC==true){
|
||||
//if(SlippingVelBC==true){
|
||||
fluid_boundary_tmp[local_count] = idx;
|
||||
lattice_weight_tmp[local_count] = 1.0/36.0;
|
||||
lattice_cx_tmp[local_count] = 0.0;
|
||||
lattice_cy_tmp[local_count] = -1.0;
|
||||
lattice_cz_tmp[local_count] = 1.0;
|
||||
}
|
||||
//}
|
||||
bb_dist_tmp[local_count++]=idx + 18*Np;
|
||||
}
|
||||
|
||||
neighbor=Map(i,j+1,k-1);
|
||||
if (neighbor==-1){
|
||||
bb_interactions_tmp[local_count] = (i) + (j+1)*Nx + (k-1)*Nx*Ny;
|
||||
if(SlippingVelBC==true){
|
||||
//if(SlippingVelBC==true){
|
||||
fluid_boundary_tmp[local_count] = idx;
|
||||
lattice_weight_tmp[local_count] = 1.0/36.0;
|
||||
lattice_cx_tmp[local_count] = 0.0;
|
||||
lattice_cy_tmp[local_count] = 1.0;
|
||||
lattice_cz_tmp[local_count] = -1.0;
|
||||
}
|
||||
//}
|
||||
bb_dist_tmp[local_count++]=idx + 17*Np;
|
||||
}
|
||||
}
|
||||
@ -1329,24 +1328,20 @@ void ScaLBL_Communicator::SetupBounceBackList(IntArray &Map, signed char *id, in
|
||||
n_bb_d3q19 = local_count; // this gives the d3q19 distributions not part of d3q7 model
|
||||
ScaLBL_CopyToDevice(bb_dist, bb_dist_tmp, local_count*sizeof(int));
|
||||
ScaLBL_CopyToDevice(bb_interactions, bb_interactions_tmp, local_count*sizeof(int));
|
||||
if(SlippingVelBC==true){
|
||||
ScaLBL_CopyToDevice(fluid_boundary, fluid_boundary_tmp, local_count*sizeof(int));
|
||||
ScaLBL_CopyToDevice(lattice_weight, lattice_weight_tmp, local_count*sizeof(double));
|
||||
ScaLBL_CopyToDevice(lattice_cx, lattice_cx_tmp, local_count*sizeof(float));
|
||||
ScaLBL_CopyToDevice(lattice_cy, lattice_cy_tmp, local_count*sizeof(float));
|
||||
ScaLBL_CopyToDevice(lattice_cz, lattice_cz_tmp, local_count*sizeof(float));
|
||||
}
|
||||
ScaLBL_CopyToDevice(fluid_boundary, fluid_boundary_tmp, local_count*sizeof(int));
|
||||
ScaLBL_CopyToDevice(lattice_weight, lattice_weight_tmp, local_count*sizeof(double));
|
||||
ScaLBL_CopyToDevice(lattice_cx, lattice_cx_tmp, local_count*sizeof(float));
|
||||
ScaLBL_CopyToDevice(lattice_cy, lattice_cy_tmp, local_count*sizeof(float));
|
||||
ScaLBL_CopyToDevice(lattice_cz, lattice_cz_tmp, local_count*sizeof(float));
|
||||
ScaLBL_DeviceBarrier();
|
||||
|
||||
|
||||
delete [] bb_dist_tmp;
|
||||
delete [] bb_interactions_tmp;
|
||||
if(SlippingVelBC==true){
|
||||
delete [] fluid_boundary_tmp;
|
||||
delete [] lattice_weight_tmp;
|
||||
delete [] lattice_cx_tmp;
|
||||
delete [] lattice_cy_tmp;
|
||||
delete [] lattice_cz_tmp;
|
||||
}
|
||||
delete [] fluid_boundary_tmp;
|
||||
delete [] lattice_weight_tmp;
|
||||
delete [] lattice_cx_tmp;
|
||||
delete [] lattice_cy_tmp;
|
||||
delete [] lattice_cz_tmp;
|
||||
}
|
||||
|
||||
void ScaLBL_Communicator::SolidDirichletD3Q7(double *fq, double *BoundaryValue){
|
||||
|
@ -1,5 +1,4 @@
|
||||
extern "C" void ScaLBL_D3Q19_AAeven_BGK(double *dist, int start, int finish, int Np, double rlx, double Fx, double Fy, double Fz){
|
||||
int n;
|
||||
// conserved momemnts
|
||||
double rho,ux,uy,uz,uu;
|
||||
// non-conserved moments
|
||||
@ -111,14 +110,12 @@ extern "C" void ScaLBL_D3Q19_AAeven_BGK(double *dist, int start, int finish, int
|
||||
}
|
||||
|
||||
extern "C" void ScaLBL_D3Q19_AAodd_BGK(int *neighborList, double *dist, int start, int finish, int Np, double rlx, double Fx, double Fy, double Fz){
|
||||
int n;
|
||||
// conserved momemnts
|
||||
double rho,ux,uy,uz,uu;
|
||||
// non-conserved moments
|
||||
double f0,f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
||||
int nr1,nr2,nr3,nr4,nr5,nr6,nr7,nr8,nr9,nr10,nr11,nr12,nr13,nr14,nr15,nr16,nr17,nr18;
|
||||
|
||||
int nread;
|
||||
for (int n=start; n<finish; n++){
|
||||
|
||||
// q=0
|
||||
@ -275,4 +272,4 @@ extern "C" void ScaLBL_D3Q19_AAodd_BGK(int *neighborList, double *dist, int star
|
||||
rlx*0.02777777777777778*(rho - 3.0*(uy-uz) + 4.5*(uy-uz)*(uy-uz) - uu) - 0.08333333333*(Fy-Fz);
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -919,17 +919,14 @@ extern "C" void ScaLBL_D3Q19_ColorCollide( char *ID, double *disteven, double *d
|
||||
extern "C" void ScaLBL_D3Q7_ColorCollideMass(char *ID, double *A_even, double *A_odd, double *B_even, double *B_odd,
|
||||
double *Den, double *Phi, double *ColorGrad, double *Velocity, double beta, int N, bool pBC)
|
||||
{
|
||||
int n;
|
||||
char id;
|
||||
|
||||
int idx,n,q,Cqx,Cqy,Cqz;
|
||||
// int sendLoc;
|
||||
|
||||
double f0,f1,f2,f3,f4,f5,f6;
|
||||
double na,nb,nab; // density values
|
||||
double ux,uy,uz; // flow velocity
|
||||
double nx,ny,nz,C; // color gradient components
|
||||
double a1,a2,b1,b2;
|
||||
double sp,delta;
|
||||
double delta;
|
||||
//double feq[6]; // equilibrium distributions
|
||||
// Set of Discrete velocities for the D3Q19 Model
|
||||
//int D3Q7[3][3]={{1,0,0},{0,1,0},{0,0,1}};
|
||||
@ -1255,7 +1252,7 @@ extern "C" void ScaLBL_D3Q19_AAeven_Color(int *Map, double *dist, double *Aq, do
|
||||
double *Vel, double rhoA, double rhoB, double tauA, double tauB, double alpha, double beta,
|
||||
double Fx, double Fy, double Fz, int strideY, int strideZ, int start, int finish, int Np){
|
||||
|
||||
int ijk,nn,n;
|
||||
int ijk,nn;
|
||||
double fq;
|
||||
// conserved momemnts
|
||||
double rho,jx,jy,jz;
|
||||
@ -1838,7 +1835,7 @@ extern "C" void ScaLBL_D3Q19_AAodd_Color(int *neighborList, int *Map, double *di
|
||||
double *Phi, double *Vel, double rhoA, double rhoB, double tauA, double tauB, double alpha, double beta,
|
||||
double Fx, double Fy, double Fz, int strideY, int strideZ, int start, int finish, int Np){
|
||||
|
||||
int n,nn,ijk,nread;
|
||||
int nn,ijk,nread;
|
||||
int nr1,nr2,nr3,nr4,nr5,nr6;
|
||||
int nr7,nr8,nr9,nr10;
|
||||
int nr11,nr12,nr13,nr14;
|
||||
@ -2498,7 +2495,6 @@ extern "C" void ScaLBL_D3Q7_AAodd_Color(int *neighborList, int *Map, double *Aq,
|
||||
double a1,b1,a2,b2,nAB,delta;
|
||||
double C,nx,ny,nz; //color gradient magnitude and direction
|
||||
double ux,uy,uz;
|
||||
double phi;
|
||||
// Instantiate mass transport distributions
|
||||
// Stationary value - distribution 0
|
||||
for (int n=start; n<finish; n++){
|
||||
@ -2531,7 +2527,6 @@ extern "C" void ScaLBL_D3Q7_AAodd_Color(int *neighborList, int *Map, double *Aq,
|
||||
nB = Den[Np + n];
|
||||
|
||||
// compute phase indicator field
|
||||
phi=(nA-nB)/(nA+nB);
|
||||
nAB = 1.0/(nA+nB);
|
||||
Aq[n] = 0.3333333333333333*nA;
|
||||
Bq[n] = 0.3333333333333333*nB;
|
||||
@ -2682,7 +2677,7 @@ extern "C" void ScaLBL_D3Q7_AAeven_Color(int *Map, double *Aq, double *Bq, doubl
|
||||
extern "C" void ScaLBL_D3Q7_AAodd_PhaseField(int *neighborList, int *Map, double *Aq, double *Bq,
|
||||
double *Den, double *Phi, int start, int finish, int Np){
|
||||
|
||||
int idx,nread;
|
||||
int idx,nread;
|
||||
double fq,nA,nB;
|
||||
|
||||
for (int n=start; n<finish; n++){
|
||||
@ -2842,7 +2837,7 @@ extern "C" void ScaLBL_D3Q7_AAeven_PhaseField(int *Map, double *Aq, double *Bq,
|
||||
}
|
||||
|
||||
extern "C" void ScaLBL_D3Q19_Gradient(int *Map, double *phi, double *ColorGrad, int start, int finish, int Np, int Nx, int Ny, int Nz){
|
||||
int idx,n,N,i,j,k,nn;
|
||||
int idx,n,i,j,k,nn;
|
||||
// distributions
|
||||
double f1,f2,f3,f4,f5,f6,f7,f8,f9;
|
||||
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
||||
|
20
docs/Makefile
Normal file
20
docs/Makefile
Normal file
@ -0,0 +1,20 @@
|
||||
# Minimal makefile for Sphinx documentation
|
||||
#
|
||||
|
||||
# You can set these variables from the command line, and also
|
||||
# from the environment for the first two.
|
||||
SPHINXOPTS ?=
|
||||
SPHINXBUILD ?= sphinx-build
|
||||
SOURCEDIR = source
|
||||
BUILDDIR = $(HOME)/local/doc/build
|
||||
|
||||
# Put it first so that "make" without argument is like "make help".
|
||||
help:
|
||||
@$(SPHINXBUILD) -M help "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
|
||||
|
||||
.PHONY: help Makefile
|
||||
|
||||
# Catch-all target: route all unknown targets to Sphinx using the new
|
||||
# "make mode" option. $(O) is meant as a shortcut for $(SPHINXOPTS).
|
||||
%: Makefile
|
||||
@$(SPHINXBUILD) -M $@ "$(SOURCEDIR)" "$(BUILDDIR)" $(SPHINXOPTS) $(O)
|
19
docs/README.md
Normal file
19
docs/README.md
Normal file
@ -0,0 +1,19 @@
|
||||
Dependencies for LBPM documentation
|
||||
|
||||
# install sphinx
|
||||
pip install Sphinx
|
||||
|
||||
# foamatting requires sphinx read-the-docs-theme
|
||||
pip install sphinx-rtd-theme
|
||||
|
||||
# equation rendering requires latex and dvipng command
|
||||
sudo apt-get install dvipng
|
||||
sudo apt-get install texlive texstudio
|
||||
sudo apt-get install texlive-latex-recommended texlive-pictures texlive-latex-extra
|
||||
|
||||
|
||||
# To build the docs
|
||||
Step 1) install dependencies listed above
|
||||
Step 2) type 'make html' from the docs/ directory
|
||||
Step 3) point your browser at ~/local/doc/build/html/index.html
|
||||
#
|
70
docs/source/conf.py
Normal file
70
docs/source/conf.py
Normal file
@ -0,0 +1,70 @@
|
||||
# Configuration file for the Sphinx documentation builder.
|
||||
#
|
||||
# This file only contains a selection of the most common options. For a full
|
||||
# list see the documentation:
|
||||
# https://www.sphinx-doc.org/en/master/usage/configuration.html
|
||||
|
||||
# -- Path setup --------------------------------------------------------------
|
||||
|
||||
# If extensions (or modules to document with autodoc) are in another directory,
|
||||
# add these directories to sys.path here. If the directory is relative to the
|
||||
# documentation root, use os.path.abspath to make it absolute, like shown here.
|
||||
#
|
||||
import os
|
||||
import sys
|
||||
# sys.path.insert(0, os.path.abspath('.'))
|
||||
|
||||
|
||||
# -- Project information -----------------------------------------------------
|
||||
|
||||
project = 'LBPM'
|
||||
copyright = '2021, James E McClure'
|
||||
author = 'James E McClure'
|
||||
|
||||
# The full version, including alpha/beta/rc tags
|
||||
release = '1.0'
|
||||
|
||||
|
||||
# -- General configuration ---------------------------------------------------
|
||||
|
||||
# Add any Sphinx extension module names here, as strings. They can be
|
||||
# extensions coming with Sphinx (named 'sphinx.ext.*') or your custom
|
||||
# ones.
|
||||
extensions = [
|
||||
'sphinx.ext.imgmath'
|
||||
]
|
||||
|
||||
# Add any paths that contain templates here, relative to this directory.
|
||||
templates_path = ['_templates']
|
||||
|
||||
# List of patterns, relative to source directory, that match files and
|
||||
# directories to ignore when looking for source files.
|
||||
# This pattern also affects html_static_path and html_extra_path.
|
||||
exclude_patterns = []
|
||||
|
||||
|
||||
# -- Options for HTML output -------------------------------------------------
|
||||
|
||||
# The theme to use for HTML and HTML Help pages. See the documentation for
|
||||
# a list of builtin themes.
|
||||
#
|
||||
html_theme = 'alabaster'
|
||||
|
||||
# Add any paths that contain custom static files (such as style sheets) here,
|
||||
# relative to this directory. They are copied after the builtin static files,
|
||||
# so a file named "default.css" will overwrite the builtin "default.css".
|
||||
html_static_path = ['_static']
|
||||
|
||||
|
||||
## Read the docs style:
|
||||
if os.environ.get('READTHEDOCS') != 'True':
|
||||
try:
|
||||
import sphinx_rtd_theme
|
||||
except ImportError:
|
||||
pass # assume we have sphinx >= 1.3
|
||||
else:
|
||||
html_theme_path = [sphinx_rtd_theme.get_html_theme_path()]
|
||||
html_theme = 'sphinx_rtd_theme'
|
||||
|
||||
#def setup(app):
|
||||
# app.add_stylesheet("fix_rtd.css")
|
20
docs/source/developerGuide/buildingModels/overview.rst
Normal file
20
docs/source/developerGuide/buildingModels/overview.rst
Normal file
@ -0,0 +1,20 @@
|
||||
===========================
|
||||
Implementing a new LB model
|
||||
===========================
|
||||
|
||||
While LBPM includes a range of fully-functioning lattice Boltzmann models, the commonly used
|
||||
Bhatnager-Gross-Krook (BGK) model has been deliberately excluded. While the physical limitations
|
||||
of this model are well-known, implementing the BGK model is an excellent way to understand
|
||||
how to implement new LB models within the more general framework of LBPM. In this excercise
|
||||
you will
|
||||
|
||||
* learn "what goes where"
|
||||
|
||||
|
||||
|
||||
* don't modify core data structures (unless you have a really good reason)
|
||||
|
||||
* re-use existing components whenever possible
|
||||
|
||||
|
||||
|
@ -0,0 +1,6 @@
|
||||
===============
|
||||
Data Structures
|
||||
===============
|
||||
|
||||
LBPM includes a variety of generalized data structures to facilitate the implementation
|
||||
of different lattice Boltzmann models.
|
18
docs/source/developerGuide/index.rst
Normal file
18
docs/source/developerGuide/index.rst
Normal file
@ -0,0 +1,18 @@
|
||||
###############################################################################
|
||||
Developer guide
|
||||
###############################################################################
|
||||
|
||||
The LBPM developer guide provides essential information on how to add new physics
|
||||
into the framework.
|
||||
|
||||
.. toctree::
|
||||
:glob:
|
||||
:maxdepth: 2
|
||||
|
||||
designOverview/*
|
||||
|
||||
buildingModels/*
|
||||
|
||||
testingModels/*
|
||||
|
||||
|
9
docs/source/developerGuide/testingModels/unitTests.rst
Normal file
9
docs/source/developerGuide/testingModels/unitTests.rst
Normal file
@ -0,0 +1,9 @@
|
||||
=================
|
||||
Adding unit tests
|
||||
=================
|
||||
|
||||
Unit tests in LBPM are implemented using ctest
|
||||
|
||||
* general overview
|
||||
|
||||
* launching unit tests for GPU (MPI flags etc.)
|
9
docs/source/examples/running.rst
Normal file
9
docs/source/examples/running.rst
Normal file
@ -0,0 +1,9 @@
|
||||
============
|
||||
Running LBPM
|
||||
============
|
||||
|
||||
There are two main components to running LBPM simulators.
|
||||
First is understanding how to launch MPI tasks on your system,
|
||||
which depends on the particular implementation of MPI that you are using,
|
||||
as well as other details of the local configuration. The second component is
|
||||
understanding the LBPM input file structure.
|
25
docs/source/index.rst
Normal file
25
docs/source/index.rst
Normal file
@ -0,0 +1,25 @@
|
||||
.. LBPM documentation master file, created by
|
||||
sphinx-quickstart on Thu May 20 12:19:14 2021.
|
||||
You can adapt this file completely to your liking, but it should at least
|
||||
contain the root `toctree` directive.
|
||||
|
||||
LBPM -- Documentation
|
||||
===================================================
|
||||
|
||||
.. toctree::
|
||||
:glob:
|
||||
:maxdepth: 2
|
||||
:caption: Contents:
|
||||
|
||||
install
|
||||
examples/*
|
||||
userGuide/*
|
||||
developerGuide/*
|
||||
publications/*
|
||||
|
||||
Indices and tables
|
||||
==================
|
||||
|
||||
* :ref:`genindex`
|
||||
* :ref:`modindex`
|
||||
* :ref:`search`
|
10
docs/source/install.rst
Normal file
10
docs/source/install.rst
Normal file
@ -0,0 +1,10 @@
|
||||
============
|
||||
Installation
|
||||
============
|
||||
|
||||
LBPM requires CMake, MPI and HDF5 as required dependencies.
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
ls $LBPM_SOURCE/sample_scripts
|
||||
|
13
docs/source/publications/publications.rst
Normal file
13
docs/source/publications/publications.rst
Normal file
@ -0,0 +1,13 @@
|
||||
============
|
||||
Publications
|
||||
============
|
||||
|
||||
* James E McClure, Zhe Li, Mark Berrill, Thomas Ramstad, "The LBPM software package for simulating multiphase flow on digital images of porous rocks" Computational Geosciences (25) 871–895 (2021) https://doi.org/10.1007/s10596-020-10028-9
|
||||
|
||||
|
||||
* James E. McClure, Zhe Li, Adrian P. Sheppard, Cass T. Miller, "An adaptive volumetric flux boundary condition for lattice Boltzmann methods" Computers & Fluids (210) (2020) https://doi.org/10.1016/j.compfluid.2020.104670
|
||||
|
||||
|
||||
* Y.D. Wang, T. Chung, R.T. Armstrong, J. McClure, T. Ramstad, P. Mostaghimi, "Accelerated Computation of Relative Permeability by Coupled Morphological and Direct Multiphase Flow Simulation" Journal of Computational Physics (401) (2020) https://doi.org/10.1016/j.jcp.2019.108966
|
||||
|
||||
|
13
docs/source/userGuide/IO/fileformat.rst
Normal file
13
docs/source/userGuide/IO/fileformat.rst
Normal file
@ -0,0 +1,13 @@
|
||||
========================
|
||||
I/O conventions for LBPM
|
||||
========================
|
||||
|
||||
There are three main kinds of output file that are supported by LBPM.
|
||||
|
||||
|
||||
* CSV files --
|
||||
|
||||
* formatted binary files --
|
||||
|
||||
* unformatted binary files --
|
||||
|
5
docs/source/userGuide/analysis/analysis.rst
Normal file
5
docs/source/userGuide/analysis/analysis.rst
Normal file
@ -0,0 +1,5 @@
|
||||
===========================
|
||||
Internal Analysis Framework
|
||||
===========================
|
||||
|
||||
placeholder for analysis
|
17
docs/source/userGuide/index.rst
Normal file
17
docs/source/userGuide/index.rst
Normal file
@ -0,0 +1,17 @@
|
||||
###############################################################################
|
||||
User Guide
|
||||
###############################################################################
|
||||
|
||||
Welcome to the LBPM user guide.
|
||||
|
||||
.. toctree::
|
||||
:glob:
|
||||
:maxdepth: 2
|
||||
|
||||
models/*
|
||||
|
||||
analysis/*
|
||||
|
||||
visualization/*
|
||||
|
||||
IO/*
|
@ -0,0 +1,6 @@
|
||||
=============================================
|
||||
Poisson-Boltzmann model
|
||||
=============================================
|
||||
|
||||
The LBPM Poisson-Boltzmann solver is designed to solve the Poisson-Boltzmann equation
|
||||
to solve for the electric field in an ionic fluid.
|
91
docs/source/userGuide/models/color/index.rst
Normal file
91
docs/source/userGuide/models/color/index.rst
Normal file
@ -0,0 +1,91 @@
|
||||
###############################################################################
|
||||
Color model
|
||||
###############################################################################
|
||||
|
||||
The LBPM color model is implemented by combining a multi-relaxation time D3Q19
|
||||
lattice Boltzmann equation (LBE) to solve for the momentum transport with two D3Q7
|
||||
LBEs for the mass transport. The color model will obey strict mass and momentum
|
||||
conservation while minimizing diffusive fluxes across the interface between fluids.
|
||||
The color model is a good choice for modeling dense fluids that are strongly immiscible
|
||||
(e.g. water-oil systems). Due to the strong anti-diffusion in the interface region,
|
||||
the color model is not suitable for modeling processes such as Ostwald ripening that
|
||||
depend on diffusive fluxes between fluid phases.
|
||||
|
||||
A typical command to launch the LBPM color simulator is as follows
|
||||
|
||||
```
|
||||
mpirun -np $NUMPROCS lbpm_color_simulator input.db
|
||||
```
|
||||
|
||||
where ``$NUMPROCS`` is the number of MPI processors to be used and ``input.db`` is
|
||||
the name of the input database that provides the simulation parameters.
|
||||
Note that the specific syntax to launch MPI tasks may vary depending on your system.
|
||||
For additional details please refer to your local system documentation.
|
||||
|
||||
****************************
|
||||
Simulation protocols
|
||||
****************************
|
||||
|
||||
Simulation protocols are designed to make it simpler to design and execute common
|
||||
computational experiments. Protocols will automatically determine boundary conditions
|
||||
needed to perform a particular simulation. LBPM will internall set default simulation paramaters
|
||||
that can be over-ridden to develop customized simulations.
|
||||
|
||||
.. toctree::
|
||||
:glob:
|
||||
:maxdepth: 2
|
||||
|
||||
protocols/*
|
||||
|
||||
|
||||
***************************
|
||||
Model parameters
|
||||
***************************
|
||||
|
||||
The essential model parameters for the color model are
|
||||
|
||||
- :math:`\alpha` -- control the interfacial tension between fluids with key ``alpha``
|
||||
- :math:`\beta` -- control the width of the interface with key ``beta``
|
||||
- :math:`\tau_A` -- control the viscosity of fluid A with key ``tauA``
|
||||
- :math:`\tau_B` -- control the viscosity of fluid B with key ``tauB``
|
||||
|
||||
****************************
|
||||
Model Formulation
|
||||
****************************
|
||||
|
||||
|
||||
|
||||
****************************
|
||||
Boundary Conditions
|
||||
****************************
|
||||
|
||||
The following external boundary conditions are supported by ``lbpm_color_simulator``
|
||||
and can be set by setting the ``BC`` key values in the ``Domain`` section of the
|
||||
input file database
|
||||
|
||||
- ``BC = 0`` -- fully periodic boundary conditions
|
||||
- ``BC = 3`` -- constant pressure boundary condition
|
||||
- ``BC = 4`` -- constant volumetric flux boundary condition
|
||||
|
||||
For ``BC = 0`` any mass that exits on one side of the domain will re-enter at the other
|
||||
side. If the pore-structure for the image is tight, the mismatch between the inlet and
|
||||
outlet can artificially reduce the permeability of the sample due to the blockage of
|
||||
flow pathways at the boundary. LBPM includes an internal utility that will reduce the impact
|
||||
of the boundary mismatch by eroding the solid labels within the inlet and outlet layers
|
||||
(https://doi.org/10.1007/s10596-020-10028-9) to create a mixing layer.
|
||||
The number mixing layers to use can be set using the key values in the ``Domain`` section
|
||||
of the input database
|
||||
|
||||
- ``InletLayers = 5`` -- set the number of mixing layers to ``5`` voxels at the inlet
|
||||
- ``OUtletLayers = 5`` -- set the number of mixing layers to ``5`` voxels at the outlet
|
||||
|
||||
For the other boundary conditions a thin reservoir of fluid (default ``3`` voxels)
|
||||
is established at either side of the domain. The inlet is defined as the boundary face
|
||||
where ``z = 0`` and the outlet is the boundary face where ``z = nprocz*nz``. By default a
|
||||
reservoir of fluid A is established at the inlet and a reservoir of fluid B is established at
|
||||
the outlet, each with a default thickness of three voxels. To over-ride the default label at
|
||||
the inlet or outlet, the ``Domain`` section of the database may specify the following key values
|
||||
|
||||
- ``InletLayerPhase = 2`` -- establish a reservoir of component B at the inlet
|
||||
- ``OutletLayerPhase = 1`` -- establish a reservoir of component A at the outlet
|
||||
|
12
docs/source/userGuide/models/color/protocols/centrifuge.rst
Normal file
12
docs/source/userGuide/models/color/protocols/centrifuge.rst
Normal file
@ -0,0 +1,12 @@
|
||||
======================================
|
||||
Color model -- Centrifuge Protocol
|
||||
======================================
|
||||
|
||||
The centrifuge protocol is designed to mimic SCAL centrifuge experiments that
|
||||
are used to infer the capillary pressure. The centrifuge protocol
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
image_sequence = "image1.raw", "image2.raw"
|
||||
|
||||
|
@ -0,0 +1,63 @@
|
||||
======================================
|
||||
Color model -- Core Flooding
|
||||
======================================
|
||||
|
||||
The core flooding protocol is designed to mimic SCAL experiments where one
|
||||
immiscible fluid is injected into the sample at a constant rate, displacing the
|
||||
other fluid. The core flooding protocol relies on a flux boundary condition
|
||||
to ensure that fluid is injected into the sample at a constant rate. The flux
|
||||
boundary condition implements a time-varying pressure boundary condition that
|
||||
adapts to ensure a constant volumetric flux. Details for the flux boundary
|
||||
condition are available
|
||||
(see: https://doi.org/10.1016/j.compfluid.2020.104670)
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
protocol = "core flooding"
|
||||
|
||||
|
||||
To match experimental conditions, it is usually important to match the capillary
|
||||
number, which is
|
||||
|
||||
.. math::
|
||||
\mbox{Ca} = \frac{\mu u_z}{\gamma}
|
||||
|
||||
|
||||
where :math:`\mu` is the dynamic viscosity, :math:`u_z` is the fluid
|
||||
(usually water) velocity and :math:`\gamma` is the interfacial tension.
|
||||
The volumetric flow rate is related to the fluid velocity based on
|
||||
|
||||
.. math::
|
||||
Q_z = \epsilon C_{xy} u_z
|
||||
|
||||
where :math:`C_{xy}` is the cross-sectional area and :math:`\epsilon`
|
||||
is the porosity. Given a particular experimental system
|
||||
self-similar conditions can be determined for the lattice Boltzmann
|
||||
simulation by matching the non-dimensional :math:`mbox{Ca}`. It is nearly
|
||||
awlays advantageous for the timestep to be as large as possible so
|
||||
that time-to-solution will be more favorable. This is accomplished by
|
||||
|
||||
* use a high value for the numerical surface tension (e.g. ``alpha=1.0e-2``)
|
||||
* use a small value for the fluid viscosity (e.g. ``tau_w = 0.7`` and ``tau_n = 0.7`` )
|
||||
* determine the volumetric flow rate needed to match :math:`\mbox{Ca}`
|
||||
|
||||
For the color LBM the interfacial tension is
|
||||
:math:`\gamma = 6 \alpha` and the dynamic viscosity is :math:`\mu = \rho(\tau-1/2)/3`,
|
||||
where the units are relative to the lattice spacing, timestep and mass
|
||||
density. Agreemetn between the experimental and simulated values for
|
||||
:math:`\mbox{Ca}` is ensured by setting the volumetric flux
|
||||
|
||||
.. math::
|
||||
Q_z = \frac{\epsilon C_{xy} \gamma }{\mu} \mbox{Ca}
|
||||
|
||||
where the LB units of the volumetric flux will be voxels per timestep.
|
||||
|
||||
In some situations it may also be important to match other non-dimensional numbers,
|
||||
such as the viscosity ratio, density ratio, and/or Ohnesorge/Laplace number. This
|
||||
can be accomplished with an analogous procedure. Enforcing additional constraints
|
||||
will necessarily restrict the LB parameters that can be used, which are ultimately
|
||||
manifested as a constraint on the size of a timestep.
|
||||
|
||||
|
||||
|
||||
|
@ -0,0 +1,17 @@
|
||||
==========================================
|
||||
Color model -- Fractional Flow Protocol
|
||||
==========================================
|
||||
|
||||
The fractional flow protocol is designed to perform steady-state relative
|
||||
permeability simulations by using an internal routine to change the fluid
|
||||
saturation by adding and subtracting mass to the fluid phases. The
|
||||
mass density is updated for each fluid based on the locations where
|
||||
the local rate of flow is high.
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
protocol = "fractional flow"
|
||||
|
||||
|
||||
|
||||
|
@ -0,0 +1,27 @@
|
||||
======================================
|
||||
Color model -- Image Sequence Protocol
|
||||
======================================
|
||||
|
||||
The image sequence protocol is designed to perform a set steady-state
|
||||
simulations based on a sequence of 3D (8-bit) images provided by the user.
|
||||
The images might be the output of a previous LBPM simulation, a sequence of
|
||||
(segmented) experimental data, or data generated from a custom routine.
|
||||
The image sequence protocol will apply the same set of flow conditions
|
||||
to all images in the sequence. This means
|
||||
|
||||
* the image labels and any associated properties are the same
|
||||
* the external boundary conditions are the same
|
||||
* the physical simulation parameters are the same
|
||||
|
||||
The image sequence protocol does not set boundary conditions by default.
|
||||
It is up to the user to determine the flow condition, with the understanding
|
||||
that the same set of will be applied to each image in the sequence.
|
||||
|
||||
To enable the image sequence protocol, the following keys should be set
|
||||
within the ``Color`` section of the input database
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
protocol = "image sequence"
|
||||
image_sequence = "image1.raw", "image2.raw"
|
||||
|
@ -0,0 +1,18 @@
|
||||
==========================================
|
||||
Color model -- Shell Aggregation Protocol
|
||||
==========================================
|
||||
|
||||
The shell aggregation protocol is designed to perform steady-state relative
|
||||
permeability simulations by using an internal routine to change the fluid
|
||||
saturation by moving the interface. The basic design for the shell aggregation
|
||||
protocol is described by Wang et al. ( https://doi.org/10.1016/j.jcp.2019.108966 ).
|
||||
|
||||
|
||||
.. code-block:: bash
|
||||
|
||||
|
||||
protocol = "shell aggregation"
|
||||
|
||||
|
||||
|
||||
|
6
docs/source/userGuide/models/freeEnergy/freeEnergy.rst
Normal file
6
docs/source/userGuide/models/freeEnergy/freeEnergy.rst
Normal file
@ -0,0 +1,6 @@
|
||||
=============================================
|
||||
Free energy model
|
||||
=============================================
|
||||
|
||||
The LBPM free energy model is constructed to solve the Allen-Cahn equations,
|
||||
which are typically used to describe liquid-gas systems.
|
7
docs/source/userGuide/models/greyscale/greyscale.rst
Normal file
7
docs/source/userGuide/models/greyscale/greyscale.rst
Normal file
@ -0,0 +1,7 @@
|
||||
=============================================
|
||||
Greyscale model model
|
||||
=============================================
|
||||
|
||||
The LBPM greyscale lattice Boltzmann model is constructed to approximate the
|
||||
solution of the Darcy-Brinkman equations in grey regions, coupled to a Navier-Stokes
|
||||
solution in open regions.
|
23
docs/source/userGuide/models/index.rst
Normal file
23
docs/source/userGuide/models/index.rst
Normal file
@ -0,0 +1,23 @@
|
||||
###############################################################################
|
||||
LBPM model summary
|
||||
###############################################################################
|
||||
|
||||
Currently supported lattice Boltzmann models
|
||||
|
||||
.. toctree::
|
||||
:glob:
|
||||
:maxdepth: 2
|
||||
|
||||
color/*
|
||||
|
||||
mrt/*
|
||||
|
||||
nernstPlanck/*
|
||||
|
||||
PoissonBoltzmann/*
|
||||
|
||||
greyscale/*
|
||||
|
||||
freeEnergy/*
|
||||
|
||||
|
6
docs/source/userGuide/models/mrt/mrt.rst
Normal file
6
docs/source/userGuide/models/mrt/mrt.rst
Normal file
@ -0,0 +1,6 @@
|
||||
=============================================
|
||||
MRT model
|
||||
=============================================
|
||||
|
||||
The multi-relaxation time (MRT) lattice Boltzmann model is constructed to approximate the
|
||||
solution of the Navier-Stokes equations.
|
@ -0,0 +1,6 @@
|
||||
=============================================
|
||||
Nernst-Planck model
|
||||
=============================================
|
||||
|
||||
The Nernst-Planck model is designed to model ion transport based on the
|
||||
Nernst-Planck equation.
|
5
docs/source/userGuide/visualization/visit.rst
Normal file
5
docs/source/userGuide/visualization/visit.rst
Normal file
@ -0,0 +1,5 @@
|
||||
======================================
|
||||
Visualizing simulation data with visit
|
||||
======================================
|
||||
|
||||
placeholder for visit
|
File diff suppressed because it is too large
Load Diff
@ -72,6 +72,8 @@ public:
|
||||
double *ColorGrad;
|
||||
double *Velocity;
|
||||
double *Pressure;
|
||||
|
||||
void AssignComponentLabels(double *phase);
|
||||
|
||||
private:
|
||||
Utilities::MPI comm;
|
||||
@ -85,7 +87,6 @@ private:
|
||||
|
||||
//int rank,nprocs;
|
||||
void LoadParams(std::shared_ptr<Database> db0);
|
||||
void AssignComponentLabels(double *phase);
|
||||
double ImageInit(std::string filename);
|
||||
double MorphInit(const double beta, const double morph_delta);
|
||||
double SeedPhaseField(const double seed_water_in_oil);
|
||||
@ -97,7 +98,10 @@ public:
|
||||
FlowAdaptor(ScaLBL_ColorModel &M);
|
||||
~FlowAdaptor();
|
||||
double MoveInterface(ScaLBL_ColorModel &M);
|
||||
double ImageInit(ScaLBL_ColorModel &M, std::string Filename);
|
||||
double ShellAggregation(ScaLBL_ColorModel &M, const double delta_volume);
|
||||
double UpdateFractionalFlow(ScaLBL_ColorModel &M);
|
||||
double SeedPhaseField(ScaLBL_ColorModel &M, const double seed_water_in_oil);
|
||||
void Flatten(ScaLBL_ColorModel &M);
|
||||
DoubleArray phi;
|
||||
DoubleArray phi_t;
|
||||
|
@ -63,7 +63,6 @@ void ScaLBL_FreeLeeModel::getData_RegularLayout(const double *data, DoubleArray
|
||||
// Gets data (in optimized layout) from the HOST and stores in regular layout
|
||||
// Primarly for debugging
|
||||
int i,j,k,idx;
|
||||
int n;
|
||||
|
||||
// initialize the array
|
||||
regdata.fill(0.f);
|
||||
@ -72,7 +71,6 @@ void ScaLBL_FreeLeeModel::getData_RegularLayout(const double *data, DoubleArray
|
||||
for (k=0; k<Nz; k++){
|
||||
for (j=0; j<Ny; j++){
|
||||
for (i=0; i<Nx; i++){
|
||||
n=k*Nx*Ny+j*Nx+i;
|
||||
idx=Map(i,j,k);
|
||||
if (!(idx<0)){
|
||||
value=data[idx];
|
||||
@ -414,8 +412,10 @@ void ScaLBL_FreeLeeModel::AssignComponentLabels_ChemPotential_ColorGrad()
|
||||
ERROR("Error: ComponentLabels and ComponentAffinity must be the same length! \n");
|
||||
}
|
||||
|
||||
double label_count[NLABELS];
|
||||
double label_count_global[NLABELS];
|
||||
double *label_count;
|
||||
double *label_count_global;
|
||||
label_count = new double [NLABELS];
|
||||
label_count_global = new double [NLABELS];
|
||||
|
||||
// Assign the labels
|
||||
for (size_t idx=0; idx<NLABELS; idx++) label_count[idx]=0;
|
||||
@ -738,75 +738,10 @@ void ScaLBL_FreeLeeModel::Initialize_SingleFluid(){
|
||||
if (Restart == true){
|
||||
//TODO need to revise this function
|
||||
//remove the phase-related part
|
||||
|
||||
|
||||
|
||||
// if (rank==0){
|
||||
// printf("Reading restart file! \n");
|
||||
// }
|
||||
//
|
||||
// // Read in the restart file to CPU buffers
|
||||
// int *TmpMap;
|
||||
// TmpMap = new int[Np];
|
||||
//
|
||||
// double *cPhi, *cDist, *cDen;
|
||||
// cPhi = new double[N];
|
||||
// cDen = new double[2*Np];
|
||||
// cDist = new double[19*Np];
|
||||
// ScaLBL_CopyToHost(TmpMap, dvcMap, Np*sizeof(int));
|
||||
// //ScaLBL_CopyToHost(cPhi, Phi, N*sizeof(double));
|
||||
//
|
||||
// ifstream File(LocalRestartFile,ios::binary);
|
||||
// int idx;
|
||||
// double value,va,vb;
|
||||
// for (int n=0; n<Np; n++){
|
||||
// File.read((char*) &va, sizeof(va));
|
||||
// File.read((char*) &vb, sizeof(vb));
|
||||
// cDen[n] = va;
|
||||
// cDen[Np+n] = vb;
|
||||
// }
|
||||
// for (int n=0; n<Np; n++){
|
||||
// // Read the distributions
|
||||
// for (int q=0; q<19; q++){
|
||||
// File.read((char*) &value, sizeof(value));
|
||||
// cDist[q*Np+n] = value;
|
||||
// }
|
||||
// }
|
||||
// File.close();
|
||||
//
|
||||
// for (int n=0; n<ScaLBL_Comm->LastExterior(); n++){
|
||||
// va = cDen[n];
|
||||
// vb = cDen[Np + n];
|
||||
// value = (va-vb)/(va+vb);
|
||||
// idx = TmpMap[n];
|
||||
// if (!(idx < 0) && idx<N)
|
||||
// cPhi[idx] = value;
|
||||
// }
|
||||
// for (int n=ScaLBL_Comm->FirstInterior(); n<ScaLBL_Comm->LastInterior(); n++){
|
||||
// va = cDen[n];
|
||||
// vb = cDen[Np + n];
|
||||
// value = (va-vb)/(va+vb);
|
||||
// idx = TmpMap[n];
|
||||
// if (!(idx < 0) && idx<N)
|
||||
// cPhi[idx] = value;
|
||||
// }
|
||||
//
|
||||
// // Copy the restart data to the GPU
|
||||
// ScaLBL_CopyToDevice(Den,cDen,2*Np*sizeof(double));
|
||||
// ScaLBL_CopyToDevice(gqbar,cDist,19*Np*sizeof(double));
|
||||
// ScaLBL_CopyToDevice(Phi,cPhi,N*sizeof(double));
|
||||
// ScaLBL_Comm->Barrier();
|
||||
// comm.barrier();
|
||||
//
|
||||
// if (rank==0) printf ("Initializing phase and density fields on device from Restart\n");
|
||||
// //TODO the following function is to be updated.
|
||||
// //ScaLBL_FreeLeeModel_PhaseField_InitFromRestart(Den, hq, 0, ScaLBL_Comm->LastExterior(), Np);
|
||||
// //ScaLBL_FreeLeeModel_PhaseField_InitFromRestart(Den, hq, ScaLBL_Comm->FirstInterior(), ScaLBL_Comm->LastInterior(), Np);
|
||||
}
|
||||
}
|
||||
|
||||
double ScaLBL_FreeLeeModel::Run_TwoFluid(int returntime){
|
||||
int nprocs=nprocx*nprocy*nprocz;
|
||||
|
||||
int START_TIME = timestep;
|
||||
int EXIT_TIME = min(returntime, timestepMax);
|
||||
|
@ -150,7 +150,6 @@ void ScaLBL_GreyscaleModel::ReadInput(){
|
||||
// Generate the signed distance map
|
||||
// Initialize the domain and communication
|
||||
Array<char> id_solid(Nx,Ny,Nz);
|
||||
int count = 0;
|
||||
// Solve for the position of the solid phase
|
||||
for (int k=0;k<Nz;k++){
|
||||
for (int j=0;j<Ny;j++){
|
||||
@ -167,7 +166,6 @@ void ScaLBL_GreyscaleModel::ReadInput(){
|
||||
for (int k=0;k<Nz;k++){
|
||||
for (int j=0;j<Ny;j++){
|
||||
for (int i=0;i<Nx;i++){
|
||||
int n=k*Nx*Ny+j*Nx+i;
|
||||
// Initialize distance to +/- 1
|
||||
SignDist(i,j,k) = 2.0*double(id_solid(i,j,k))-1.0;
|
||||
}
|
||||
@ -199,11 +197,13 @@ void ScaLBL_GreyscaleModel::AssignComponentLabels(double *Porosity, double *Perm
|
||||
ERROR("Error: ComponentLabels and PorosityList must be the same length! \n");
|
||||
}
|
||||
|
||||
double label_count[NLABELS];
|
||||
double label_count_global[NLABELS];
|
||||
// Assign the labels
|
||||
|
||||
for (int idx=0; idx<NLABELS; idx++) label_count[idx]=0;
|
||||
double *label_count;
|
||||
double *label_count_global;
|
||||
label_count = new double [NLABELS];
|
||||
label_count_global = new double [NLABELS];
|
||||
|
||||
for (size_t idx=0; idx<NLABELS; idx++) label_count[idx]=0;
|
||||
|
||||
for (int k=0;k<Nz;k++){
|
||||
for (int j=0;j<Ny;j++){
|
||||
@ -211,7 +211,7 @@ void ScaLBL_GreyscaleModel::AssignComponentLabels(double *Porosity, double *Perm
|
||||
int n = k*Nx*Ny+j*Nx+i;
|
||||
VALUE=id[n];
|
||||
// Assign the affinity from the paired list
|
||||
for (unsigned int idx=0; idx < NLABELS; idx++){
|
||||
for (size_t idx=0; idx < NLABELS; idx++){
|
||||
//printf("idx=%i, value=%i, %i, \n",idx, VALUE,LabelList[idx]);
|
||||
if (VALUE == LabelList[idx]){
|
||||
POROSITY=PorosityList[idx];
|
||||
@ -242,7 +242,7 @@ void ScaLBL_GreyscaleModel::AssignComponentLabels(double *Porosity, double *Perm
|
||||
int n = k*Nx*Ny+j*Nx+i;
|
||||
VALUE=id[n];
|
||||
// Assign the affinity from the paired list
|
||||
for (unsigned int idx=0; idx < NLABELS; idx++){
|
||||
for (size_t idx=0; idx < NLABELS; idx++){
|
||||
//printf("idx=%i, value=%i, %i, \n",idx, VALUE,LabelList[idx]);
|
||||
if (VALUE == LabelList[idx]){
|
||||
PERMEABILITY=PermeabilityList[idx];
|
||||
@ -267,7 +267,7 @@ void ScaLBL_GreyscaleModel::AssignComponentLabels(double *Porosity, double *Perm
|
||||
// Set Dm to match Mask
|
||||
for (int i=0; i<Nx*Ny*Nz; i++) Dm->id[i] = Mask->id[i];
|
||||
|
||||
for (int idx=0; idx<NLABELS; idx++) label_count_global[idx]=Dm->Comm.sumReduce( label_count[idx]);
|
||||
for (size_t idx=0; idx<NLABELS; idx++) label_count_global[idx]=Dm->Comm.sumReduce( label_count[idx]);
|
||||
//Initialize a weighted porosity after considering grey voxels
|
||||
GreyPorosity=0.0;
|
||||
for (unsigned int idx=0; idx<NLABELS; idx++){
|
||||
@ -598,7 +598,7 @@ void ScaLBL_GreyscaleModel::Run(){
|
||||
//double mass_loc,mass_glb;
|
||||
|
||||
//parameters for domain average
|
||||
int64_t i,j,k,n,imin,jmin,kmin,kmax;
|
||||
int64_t imin,jmin,kmin,kmax;
|
||||
// If external boundary conditions are set, do not average over the inlet and outlet
|
||||
kmin=1; kmax=Nz-1;
|
||||
//In case user forgets to specify the inlet/outlet buffer layers for BC>0
|
||||
@ -691,23 +691,22 @@ void ScaLBL_GreyscaleModel::Run(){
|
||||
//double absperm = h*h*mu*Mask->Porosity()*flow_rate / force_mag;
|
||||
double absperm = h*h*mu*GreyPorosity*flow_rate / force_mag;
|
||||
|
||||
if (rank==0){
|
||||
if (rank==0){
|
||||
printf(" AbsPerm = %.5g [micron^2]\n",absperm);
|
||||
bool WriteHeader=false;
|
||||
FILE * log_file = fopen("Permeability.csv","r");
|
||||
if (log_file != NULL)
|
||||
fclose(log_file);
|
||||
else
|
||||
WriteHeader=true;
|
||||
log_file = fopen("Permeability.csv","a");
|
||||
if (WriteHeader)
|
||||
fprintf(log_file,"timestep Fx Fy Fz mu Vs As Hs Xs vax vay vaz AbsPerm \n",
|
||||
timestep,Fx,Fy,Fz,mu,h*h*h*Vs,h*h*As,h*Hs,Xs,vax,vay,vaz,absperm);
|
||||
bool WriteHeader=false;
|
||||
FILE * log_file = fopen("Permeability.csv","r");
|
||||
if (log_file != NULL)
|
||||
fclose(log_file);
|
||||
else
|
||||
WriteHeader=true;
|
||||
log_file = fopen("Permeability.csv","a");
|
||||
if (WriteHeader)
|
||||
fprintf(log_file,"timestep Fx Fy Fz mu Vs As Hs Xs vax vay vaz AbsPerm \n");
|
||||
|
||||
fprintf(log_file,"%i %.8g %.8g %.8g %.8g %.8g %.8g %.8g %.8g %.8g %.8g %.8g %.8g\n",timestep, Fx, Fy, Fz, mu,
|
||||
h*h*h*Vs,h*h*As,h*Hs,Xs,vax,vay,vaz, absperm);
|
||||
fclose(log_file);
|
||||
}
|
||||
fprintf(log_file,"%i %.8g %.8g %.8g %.8g %.8g %.8g %.8g %.8g %.8g %.8g %.8g %.8g\n",timestep, Fx, Fy, Fz, mu,
|
||||
h*h*h*Vs,h*h*As,h*Hs,Xs,vax,vay,vaz, absperm);
|
||||
fclose(log_file);
|
||||
}
|
||||
}
|
||||
|
||||
if (timestep%visualization_interval==0){
|
||||
|
@ -97,7 +97,7 @@ void ScaLBL_IonModel::ReadParams(string filename,vector<int> &num_iter){
|
||||
}
|
||||
else{
|
||||
time_conv.clear();
|
||||
for (int i=0; i<tau.size();i++){
|
||||
for (size_t i=0; i<tau.size();i++){
|
||||
time_conv.push_back((tau[i]-0.5)/k2_inv*(h*h*1.0e-12)/Di[i]);
|
||||
}
|
||||
}
|
||||
@ -112,13 +112,13 @@ void ScaLBL_IonModel::ReadParams(string filename,vector<int> &num_iter){
|
||||
ERROR("Error: number_ion_species and IonDiffusivityList must be the same length! \n");
|
||||
}
|
||||
else{
|
||||
for (int i=0; i<IonDiffusivity.size();i++){
|
||||
for (size_t i=0; i<IonDiffusivity.size();i++){
|
||||
IonDiffusivity[i] = IonDiffusivity[i]*time_conv[i]/(h*h*1.0e-12);//LB diffusivity has unit [lu^2/lt]
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
for (int i=0; i<IonDiffusivity.size();i++){
|
||||
for (size_t i=0; i<IonDiffusivity.size();i++){
|
||||
//convert ion diffusivity in physical unit to LB unit
|
||||
IonDiffusivity[i] = IonDiffusivity[i]*time_conv[i]/(h*h*1.0e-12);//LB diffusivity has unit [lu^2/lt]
|
||||
}
|
||||
@ -141,13 +141,13 @@ void ScaLBL_IonModel::ReadParams(string filename,vector<int> &num_iter){
|
||||
ERROR("Error: number_ion_species and IonConcentrationList must be the same length! \n");
|
||||
}
|
||||
else{
|
||||
for (int i=0; i<IonConcentration.size();i++){
|
||||
for (size_t i=0; i<IonConcentration.size();i++){
|
||||
IonConcentration[i] = IonConcentration[i]*(h*h*h*1.0e-18);//LB ion concentration has unit [mol/lu^3]
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
for (int i=0; i<IonConcentration.size();i++){
|
||||
for (size_t i=0; i<IonConcentration.size();i++){
|
||||
IonConcentration[i] = IonConcentration[i]*(h*h*h*1.0e-18);//LB ion concentration has unit [mol/lu^3]
|
||||
}
|
||||
|
||||
@ -186,7 +186,7 @@ void ScaLBL_IonModel::ReadParams(string filename,vector<int> &num_iter){
|
||||
else {
|
||||
ERROR("Error: Non-periodic BCs are specified but InletValueList cannot be found! \n");
|
||||
}
|
||||
for (unsigned int i=0;i<BoundaryConditionInlet.size();i++){
|
||||
for (size_t i=0;i<BoundaryConditionInlet.size();i++){
|
||||
switch (BoundaryConditionInlet[i]){
|
||||
case 1://fixed boundary ion concentration [mol/m^3]
|
||||
Cin[i] = Cin[i]*(h*h*h*1.0e-18);//LB ion concentration has unit [mol/lu^3]
|
||||
@ -220,7 +220,7 @@ void ScaLBL_IonModel::ReadParams(string filename,vector<int> &num_iter){
|
||||
else {
|
||||
ERROR("Error: Non-periodic BCs are specified but OutletValueList cannot be found! \n");
|
||||
}
|
||||
for (unsigned int i=0;i<BoundaryConditionOutlet.size();i++){
|
||||
for (size_t i=0;i<BoundaryConditionOutlet.size();i++){
|
||||
switch (BoundaryConditionOutlet[i]){
|
||||
case 1://fixed boundary ion concentration [mol/m^3]
|
||||
Cout[i] = Cout[i]*(h*h*h*1.0e-18);//LB ion concentration has unit [mol/lu^3]
|
||||
@ -307,7 +307,7 @@ void ScaLBL_IonModel::ReadParams(string filename){
|
||||
}
|
||||
else{
|
||||
time_conv.clear();
|
||||
for (int i=0; i<tau.size();i++){
|
||||
for (size_t i=0; i<tau.size();i++){
|
||||
time_conv.push_back((tau[i]-0.5)/k2_inv*(h*h*1.0e-12)/Di[i]);
|
||||
}
|
||||
}
|
||||
@ -322,13 +322,13 @@ void ScaLBL_IonModel::ReadParams(string filename){
|
||||
ERROR("Error: number_ion_species and IonDiffusivityList must be the same length! \n");
|
||||
}
|
||||
else{
|
||||
for (int i=0; i<IonDiffusivity.size();i++){
|
||||
for (size_t i=0; i<IonDiffusivity.size();i++){
|
||||
IonDiffusivity[i] = IonDiffusivity[i]*time_conv[i]/(h*h*1.0e-12);//LB diffusivity has unit [lu^2/lt]
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
for (int i=0; i<IonDiffusivity.size();i++){
|
||||
for (size_t i=0; i<IonDiffusivity.size();i++){
|
||||
//convert ion diffusivity in physical unit to LB unit
|
||||
IonDiffusivity[i] = IonDiffusivity[i]*time_conv[i]/(h*h*1.0e-12);//LB diffusivity has unit [lu^2/lt]
|
||||
}
|
||||
@ -351,13 +351,13 @@ void ScaLBL_IonModel::ReadParams(string filename){
|
||||
ERROR("Error: number_ion_species and IonConcentrationList must be the same length! \n");
|
||||
}
|
||||
else{
|
||||
for (int i=0; i<IonConcentration.size();i++){
|
||||
for (size_t i=0; i<IonConcentration.size();i++){
|
||||
IonConcentration[i] = IonConcentration[i]*(h*h*h*1.0e-18);//LB ion concentration has unit [mol/lu^3]
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
for (int i=0; i<IonConcentration.size();i++){
|
||||
for (size_t i=0; i<IonConcentration.size();i++){
|
||||
IonConcentration[i] = IonConcentration[i]*(h*h*h*1.0e-18);//LB ion concentration has unit [mol/lu^3]
|
||||
}
|
||||
|
||||
@ -396,7 +396,7 @@ void ScaLBL_IonModel::ReadParams(string filename){
|
||||
else {
|
||||
ERROR("Error: Non-periodic BCs are specified but InletValueList cannot be found! \n");
|
||||
}
|
||||
for (unsigned int i=0;i<BoundaryConditionInlet.size();i++){
|
||||
for (size_t i=0;i<BoundaryConditionInlet.size();i++){
|
||||
switch (BoundaryConditionInlet[i]){
|
||||
case 1://fixed boundary ion concentration [mol/m^3]
|
||||
Cin[i] = Cin[i]*(h*h*h*1.0e-18);//LB ion concentration has unit [mol/lu^3]
|
||||
@ -430,7 +430,7 @@ void ScaLBL_IonModel::ReadParams(string filename){
|
||||
else {
|
||||
ERROR("Error: Non-periodic BCs are specified but OutletValueList cannot be found! \n");
|
||||
}
|
||||
for (unsigned int i=0;i<BoundaryConditionOutlet.size();i++){
|
||||
for (size_t i=0;i<BoundaryConditionOutlet.size();i++){
|
||||
switch (BoundaryConditionOutlet[i]){
|
||||
case 1://fixed boundary ion concentration [mol/m^3]
|
||||
Cout[i] = Cout[i]*(h*h*h*1.0e-18);//LB ion concentration has unit [mol/lu^3]
|
||||
@ -558,10 +558,12 @@ void ScaLBL_IonModel::AssignSolidBoundary(double *ion_solid)
|
||||
ERROR("Error: LB Ion Solver: SolidLabels and SolidValues must be the same length! \n");
|
||||
}
|
||||
|
||||
double label_count[NLABELS];
|
||||
double label_count_global[NLABELS];
|
||||
// Assign the labels
|
||||
|
||||
// Assign the labels
|
||||
double *label_count;
|
||||
double *label_count_global;
|
||||
label_count = new double [NLABELS];
|
||||
label_count_global = new double [NLABELS];
|
||||
for (size_t idx=0; idx<NLABELS; idx++) label_count[idx]=0;
|
||||
|
||||
for (int k=0;k<Nz;k++){
|
||||
@ -571,7 +573,7 @@ void ScaLBL_IonModel::AssignSolidBoundary(double *ion_solid)
|
||||
VALUE=Mask->id[n];
|
||||
AFFINITY=0.f;
|
||||
// Assign the affinity from the paired list
|
||||
for (unsigned int idx=0; idx < NLABELS; idx++){
|
||||
for (size_t idx=0; idx < NLABELS; idx++){
|
||||
//printf("idx=%i, value=%i, %i, \n",idx, VALUE,LabelList[idx]);
|
||||
if (VALUE == LabelList[idx]){
|
||||
AFFINITY=AffinityList[idx];
|
||||
@ -701,23 +703,23 @@ void ScaLBL_IonModel::Initialize(){
|
||||
auto File_ion = ion_db->getVector<std::string>( "IonConcentrationFile" );
|
||||
double *Ci_host;
|
||||
Ci_host = new double[number_ion_species*Np];
|
||||
for (int ic=0; ic<number_ion_species; ic++){
|
||||
for (size_t ic=0; ic<number_ion_species; ic++){
|
||||
AssignIonConcentration_FromFile(&Ci_host[ic*Np],File_ion);
|
||||
}
|
||||
ScaLBL_CopyToDevice(Ci, Ci_host, number_ion_species*sizeof(double)*Np);
|
||||
comm.barrier();
|
||||
for (int ic=0; ic<number_ion_species; ic++){
|
||||
for (size_t ic=0; ic<number_ion_species; ic++){
|
||||
ScaLBL_D3Q7_Ion_Init_FromFile(&fq[ic*Np*7],&Ci[ic*Np],Np);
|
||||
}
|
||||
delete [] Ci_host;
|
||||
}
|
||||
else{
|
||||
for (int ic=0; ic<number_ion_species; ic++){
|
||||
for (size_t ic=0; ic<number_ion_species; ic++){
|
||||
ScaLBL_D3Q7_Ion_Init(&fq[ic*Np*7],&Ci[ic*Np],IonConcentration[ic],Np);
|
||||
}
|
||||
}
|
||||
if (rank==0) printf ("LB Ion Solver: initializing charge density\n");
|
||||
for (int ic=0; ic<number_ion_species; ic++){
|
||||
for (size_t ic=0; ic<number_ion_species; ic++){
|
||||
ScaLBL_D3Q7_Ion_ChargeDensity(Ci, ChargeDensity, IonValence[ic], ic, ScaLBL_Comm->FirstInterior(), ScaLBL_Comm->LastInterior(), Np);
|
||||
ScaLBL_D3Q7_Ion_ChargeDensity(Ci, ChargeDensity, IonValence[ic], ic, 0, ScaLBL_Comm->LastExterior(), Np);
|
||||
}
|
||||
@ -734,35 +736,35 @@ void ScaLBL_IonModel::Initialize(){
|
||||
break;
|
||||
}
|
||||
|
||||
for (int i=0; i<number_ion_species;i++){
|
||||
for (size_t i=0; i<number_ion_species;i++){
|
||||
switch (BoundaryConditionInlet[i]){
|
||||
case 0:
|
||||
if (rank==0) printf("LB Ion Solver: inlet boundary for Ion %i is periodic \n",i+1);
|
||||
if (rank==0) printf("LB Ion Solver: inlet boundary for Ion %zu is periodic \n",i+1);
|
||||
break;
|
||||
case 1:
|
||||
if (rank==0) printf("LB Ion Solver: inlet boundary for Ion %i is concentration = %.5g [mol/m^3] \n",i+1,Cin[i]/(h*h*h*1.0e-18));
|
||||
if (rank==0) printf("LB Ion Solver: inlet boundary for Ion %zu is concentration = %.5g [mol/m^3] \n",i+1,Cin[i]/(h*h*h*1.0e-18));
|
||||
break;
|
||||
case 2:
|
||||
if (rank==0) printf("LB Ion Solver: inlet boundary for Ion %i is (inward) flux = %.5g [mol/m^2/sec] \n",i+1,Cin[i]/(h*h*1.0e-12)/time_conv[i]);
|
||||
if (rank==0) printf("LB Ion Solver: inlet boundary for Ion %zu is (inward) flux = %.5g [mol/m^2/sec] \n",i+1,Cin[i]/(h*h*1.0e-12)/time_conv[i]);
|
||||
break;
|
||||
}
|
||||
switch (BoundaryConditionOutlet[i]){
|
||||
case 0:
|
||||
if (rank==0) printf("LB Ion Solver: outlet boundary for Ion %i is periodic \n",i+1);
|
||||
if (rank==0) printf("LB Ion Solver: outlet boundary for Ion %zu is periodic \n",i+1);
|
||||
break;
|
||||
case 1:
|
||||
if (rank==0) printf("LB Ion Solver: outlet boundary for Ion %i is concentration = %.5g [mol/m^3] \n",i+1,Cout[i]/(h*h*h*1.0e-18));
|
||||
if (rank==0) printf("LB Ion Solver: outlet boundary for Ion %zu is concentration = %.5g [mol/m^3] \n",i+1,Cout[i]/(h*h*h*1.0e-18));
|
||||
break;
|
||||
case 2:
|
||||
if (rank==0) printf("LB Ion Solver: outlet boundary for Ion %i is (inward) flux = %.5g [mol/m^2/sec] \n",i+1,Cout[i]/(h*h*1.0e-12)/time_conv[i]);
|
||||
if (rank==0) printf("LB Ion Solver: outlet boundary for Ion %zu is (inward) flux = %.5g [mol/m^2/sec] \n",i+1,Cout[i]/(h*h*1.0e-12)/time_conv[i]);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
if (rank==0) printf("*****************************************************\n");
|
||||
if (rank==0) printf("LB Ion Transport Solver: \n");
|
||||
for (int i=0; i<number_ion_species;i++){
|
||||
if (rank==0) printf(" Ion %i: LB relaxation tau = %.5g\n", i+1,tau[i]);
|
||||
for (size_t i=0; i<number_ion_species;i++){
|
||||
if (rank==0) printf(" Ion %zu: LB relaxation tau = %.5g\n", i+1,tau[i]);
|
||||
if (rank==0) printf(" Time conversion factor: %.5g [sec/lt]\n", time_conv[i]);
|
||||
if (rank==0) printf(" Internal iteration: %i [lt]\n", timestepMax[i]);
|
||||
}
|
||||
@ -777,7 +779,7 @@ void ScaLBL_IonModel::Run(double *Velocity, double *ElectricField){
|
||||
|
||||
//LB-related parameter
|
||||
vector<double> rlx;
|
||||
for (unsigned int ic=0;ic<tau.size();ic++){
|
||||
for (size_t ic=0;ic<tau.size();ic++){
|
||||
rlx.push_back(1.0/tau[ic]);
|
||||
}
|
||||
|
||||
@ -786,7 +788,7 @@ void ScaLBL_IonModel::Run(double *Velocity, double *ElectricField){
|
||||
//ScaLBL_Comm->Barrier(); comm.barrier();
|
||||
//auto t1 = std::chrono::system_clock::now();
|
||||
|
||||
for (int ic=0; ic<number_ion_species; ic++){
|
||||
for (size_t ic=0; ic<number_ion_species; ic++){
|
||||
timestep=0;
|
||||
while (timestep < timestepMax[ic]) {
|
||||
//************************************************************************/
|
||||
@ -881,7 +883,7 @@ void ScaLBL_IonModel::Run(double *Velocity, double *ElectricField){
|
||||
}
|
||||
|
||||
//Compute charge density for Poisson equation
|
||||
for (int ic=0; ic<number_ion_species; ic++){
|
||||
for (size_t ic=0; ic<number_ion_species; ic++){
|
||||
ScaLBL_D3Q7_Ion_ChargeDensity(Ci, ChargeDensity, IonValence[ic], ic, ScaLBL_Comm->FirstInterior(), ScaLBL_Comm->LastInterior(), Np);
|
||||
ScaLBL_D3Q7_Ion_ChargeDensity(Ci, ChargeDensity, IonValence[ic], ic, 0, ScaLBL_Comm->LastExterior(), Np);
|
||||
}
|
||||
@ -901,7 +903,7 @@ void ScaLBL_IonModel::Run(double *Velocity, double *ElectricField){
|
||||
//if (rank==0) printf("********************************************************\n");
|
||||
}
|
||||
|
||||
void ScaLBL_IonModel::getIonConcentration(DoubleArray &IonConcentration, const int ic){
|
||||
void ScaLBL_IonModel::getIonConcentration(DoubleArray &IonConcentration, const size_t ic){
|
||||
//This function wirte out the data in a normal layout (by aggregating all decomposed domains)
|
||||
|
||||
ScaLBL_Comm->RegularLayout(Map,&Ci[ic*Np],IonConcentration);
|
||||
@ -913,13 +915,13 @@ void ScaLBL_IonModel::getIonConcentration(DoubleArray &IonConcentration, const i
|
||||
void ScaLBL_IonModel::getIonConcentration_debug(int timestep){
|
||||
//This function write out decomposed data
|
||||
DoubleArray PhaseField(Nx,Ny,Nz);
|
||||
for (int ic=0; ic<number_ion_species; ic++){
|
||||
for (size_t ic=0; ic<number_ion_species; ic++){
|
||||
ScaLBL_Comm->RegularLayout(Map,&Ci[ic*Np],PhaseField);
|
||||
ScaLBL_Comm->Barrier(); comm.barrier();
|
||||
IonConcentration_LB_to_Phys(PhaseField);
|
||||
|
||||
FILE *OUTFILE;
|
||||
sprintf(LocalRankFilename,"Ion%02i_Time_%i.%05i.raw",ic+1,timestep,rank);
|
||||
sprintf(LocalRankFilename,"Ion%02zu_Time_%i.%05i.raw",ic+1,timestep,rank);
|
||||
OUTFILE = fopen(LocalRankFilename,"wb");
|
||||
fwrite(PhaseField.data(),8,N,OUTFILE);
|
||||
fclose(OUTFILE);
|
||||
@ -986,7 +988,7 @@ double ScaLBL_IonModel::CalIonDenConvergence(vector<double> &ci_avg_previous){
|
||||
Ci_host = new double[Np];
|
||||
vector<double> error(number_ion_species,0.0);
|
||||
|
||||
for (int ic=0; ic<number_ion_species; ic++){
|
||||
for (size_t ic=0; ic<number_ion_species; ic++){
|
||||
|
||||
ScaLBL_CopyToHost(Ci_host,&Ci[ic*Np],Np*sizeof(double));
|
||||
double count_loc=0;
|
||||
|
@ -34,7 +34,7 @@ public:
|
||||
void Create();
|
||||
void Initialize();
|
||||
void Run(double *Velocity, double *ElectricField);
|
||||
void getIonConcentration(DoubleArray &IonConcentration, const int ic);
|
||||
void getIonConcentration(DoubleArray &IonConcentration, const size_t ic);
|
||||
void getIonConcentration_debug(int timestep);
|
||||
void DummyFluidVelocity();
|
||||
void DummyElectricField();
|
||||
@ -51,7 +51,7 @@ public:
|
||||
double fluidVelx_dummy,fluidVely_dummy,fluidVelz_dummy;
|
||||
double Ex_dummy,Ey_dummy,Ez_dummy;
|
||||
|
||||
int number_ion_species;
|
||||
size_t number_ion_species;
|
||||
vector<int> BoundaryConditionInlet;
|
||||
vector<int> BoundaryConditionOutlet;
|
||||
vector<double> IonDiffusivity;//User input unit [m^2/sec]
|
||||
|
@ -9,8 +9,8 @@
|
||||
using namespace std;
|
||||
|
||||
int main(int argc, char **argv){
|
||||
|
||||
printf("Aggregating block data into single file \n");
|
||||
|
||||
printf("Aggregating block data into single file \n");
|
||||
unsigned int Bx,By,Bz;
|
||||
uint64_t Nx,Ny,Nz;
|
||||
uint64_t N;
|
||||
@ -22,25 +22,25 @@ int main(int argc, char **argv){
|
||||
|
||||
//Read the block size
|
||||
if (argc>9){
|
||||
printf("Input arguments accepted \n");
|
||||
Nx = atoi(argv[1]);
|
||||
Ny = atoi(argv[2]);
|
||||
Nz = atoi(argv[3]);
|
||||
x0 = atoi(argv[4]);
|
||||
y0 = atoi(argv[5]);
|
||||
z0 = atoi(argv[6]);
|
||||
NX = atol(argv[7]);
|
||||
NY = atol(argv[8]);
|
||||
NZ = atol(argv[9]);
|
||||
printf("Size %i X %i X %i \n",NX,NY,NZ);
|
||||
fflush(stdout);
|
||||
printf("Input arguments accepted \n");
|
||||
Nx = atoi(argv[1]);
|
||||
Ny = atoi(argv[2]);
|
||||
Nz = atoi(argv[3]);
|
||||
x0 = atoi(argv[4]);
|
||||
y0 = atoi(argv[5]);
|
||||
z0 = atoi(argv[6]);
|
||||
NX = atol(argv[7]);
|
||||
NY = atol(argv[8]);
|
||||
NZ = atol(argv[9]);
|
||||
printf("Size %llu X %llu X %llu \n",(unsigned long long) NX, (unsigned long long) NY, (unsigned long long) NZ);
|
||||
fflush(stdout);
|
||||
}
|
||||
else{
|
||||
printf("setting defaults \n");
|
||||
Nx=Ny=Nz=1024;
|
||||
x0=y0=z0=0;
|
||||
NX=NY=8640;
|
||||
NZ=6480;
|
||||
printf("setting defaults \n");
|
||||
Nx=Ny=Nz=1024;
|
||||
x0=y0=z0=0;
|
||||
NX=NY=8640;
|
||||
NZ=6480;
|
||||
}
|
||||
//Bx = By = Bz = 9;
|
||||
//Nx = Ny = Nz = 1024;
|
||||
@ -53,29 +53,28 @@ int main(int argc, char **argv){
|
||||
if (By>8) By=8;
|
||||
if (Bz>8) Bz=8;
|
||||
|
||||
printf("System size (output) is: %i x %i x %i \n",NX,NY,NZ);
|
||||
printf("Block size (read) is: %i x %i x %i \n",Nx,Ny,Nz);
|
||||
printf("Starting location (read) is: %i, %i, %i \n", x0,y0,z0);
|
||||
printf("Block number (read): %i x %i x %i \n",Bx,By,Bz);
|
||||
printf("System size (output) is: %llu x %llu x %llu \n",(unsigned long long) NX,(unsigned long long) NY, (unsigned long long) NZ);
|
||||
printf("Block size (read) is: %llu x %llu x %llu \n",(unsigned long long) Nx,(unsigned long long) Ny,(unsigned long long) Nz);
|
||||
printf("Starting location (read) is: %llu, %llu, %llu \n", (unsigned long long) x0,(unsigned long long) y0,(unsigned long long) z0);
|
||||
printf("Block number (read): %llu x %llu x %llu \n",(unsigned long long) Bx,(unsigned long long) By,(unsigned long long) Bz);
|
||||
fflush(stdout);
|
||||
|
||||
|
||||
// Filenames used
|
||||
//char LocalRankString[8];
|
||||
char LocalRankFilename[40];
|
||||
char sx[2];
|
||||
char sy[2];
|
||||
char sz[2];
|
||||
char tmpstr[10];
|
||||
|
||||
//sprintf(LocalRankString,"%05d",rank);
|
||||
N = Nx*Ny*Nz;
|
||||
N_full=NX*NY*NZ;
|
||||
|
||||
|
||||
char *id;
|
||||
id = new char [N];
|
||||
char *ID;
|
||||
ID = new char [N_full];
|
||||
|
||||
|
||||
for (unsigned int bz=0; bz<Bz; bz++){
|
||||
for (unsigned int by=0; by<By; by++){
|
||||
for (unsigned int bx=0; bx<Bx; bx++){
|
||||
@ -90,7 +89,7 @@ int main(int argc, char **argv){
|
||||
FILE *IDFILE = fopen(LocalRankFilename,"rb");
|
||||
readID=fread(id,1,N,IDFILE);
|
||||
fclose(IDFILE);
|
||||
printf("Loading data ... \n");
|
||||
printf("Loading data: %zu bytes ... \n", readID);
|
||||
// Unpack the data into the main array
|
||||
for ( k=0;k<Nz;k++){
|
||||
for ( j=0;j<Ny;j++){
|
||||
@ -99,7 +98,7 @@ int main(int argc, char **argv){
|
||||
y = by*Ny + j;
|
||||
z = bz*Nz + k;
|
||||
if ( x<NX && y<NY && z<NZ){
|
||||
ID[z*NX*NY+y*NX+x] = id[k*Nx*Ny+j*Nx+i];
|
||||
ID[z*NX*NY+y*NX+x] = id[k*Nx*Ny+j*Nx+i];
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -111,11 +110,11 @@ int main(int argc, char **argv){
|
||||
// Compute porosity
|
||||
uint64_t count=0;
|
||||
for (k=0; k<NZ; k++){
|
||||
for (j=0; j<NY; j++){
|
||||
for (i=0; i<NX; i++){
|
||||
if (ID[k*NX*NY+j*NX+i] < 215) count++;
|
||||
}
|
||||
}
|
||||
for (j=0; j<NY; j++){
|
||||
for (i=0; i<NX; i++){
|
||||
if (ID[k*NX*NY+j*NX+i] < 1) count++;
|
||||
}
|
||||
}
|
||||
}
|
||||
printf("Porosity is %f \n",double(count)/double(NX*NY*NZ));
|
||||
|
||||
|
@ -137,20 +137,18 @@ inline void MorphOpen(DoubleArray SignDist, char *id, Domain &Dm, int nx, int ny
|
||||
int Nx = nx;
|
||||
int Ny = ny;
|
||||
int Nz = nz;
|
||||
int imin,jmin,kmin,imax,jmax,kmax;
|
||||
|
||||
|
||||
double sw_old=1.0;
|
||||
double sw_new=1.0;
|
||||
double sw_diff_old = 1.0;
|
||||
double sw_diff_new = 1.0;
|
||||
double sw_diff_old = 1.0;
|
||||
double sw_diff_new = 1.0;
|
||||
|
||||
// Increase the critical radius until the target saturation is met
|
||||
double deltaR=0.05; // amount to change the radius in voxel units
|
||||
double Rcrit_old;
|
||||
double Rcrit_new;
|
||||
|
||||
int imin,jmin,kmin,imax,jmax,kmax;
|
||||
|
||||
Rcrit_new = maxdistGlobal;
|
||||
double Rcrit_new = maxdistGlobal;
|
||||
double Rcrit_old = maxdistGlobal;
|
||||
while (sw_new > SW)
|
||||
{
|
||||
sw_diff_old = sw_diff_new;
|
||||
|
@ -9,8 +9,6 @@
|
||||
#include "common/Utilities.h"
|
||||
#include "models/ColorModel.h"
|
||||
|
||||
//#define WRE_SURFACES
|
||||
|
||||
/*
|
||||
* Simulator for two-phase flow in porous media
|
||||
* James E. McClure 2013-2014
|
||||
@ -24,100 +22,170 @@
|
||||
int main( int argc, char **argv )
|
||||
{
|
||||
|
||||
// Initialize
|
||||
Utilities::startup( argc, argv );
|
||||
// Initialize
|
||||
Utilities::startup( argc, argv );
|
||||
|
||||
{ // Limit scope so variables that contain communicators will free before MPI_Finialize
|
||||
{ // Limit scope so variables that contain communicators will free before MPI_Finialize
|
||||
|
||||
Utilities::MPI comm( MPI_COMM_WORLD );
|
||||
int rank = comm.getRank();
|
||||
int nprocs = comm.getSize();
|
||||
std::string SimulationMode = "production";
|
||||
// Load the input database
|
||||
auto db = std::make_shared<Database>( argv[1] );
|
||||
if (argc > 2) {
|
||||
SimulationMode = "development";
|
||||
}
|
||||
Utilities::MPI comm( MPI_COMM_WORLD );
|
||||
int rank = comm.getRank();
|
||||
int nprocs = comm.getSize();
|
||||
std::string SimulationMode = "production";
|
||||
// Load the input database
|
||||
auto db = std::make_shared<Database>( argv[1] );
|
||||
if (argc > 2) {
|
||||
SimulationMode = "development";
|
||||
}
|
||||
|
||||
if ( rank == 0 ) {
|
||||
printf( "********************************************************\n" );
|
||||
printf( "Running Color LBM \n" );
|
||||
printf( "********************************************************\n" );
|
||||
if (SimulationMode == "development")
|
||||
printf("**** DEVELOPMENT MODE ENABLED *************\n");
|
||||
}
|
||||
// Initialize compute device
|
||||
int device = ScaLBL_SetDevice( rank );
|
||||
NULL_USE( device );
|
||||
ScaLBL_DeviceBarrier();
|
||||
comm.barrier();
|
||||
if ( rank == 0 ) {
|
||||
printf( "********************************************************\n" );
|
||||
printf( "Running Color LBM \n" );
|
||||
printf( "********************************************************\n" );
|
||||
if (SimulationMode == "development")
|
||||
printf("**** DEVELOPMENT MODE ENABLED *************\n");
|
||||
}
|
||||
// Initialize compute device
|
||||
int device = ScaLBL_SetDevice( rank );
|
||||
NULL_USE( device );
|
||||
ScaLBL_DeviceBarrier();
|
||||
comm.barrier();
|
||||
|
||||
PROFILE_ENABLE( 1 );
|
||||
// PROFILE_ENABLE_TRACE();
|
||||
// PROFILE_ENABLE_MEMORY();
|
||||
PROFILE_SYNCHRONIZE();
|
||||
PROFILE_START( "Main" );
|
||||
Utilities::setErrorHandlers();
|
||||
PROFILE_ENABLE( 1 );
|
||||
// PROFILE_ENABLE_TRACE();
|
||||
// PROFILE_ENABLE_MEMORY();
|
||||
PROFILE_SYNCHRONIZE();
|
||||
PROFILE_START( "Main" );
|
||||
Utilities::setErrorHandlers();
|
||||
|
||||
auto filename = argv[1];
|
||||
ScaLBL_ColorModel ColorModel( rank, nprocs, comm );
|
||||
ColorModel.ReadParams( filename );
|
||||
ColorModel.SetDomain();
|
||||
ColorModel.ReadInput();
|
||||
ColorModel.Create(); // creating the model will create data structure to match the pore
|
||||
// structure and allocate variables
|
||||
ColorModel.Initialize(); // initializing the model will set initial conditions for variables
|
||||
|
||||
if (SimulationMode == "development"){
|
||||
double MLUPS=0.0;
|
||||
int timestep = 0;
|
||||
/* flow adaptor keys to control */
|
||||
auto flow_db = ColorModel.db->getDatabase( "FlowAdaptor" );
|
||||
int MAX_STEADY_TIME = flow_db->getWithDefault<int>( "max_steady_timesteps", 1000000 );
|
||||
int SKIP_TIMESTEPS = flow_db->getWithDefault<int>( "skip_timesteps", 100000 );
|
||||
auto filename = argv[1];
|
||||
ScaLBL_ColorModel ColorModel( rank, nprocs, comm );
|
||||
ColorModel.ReadParams( filename );
|
||||
ColorModel.SetDomain();
|
||||
ColorModel.ReadInput();
|
||||
ColorModel.Create(); // creating the model will create data structure to match the pore
|
||||
// structure and allocate variables
|
||||
ColorModel.Initialize(); // initializing the model will set initial conditions for variables
|
||||
|
||||
int ANALYSIS_INTERVAL = ColorModel.timestepMax;
|
||||
if (ColorModel.analysis_db->keyExists( "analysis_interval" )){
|
||||
ANALYSIS_INTERVAL = ColorModel.analysis_db->getScalar<int>( "analysis_interval" );
|
||||
}
|
||||
/* Launch the simulation */
|
||||
FlowAdaptor Adapt(ColorModel);
|
||||
runAnalysis analysis(ColorModel);
|
||||
|
||||
while (ColorModel.timestep < ColorModel.timestepMax){
|
||||
/* this will run steady points */
|
||||
timestep += MAX_STEADY_TIME;
|
||||
MLUPS = ColorModel.Run(timestep);
|
||||
if (rank==0) printf("Lattice update rate (per MPI process)= %f MLUPS \n", MLUPS);
|
||||
Adapt.UpdateFractionalFlow(ColorModel);
|
||||
|
||||
/* apply timestep skipping algorithm to accelerate steady-state */
|
||||
int skip_time = 0;
|
||||
timestep = ColorModel.timestep;
|
||||
while (skip_time < SKIP_TIMESTEPS){
|
||||
timestep += ANALYSIS_INTERVAL;
|
||||
MLUPS = ColorModel.Run(timestep);
|
||||
Adapt.MoveInterface(ColorModel);
|
||||
skip_time += ANALYSIS_INTERVAL;
|
||||
}
|
||||
//Adapt.Flatten(ColorModel);
|
||||
if (SimulationMode == "development"){
|
||||
double MLUPS=0.0;
|
||||
int timestep = 0;
|
||||
bool ContinueSimulation = true;
|
||||
|
||||
/* Variables for simulation protocols */
|
||||
auto PROTOCOL = ColorModel.color_db->getWithDefault<std::string>( "protocol", "none" );
|
||||
/* image sequence protocol */
|
||||
int IMAGE_INDEX = 0;
|
||||
int IMAGE_COUNT = 0;
|
||||
std::vector<std::string> ImageList;
|
||||
/* flow adaptor keys to control behavior */
|
||||
int SKIP_TIMESTEPS = 0;
|
||||
int MAX_STEADY_TIME = 1000000;
|
||||
double ENDPOINT_THRESHOLD = 0.1;
|
||||
double FRACTIONAL_FLOW_INCREMENT = 0.0; // this will skip the flow adaptor if not enabled
|
||||
double SEED_WATER = 0.0;
|
||||
if (ColorModel.db->keyExists( "FlowAdaptor" )){
|
||||
auto flow_db = ColorModel.db->getDatabase( "FlowAdaptor" );
|
||||
MAX_STEADY_TIME = flow_db->getWithDefault<int>( "max_steady_timesteps", 1000000 );
|
||||
SKIP_TIMESTEPS = flow_db->getWithDefault<int>( "skip_timesteps", 50000 );
|
||||
ENDPOINT_THRESHOLD = flow_db->getWithDefault<double>( "endpoint_threshold", 0.1);
|
||||
/* protocol specific key values */
|
||||
if (PROTOCOL == "fractional flow")
|
||||
FRACTIONAL_FLOW_INCREMENT = flow_db->getWithDefault<double>( "fractional_flow_increment", 0.05);
|
||||
if (PROTOCOL == "seed water")
|
||||
SEED_WATER = flow_db->getWithDefault<double>( "seed_water", 0.01);
|
||||
}
|
||||
/* analysis keys*/
|
||||
int ANALYSIS_INTERVAL = ColorModel.timestepMax;
|
||||
if (ColorModel.analysis_db->keyExists( "analysis_interval" )){
|
||||
ANALYSIS_INTERVAL = ColorModel.analysis_db->getScalar<int>( "analysis_interval" );
|
||||
}
|
||||
/* Launch the simulation */
|
||||
FlowAdaptor Adapt(ColorModel);
|
||||
runAnalysis analysis(ColorModel);
|
||||
while (ContinueSimulation){
|
||||
/* this will run steady points */
|
||||
timestep += MAX_STEADY_TIME;
|
||||
MLUPS = ColorModel.Run(timestep);
|
||||
if (rank==0) printf("Lattice update rate (per MPI process)= %f MLUPS \n", MLUPS);
|
||||
if (ColorModel.timestep > ColorModel.timestepMax){
|
||||
ContinueSimulation = false;
|
||||
}
|
||||
|
||||
/* Load a new image if image sequence is specified */
|
||||
if (PROTOCOL == "image sequence"){
|
||||
IMAGE_INDEX++;
|
||||
if (IMAGE_INDEX < IMAGE_COUNT){
|
||||
std::string next_image = ImageList[IMAGE_INDEX];
|
||||
if (rank==0) printf("***Loading next image in sequence (%i) ***\n",IMAGE_INDEX);
|
||||
ColorModel.color_db->putScalar<int>("image_index",IMAGE_INDEX);
|
||||
Adapt.ImageInit(ColorModel, next_image);
|
||||
}
|
||||
else{
|
||||
if (rank==0) printf("Finished simulating image sequence \n");
|
||||
ColorModel.timestep = ColorModel.timestepMax;
|
||||
}
|
||||
}
|
||||
/*********************************************************/
|
||||
/* update the fluid configuration with the flow adapter */
|
||||
int skip_time = 0;
|
||||
timestep = ColorModel.timestep;
|
||||
/* get the averaged flow measures computed internally for the last simulation point*/
|
||||
double SaturationChange = 0.0;
|
||||
double volB = ColorModel.Averages->gwb.V;
|
||||
double volA = ColorModel.Averages->gnb.V;
|
||||
double initialSaturation = volB/(volA + volB);
|
||||
double vA_x = ColorModel.Averages->gnb.Px/ColorModel.Averages->gnb.M;
|
||||
double vA_y = ColorModel.Averages->gnb.Py/ColorModel.Averages->gnb.M;
|
||||
double vA_z = ColorModel.Averages->gnb.Pz/ColorModel.Averages->gnb.M;
|
||||
double vB_x = ColorModel.Averages->gwb.Px/ColorModel.Averages->gwb.M;
|
||||
double vB_y = ColorModel.Averages->gwb.Py/ColorModel.Averages->gwb.M;
|
||||
double vB_z = ColorModel.Averages->gwb.Pz/ColorModel.Averages->gwb.M;
|
||||
double speedA = sqrt(vA_x*vA_x + vA_y*vA_y + vA_z*vA_z);
|
||||
double speedB = sqrt(vB_x*vB_x + vB_y*vB_y + vB_z*vB_z);
|
||||
/* stop simulation if previous point was sufficiently close to the endpoint*/
|
||||
if (volA*speedA < ENDPOINT_THRESHOLD*volB*speedB) ContinueSimulation = false;
|
||||
if (ContinueSimulation){
|
||||
while (skip_time < SKIP_TIMESTEPS && fabs(SaturationChange) < fabs(FRACTIONAL_FLOW_INCREMENT) ){
|
||||
timestep += ANALYSIS_INTERVAL;
|
||||
if (PROTOCOL == "fractional flow") {
|
||||
Adapt.UpdateFractionalFlow(ColorModel);
|
||||
}
|
||||
else if (PROTOCOL == "shell aggregation"){
|
||||
double target_volume_change = FRACTIONAL_FLOW_INCREMENT*initialSaturation - SaturationChange;
|
||||
Adapt.ShellAggregation(ColorModel,target_volume_change);
|
||||
}
|
||||
else if (PROTOCOL == "seed water"){
|
||||
Adapt.SeedPhaseField(ColorModel,SEED_WATER);
|
||||
}
|
||||
/* Run some LBM timesteps to let the system relax a bit */
|
||||
MLUPS = ColorModel.Run(timestep);
|
||||
/* Recompute the volume fraction now that the system has adjusted */
|
||||
double volB = ColorModel.Averages->gwb.V;
|
||||
double volA = ColorModel.Averages->gnb.V;
|
||||
SaturationChange = volB/(volA + volB) - initialSaturation;
|
||||
skip_time += ANALYSIS_INTERVAL;
|
||||
}
|
||||
if (rank==0) printf(" ********************************************************************* \n");
|
||||
if (rank==0) printf(" Updated fractional flow with saturation change = %f \n", SaturationChange);
|
||||
if (rank==0) printf(" Used protocol = %s \n", PROTOCOL.c_str());
|
||||
if (rank==0) printf(" ********************************************************************* \n");
|
||||
}
|
||||
/*********************************************************/
|
||||
}
|
||||
}
|
||||
else
|
||||
ColorModel.Run();
|
||||
|
||||
}
|
||||
ColorModel.WriteDebug();
|
||||
}
|
||||
|
||||
else
|
||||
ColorModel.Run();
|
||||
|
||||
PROFILE_STOP( "Main" );
|
||||
auto file = db->getWithDefault<std::string>( "TimerFile", "lbpm_color_simulator" );
|
||||
auto level = db->getWithDefault<int>( "TimerLevel", 1 );
|
||||
PROFILE_SAVE( file, level );
|
||||
// ****************************************************
|
||||
PROFILE_STOP( "Main" );
|
||||
auto file = db->getWithDefault<std::string>( "TimerFile", "lbpm_color_simulator" );
|
||||
auto level = db->getWithDefault<int>( "TimerLevel", 1 );
|
||||
NULL_USE(level);
|
||||
PROFILE_SAVE( file, level );
|
||||
// ****************************************************
|
||||
|
||||
|
||||
} // Limit scope so variables that contain communicators will free before MPI_Finialize
|
||||
} // Limit scope so variables that contain communicators will free before MPI_Finialize
|
||||
|
||||
Utilities::shutdown();
|
||||
return 0;
|
||||
Utilities::shutdown();
|
||||
return 0;
|
||||
}
|
||||
|
@ -59,6 +59,7 @@ int main( int argc, char **argv )
|
||||
PROFILE_STOP("Main");
|
||||
auto file = db->getWithDefault<std::string>( "TimerFile", "lbpm_freelee_SingleFluidBGK_simulator" );
|
||||
auto level = db->getWithDefault<int>( "TimerLevel", 1 );
|
||||
NULL_USE(level);
|
||||
PROFILE_SAVE( file,level );
|
||||
// ****************************************************
|
||||
|
||||
|
@ -83,6 +83,7 @@ int main( int argc, char **argv )
|
||||
PROFILE_STOP("Main");
|
||||
auto file = db->getWithDefault<std::string>( "TimerFile", "lbpm_freelee_simulator" );
|
||||
auto level = db->getWithDefault<int>( "TimerLevel", 1 );
|
||||
NULL_USE(level);
|
||||
PROFILE_SAVE( file,level );
|
||||
// ****************************************************
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user