Adding support for signed distance from segmented images in parallel
This commit is contained in:
@@ -34,6 +34,7 @@ struct Domain{
|
||||
BlobLabel.resize(Nx,Ny,Nz);
|
||||
BlobGraph.resize(18,MAX_BLOB_COUNT,MAX_BLOB_COUNT);
|
||||
BoundaryCondition = BC;
|
||||
rank_info = RankInfoStruct(rank,nprocx,nprocy,nprocz);
|
||||
}
|
||||
~Domain();
|
||||
|
||||
@@ -41,9 +42,10 @@ struct Domain{
|
||||
int Nx,Ny,Nz,N;
|
||||
int iproc,jproc,kproc;
|
||||
int nprocx,nprocy,nprocz;
|
||||
double Lx,Ly,Lz,Volume;
|
||||
double Lx,Ly,Lz,Volume;
|
||||
int rank;
|
||||
int BoundaryCondition;
|
||||
const RankInfoStruct;
|
||||
MPI_Group Group; // Group of processors associated with this domain
|
||||
MPI_Comm Comm; // MPI Communicator for this domain
|
||||
|
||||
|
||||
@@ -289,6 +289,7 @@ public:
|
||||
void UpdateMeshValues();
|
||||
void UpdateSolid();
|
||||
void ComputeDelPhi();
|
||||
void SSO(DoubleArray &Distance, char *ID, int timesteps);
|
||||
void ColorToSignedDistance(double Beta, double *ColorData, double *DistData);
|
||||
void ComputeLocal();
|
||||
void ComputeLocalBlob();
|
||||
@@ -300,6 +301,123 @@ public:
|
||||
|
||||
};
|
||||
|
||||
inline void TwoPhase::SSO(DoubleArray &Distance, char *ID, int timesteps){
|
||||
|
||||
int Q=26;
|
||||
int q,i,j,k,n;
|
||||
const static int D3Q27[26][3]={{1,0,0},{-1,0,0},{0,1,0},{0,-1,0},{0,0,1},{0,0,-1},
|
||||
{1,1,0},{-1,-1,0},{1,-1,0},{-1,1,0},{1,0,1},{-1,0,-1},{1,0,-1},{-1,0,1},
|
||||
{0,1,1},{0,-1,-1},{0,1,-1},{0,-1,1},{1,1,1},{-1,-1,-1},{1,1,-1},{-1,-1,1},
|
||||
{-1,1,-1},{1,-1,1},{1,-1,-1},{-1,1,1}};
|
||||
|
||||
double weights[26];
|
||||
// Compute the weights from the finite differences
|
||||
for (q=0; q<Q; q++){
|
||||
weights[q] = sqrt(1.0*(D3Q27[q][0]*D3Q27[q][0]) + 1.0*(D3Q27[q][1]*D3Q27[q][1]) + 1.0*(D3Q27[q][2]*D3Q27[q][2]));
|
||||
}
|
||||
|
||||
int count = 0;
|
||||
double dt=0.25;
|
||||
int in,jn,kn,nn;
|
||||
double Dqx,Dqy,Dqz,Dx,Dy,Dz,W;
|
||||
double nx,ny,nz,Cqx,Cqy,Cqz,sign,norm;
|
||||
// double f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
||||
|
||||
printf("Number of timesteps is %i \n",timesteps);
|
||||
printf("Mesh is %i,%i,%i \n",Nx,Ny,Nz);
|
||||
|
||||
while (count < timesteps){
|
||||
|
||||
printf("count=%i \n",count);
|
||||
for (k=0;k<Nz;k++){
|
||||
for (j=0;j<Ny;j++){
|
||||
for (i=0;i<Nx;i++){
|
||||
|
||||
n = k*Nx*Ny + j*Nx + i;
|
||||
sign = Distance(i,j,k) / fabs(Distance(i,j,k));
|
||||
|
||||
//............Compute the Gradient...................................
|
||||
if (!(i+1<Nx)) nx=0.5*Distance(i,j,k);
|
||||
else nx=0.5*Distance(i+1,j,k);;
|
||||
if (!(j+1<Ny)) ny=0.5*Distance(i,j,k);
|
||||
else ny=0.5*Distance(i,j+1,k);
|
||||
if (!(k+1<Nz)) nz=0.5*Distance(i,j,k);
|
||||
else nz=0.5*Distance(i,j,k+1);
|
||||
if (i<1) nx-=0.5*Distance(i,j,k);
|
||||
else nx-=0.5*Distance(i-1,j,k);
|
||||
if (j<1) ny-=0.5*Distance(i,j,k);
|
||||
else ny-=0.5*Distance(i,j-1,k);
|
||||
if (k<1) nz-=0.5*Distance(i,j,k);
|
||||
else nz-=0.5*Distance(i,j,k-1);
|
||||
|
||||
// nx = 0.5*(Distance(i+1,j,k) - Distance(i-1,j,k));
|
||||
// ny = 0.5*(Distance(i,j+1,k) - Distance(i,j-1,k));
|
||||
// nz = 0.5*(Distance(i,j,k+1) - Distance(i,j,k-1));
|
||||
|
||||
W = 0.0; Dx = Dy = Dz = 0.0;
|
||||
if (nx*nx+ny*ny+nz*nz > 0.0){
|
||||
for (q=0; q<26; q++){
|
||||
Cqx = 1.0*D3Q27[q][0];
|
||||
Cqy = 1.0*D3Q27[q][1];
|
||||
Cqz = 1.0*D3Q27[q][2];
|
||||
// get the associated neighbor
|
||||
in = i + D3Q27[q][0];
|
||||
jn = j + D3Q27[q][1];
|
||||
kn = k + D3Q27[q][2];
|
||||
// make sure the neighbor is in the domain (periodic BC)
|
||||
/* if (in < 0 ) in +=Nx;
|
||||
if (jn < 0 ) jn +=Ny;
|
||||
if (kn < 0 ) kn +=Nz;
|
||||
if (!(in < Nx) ) in -=Nx;
|
||||
if (!(jn < Ny) ) jn -=Ny;
|
||||
if (!(kn < Nz) ) kn -=Nz;
|
||||
*/ // symmetric boundary
|
||||
if (in < 0 ) in = i;
|
||||
if (jn < 0 ) jn = j;
|
||||
if (kn < 0 ) kn = k;
|
||||
if (!(in < Nx) ) in = i;
|
||||
if (!(jn < Ny) ) jn = k;
|
||||
if (!(kn < Nz) ) kn = k;
|
||||
// 1-D index
|
||||
nn = kn*Nx*Ny + jn*Nx + in;
|
||||
|
||||
// Compute the gradient using upwind finite differences
|
||||
Dqx = weights[q]*(Distance(i,j,k) - Distance(in,jn,kn))*Cqx;
|
||||
Dqy = weights[q]*(Distance(i,j,k) - Distance(in,jn,kn))*Cqy;
|
||||
Dqz = weights[q]*(Distance(i,j,k) - Distance(in,jn,kn))*Cqz;
|
||||
|
||||
// Only include upwind derivatives
|
||||
if (sign*(nx*Cqx + ny*Cqy + nz*Cqz) < 0.0 ){
|
||||
|
||||
Dx += Dqx;
|
||||
Dy += Dqy;
|
||||
Dz += Dqz;
|
||||
W += weights[q];
|
||||
}
|
||||
}
|
||||
// Normalize by the weight to get the approximation to the gradient
|
||||
Dx /= W;
|
||||
Dy /= W;
|
||||
Dz /= W;
|
||||
|
||||
norm = sqrt(Dx*Dx+Dy*Dy+Dz*Dz);
|
||||
}
|
||||
else{
|
||||
norm = 0.0;
|
||||
}
|
||||
Distance(i,j,k) += dt*sign*(1.0 - norm);
|
||||
|
||||
// Disallow any change in phase
|
||||
if (Distance(i,j,k)*2.0*(ID[n]-1.0) < 0) Distance(i,j,k) = -Distance(i,j,k);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
count++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void TwoPhase::ColorToSignedDistance(double Beta, double *ColorData, double *DistData){
|
||||
|
||||
double factor,temp,value;
|
||||
|
||||
Reference in New Issue
Block a user