convex test for faces reverted
This commit is contained in:
parent
f29df4b8aa
commit
c1564b6f2d
@ -383,6 +383,10 @@ double DECL::EdgeAngle(int edge)
|
||||
double len = sqrt(nx*nx+ny*ny+nz*nz);
|
||||
// new value for V is this normal vector
|
||||
V.x = nx/len; V.y = ny/len; V.z = nz/len;
|
||||
dotprod = U.x*V.x + U.y*V.y + U.z*V.z;
|
||||
if (dotprod > 1.f) dotprod=1.f;
|
||||
if (dotprod < 0.f) dotprod=-dotprod;
|
||||
angle = acos(dotprod);
|
||||
/* project onto plane of cube face also works
|
||||
W = U - dotprod*V;
|
||||
length = sqrt(W.x*W.x+W.y*W.y+W.z*W.z); // for normalization
|
||||
@ -390,21 +394,23 @@ double DECL::EdgeAngle(int edge)
|
||||
if (dotprod > 1.f) dotprod=1.f;
|
||||
if (dotprod < -1.f) dotprod=-1.f;
|
||||
angle = acos(dotprod);
|
||||
*/
|
||||
*/
|
||||
}
|
||||
dotprod=U.x*V.x + U.y*V.y + U.z*V.z;
|
||||
if (dotprod > 1.f) dotprod=1.f;
|
||||
if (dotprod < -1.f) dotprod=-1.f;
|
||||
angle = acos(dotprod);
|
||||
// determine if angle is concave or convex based on edge normal
|
||||
W = 0.5*(P+Q)-R; // vector that lies in plane of triangle
|
||||
hypotenuse = sqrt(W.x*W.x+W.y*W.y+W.z*W.z + V.x*V.x+V.y*V.y+V.z*V.z); // hypotenuse of right triangle
|
||||
length = sqrt((W.x+V.x)*(W.x+V.x) + (W.y+V.y)*(W.y+V.y) + (W.z+V.z)*(W.z+V.z));
|
||||
if (length > hypotenuse){
|
||||
// concave
|
||||
angle = -angle;
|
||||
else{
|
||||
dotprod=U.x*V.x + U.y*V.y + U.z*V.z;
|
||||
if (dotprod > 1.f) dotprod=1.f;
|
||||
if (dotprod < -1.f) dotprod=-1.f;
|
||||
angle = acos(dotprod);
|
||||
// determine if angle is concave or convex based on edge normal
|
||||
W = 0.5*(P+Q)-R; // vector that lies in plane of triangle
|
||||
hypotenuse = sqrt(W.x*W.x+W.y*W.y+W.z*W.z + V.x*V.x+V.y*V.y+V.z*V.z); // hypotenuse of right triangle
|
||||
length = sqrt((W.x+V.x)*(W.x+V.x) + (W.y+V.y)*(W.y+V.y) + (W.z+V.z)*(W.z+V.z));
|
||||
if (length > hypotenuse){
|
||||
// concave
|
||||
angle = -angle;
|
||||
}
|
||||
angle *= 0.5; // half edge value
|
||||
}
|
||||
angle *= 0.5; // half edge value
|
||||
//printf(" %f, %f (Edge=%i, twin=%i)\n U={%f, %f, %f}, V={%f, %f, %f}\n",angle,dotprod,edge,halfedge.twin(edge),U.x,U.y,U.z,V.x,V.y,V.z);
|
||||
return angle;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user