Added pre-processor and domain decomposition tool for segmented data

This commit is contained in:
James E McClure 2015-06-10 15:09:32 -04:00
parent 151c26a709
commit db1650ea5d
5 changed files with 457 additions and 126 deletions

View File

@ -592,6 +592,7 @@ void TwoPhase::ComputeLocalBlob(){
j = cubeList(1,c);
k = cubeList(2,c);
label=GetCubeLabel(i,j,k);
if (!(label < nblobs_global)) ERROR("common/TwoPhase.h (ComputeBlobLocal): Error in blob labeling algorithm");
n_nw_pts=n_ns_pts=n_ws_pts=n_nws_pts=n_local_sol_pts=n_local_nws_pts=0;
n_nw_tris=n_ns_tris=n_ws_tris=n_nws_seg=n_local_sol_tris=0;

View File

@ -3,6 +3,7 @@ INSTALL_LBPM_EXE( lb2_Color_wia_mpi )
INSTALL_LBPM_EXE( lbpm_color_simulator )
INSTALL_LBPM_EXE( lbpm_sphere_pp )
INSTALL_LBPM_EXE( lbpm_segmented_pp )
INSTALL_LBPM_EXE( lbpm_segmented_decomp )
INSTALL_LBPM_EXE( lbpm_disc_pp )
INSTALL_LBPM_EXE( lbpm_BlobAnalysis )
INSTALL_LBPM_EXE( TestBubble )

View File

@ -26,6 +26,35 @@ void readRankData( int proc, int nx, int ny, int nz, DoubleArray& Phase, DoubleA
ReadBinaryFile(file1, Phase.get(), nx*ny*nz);
ReadBinaryFile(file2, SignDist.get(), nx*ny*nz);
}
inline void WriteBlobs(TwoPhase Averages){
printf("Writing the blob list \n");
FILE *BLOBLOG;
BLOBLOG=fopen("blobs.tcat","w");
fprintf(BLOBLOG,"%.5g %.5g %.5g\n",Averages.vol_w_global,Averages.paw_global,Averages.aws_global);
for (int b=0; b<(int)Averages.BlobAverages.size(1); b++){
if (Averages.BlobAverages(0,b) > 0.0){
double Vn,pn,awn,ans,Jwn,Kwn,lwns,cwns;
Vn = Averages.BlobAverages(1,b);
pn = Averages.BlobAverages(2,b);
awn = Averages.BlobAverages(3,b);
ans = Averages.BlobAverages(4,b);
Jwn = Averages.BlobAverages(5,b);
Kwn = Averages.BlobAverages(6,b);
lwns = Averages.BlobAverages(7,b);
cwns = Averages.BlobAverages(8,b);
fprintf(BLOBLOG,"%.5g ", Vn); //Vn
fprintf(BLOBLOG,"%.5g ", pn); //pn
fprintf(BLOBLOG,"%.5g ", awn); //awn
fprintf(BLOBLOG,"%.5g ", ans); //ans
fprintf(BLOBLOG,"%.5g ", Jwn); //Jwn
fprintf(BLOBLOG,"%.5g ", Kwn); //Kwn
fprintf(BLOBLOG,"%.5g ", lwns); //lwns
fprintf(BLOBLOG,"%.5g\n",cwns); //cwns
}
}
fclose(BLOBLOG);
}
inline void WriteBlobStates(TwoPhase TCAT, double D, double porosity){
int a;
@ -311,36 +340,8 @@ int main(int argc, char **argv)
if (rank==0) printf("Sorting blobs by volume \n");
Averages.SortBlobs();
FILE *BLOBLOG;
if (rank==0){
printf("Writing the blob list \n");
BLOBLOG=fopen("blobs.tcat","w");
// printf("Reduced blob %i \n",b);
fprintf(BLOBLOG,"%.5g %.5g %.5g\n",Averages.vol_w_global,Averages.paw_global,Averages.aws_global);
for (int b=0; b<dimy; b++){
if (Averages.BlobAverages(0,b) > 0.0){
double Vn,pn,awn,ans,Jwn,Kwn,lwns,cwns;
Vn = Averages.BlobAverages(1,b);
pn = Averages.BlobAverages(2,b);
awn = Averages.BlobAverages(3,b);
ans = Averages.BlobAverages(4,b);
Jwn = Averages.BlobAverages(5,b);
Kwn = Averages.BlobAverages(6,b);
lwns = Averages.BlobAverages(7,b);
cwns = Averages.BlobAverages(8,b);
fprintf(BLOBLOG,"%.5g ", Vn); //Vn
fprintf(BLOBLOG,"%.5g ", pn); //pn
fprintf(BLOBLOG,"%.5g ", awn); //awn
fprintf(BLOBLOG,"%.5g ", ans); //ans
fprintf(BLOBLOG,"%.5g ", Jwn); //Jwn
fprintf(BLOBLOG,"%.5g ", Kwn); //Kwn
fprintf(BLOBLOG,"%.5g ", lwns); //lwns
fprintf(BLOBLOG,"%.5g\n",cwns); //cwns
}
}
fclose(BLOBLOG);
WriteBlobs(Averages);
}
if (rank==0) {

View File

@ -0,0 +1,237 @@
/*
* Pre-processor to generate signed distance function from segmented data
* segmented data should be stored in a raw binary file as 1-byte integer (type char)
* will output distance functions for phases
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <iostream>
#include <fstream>
#include <sstream>
#include <Array.h>
#include <Domain.h>
int main(int argc, char **argv)
{
// Initialize MPI
int rank, nprocs;
MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
MPI_Comm_size(MPI_COMM_WORLD,&nprocs);
//.......................................................................
// Reading the domain information file
//.......................................................................
int nprocx, nprocy, nprocz, nx, ny, nz, nspheres;
double Lx, Ly, Lz;
int Nx,Ny,Nz;
int i,j,k,n;
int BC=0;
char Filename[40];
int xStart,yStart,zStart;
// char fluidValue,solidValue;
std::vector<char> solidValues;
std::vector<char> nwpValues;
std::string line;
if (rank==0){
ifstream domain("Domain.in");
domain >> nprocx;
domain >> nprocy;
domain >> nprocz;
domain >> nx;
domain >> ny;
domain >> nz;
domain >> nspheres;
domain >> Lx;
domain >> Ly;
domain >> Lz;
ifstream image("Segmented.in");
image >> Filename; // Name of data file containing segmented data
image >> Nx; // size of the binary file
image >> Ny;
image >> Nz;
image >> xStart; // offset for the starting voxel
image >> yStart;
image >> zStart;
}
MPI_Barrier(MPI_COMM_WORLD);
// Computational domain
MPI_Bcast(&nx,1,MPI_INT,0,MPI_COMM_WORLD);
MPI_Bcast(&ny,1,MPI_INT,0,MPI_COMM_WORLD);
MPI_Bcast(&nz,1,MPI_INT,0,MPI_COMM_WORLD);
MPI_Bcast(&nprocx,1,MPI_INT,0,MPI_COMM_WORLD);
MPI_Bcast(&nprocy,1,MPI_INT,0,MPI_COMM_WORLD);
MPI_Bcast(&nprocz,1,MPI_INT,0,MPI_COMM_WORLD);
MPI_Bcast(&nspheres,1,MPI_INT,0,MPI_COMM_WORLD);
MPI_Bcast(&Lx,1,MPI_DOUBLE,0,MPI_COMM_WORLD);
MPI_Bcast(&Ly,1,MPI_DOUBLE,0,MPI_COMM_WORLD);
MPI_Bcast(&Lz,1,MPI_DOUBLE,0,MPI_COMM_WORLD);
//.................................................
MPI_Barrier(MPI_COMM_WORLD);
// Check that the number of processors >= the number of ranks
if ( rank==0 ) {
printf("Number of MPI ranks required: %i \n", nprocx*nprocy*nprocz);
printf("Number of MPI ranks used: %i \n", nprocs);
printf("Full domain size: %i x %i x %i \n",nx*nprocx,ny*nprocy,nz*nprocz);
}
if ( nprocs < nprocx*nprocy*nprocz ){
ERROR("Insufficient number of processors");
}
char *SegData;
SegData = new char[Nx*Ny*Nz];
// Rank=0 reads the entire segmented data and distributes to worker processes
if (rank==0){
printf("Dimensions of segmented image: %i x %i x %i \n",Nx,Ny,Nz);
FILE *SEGDAT = fopen(Filename,"rb");
if (SEGDAT==NULL) ERROR("Error reading segmented data");
fread(SegData,1,Nx*Ny*Nz,SEGDAT);
fclose(SEGDAT);
printf("Read segmented data from %s \n",Filename);
}
MPI_Barrier(MPI_COMM_WORLD);
// Get the rank info
int N = (nx+2)*(ny+2)*(nz+2);
Domain Dm(nx,ny,nz,rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BC);
for (k=0;k<nz+2;k++){
for (j=0;j<ny+2;j++){
for (i=0;i<nx+2;i++){
n = k*(nx+2)*(ny+2)+j*(nx+2)+i;
Dm.id[n] = 1;
}
}
}
Dm.CommInit(MPI_COMM_WORLD);
// Set up the sub-domains
if (rank==0){
printf("Distributing subdomains across %i processors \n",nprocs);
printf("Process grid: %i x %i x %i \n",Dm.nprocx,Dm.nprocy,Dm.nprocz);
printf("Subdomain size: %i \n",N);
char *tmp;
tmp = new char[N];
for (int kp=0; kp<nprocz; kp++){
for (int jp=0; jp<nprocy; jp++){
for (int ip=0; ip<nprocx; ip++){
// rank of the process that gets this subdomain
int rnk = kp*Dm.nprocx*Dm.nprocy + jp*Dm.nprocx + ip;
// Pack and send the subdomain for rnk
for (k=0;k<nz+2;k++){
for (j=0;j<ny+2;j++){
for (i=0;i<nx+2;i++){
int x = xStart + ip*nx + i-1;
int y = yStart + jp*ny + j-1;
int z = zStart + kp*nz + k-1;
int nlocal = k*(nx+2)*(ny+2) + j*(nx+2) + i;
int nglobal = z*Nx*Ny+y*Nx+x;
tmp[nlocal] = SegData[nglobal];
}
}
}
if (rnk==0){
for (k=0;k<nz+2;k++){
for (j=0;j<ny+2;j++){
for (i=0;i<nx+2;i++){
int nlocal = k*(nx+2)*(ny+2) + j*(nx+2) + i;
Dm.id[nlocal] = tmp[nlocal];
}
}
}
}
else{
printf("Sending data to process %i \n", rnk);
MPI_Send(tmp,N,MPI_CHAR,rnk,15,MPI_COMM_WORLD);
}
}
}
}
}
else{
// Recieve the subdomain from rank = 0
printf("Ready to recieve data %i at process %i \n", N,rank);
MPI_Recv(Dm.id,N,MPI_CHAR,0,15,MPI_COMM_WORLD,MPI_STATUS_IGNORE);
}
MPI_Barrier(MPI_COMM_WORLD);
nx+=2; ny+=2; nz+=2;
int count = 0;
N=nx*ny*nz;
/* char *id;
id = new char [N];
for (k=0;k<nz;k++){
for (j=0;j<ny;j++){
for (i=0;i<nx;i++){
n = k*nx*ny+j*nx+i;
// Initialize the solid phase
// if (Dm.id[n] == 0) id[n] = 0;
// else id[n] = 1;
}
}
}
DoubleArray Distance(nx,ny,nz);
// Initialize the signed distance function
for (k=0;k<nz;k++){
for (j=0;j<ny;j++){
for (i=0;i<nx;i++){
n=k*nx*ny+j*nx+i;
// Initialize distance to +/- 1
Distance(i,j,k) = 1.0*id[n]-0.5;
}
}
}
*/
// if (rank==0) printf("Nx = %i \n",(int)Distance.size(0));
// if (rank==0) printf("Ny = %i \n",(int)Distance.size(1));
// if (rank==0) printf("Nz = %i \n",(int)Distance.size(2));
// printf("Initialized! Converting to Signed Distance function \n");
// SSO(Distance,id,Dm,10);
char LocalRankFilename[40];
sprintf(LocalRankFilename,"ID.%05i",rank);
FILE *ID = fopen(LocalRankFilename,"wb");
fwrite(Dm.id,1,N,ID);
// fwrite(Distance.get(),8,Distance.length(),ID);
fclose(ID);
int symrank,sympz;
sympz = 2*nprocz - Dm.kproc -1;
symrank = sympz*nprocx*nprocy + Dm.jproc*nprocx + Dm.iproc;
// DoubleArray SymDist(nx,ny,nz);
char *symid;
symid = new char [N];
for (k=0;k<nz;k++){
for (j=0;j<ny;j++){
for (i=0;i<nx;i++){
n=k*nx*ny+j*nx+i;
int nsym=(nz-k-1)*nx*ny+j*nx+i;
symid[nsym] = Dm.id[n];
//SymDist(i,j,nz-k-1)=Distance(i,j,k);
}
}
}
sprintf(LocalRankFilename,"ID.%05i",symrank);
FILE *SYMID = fopen(LocalRankFilename,"wb");
// fwrite(SymDist.get(),8,SymDist.length(),SYMDIST);
fwrite(symid,1,N,SYMID);
fclose(SYMID);
MPI_Barrier(MPI_COMM_WORLD);
MPI_Finalize();
return 0;
}

View File

@ -13,6 +13,37 @@
#include <sstream>
#include <Array.h>
#include <Domain.h>
#include <TwoPhase.h>
inline void WriteBlobs(TwoPhase Averages){
printf("Writing the blob list \n");
FILE *BLOBLOG;
BLOBLOG=fopen("blobs.tcat","w");
fprintf(BLOBLOG,"%.5g %.5g %.5g\n",Averages.vol_w_global,Averages.paw_global,Averages.aws_global);
for (int b=0; b<(int)Averages.BlobAverages.size(1); b++){
if (Averages.BlobAverages(0,b) > 0.0){
double Vn,pn,awn,ans,Jwn,Kwn,lwns,cwns;
Vn = Averages.BlobAverages(1,b);
pn = Averages.BlobAverages(2,b);
awn = Averages.BlobAverages(3,b);
ans = Averages.BlobAverages(4,b);
Jwn = Averages.BlobAverages(5,b);
Kwn = Averages.BlobAverages(6,b);
lwns = Averages.BlobAverages(7,b);
cwns = Averages.BlobAverages(8,b);
fprintf(BLOBLOG,"%.5g ", Vn); //Vn
fprintf(BLOBLOG,"%.5g ", pn); //pn
fprintf(BLOBLOG,"%.5g ", awn); //awn
fprintf(BLOBLOG,"%.5g ", ans); //ans
fprintf(BLOBLOG,"%.5g ", Jwn); //Jwn
fprintf(BLOBLOG,"%.5g ", Kwn); //Kwn
fprintf(BLOBLOG,"%.5g ", lwns); //lwns
fprintf(BLOBLOG,"%.5g\n",cwns); //cwns
}
}
fclose(BLOBLOG);
}
int main(int argc, char **argv)
{
@ -60,19 +91,6 @@ int main(int argc, char **argv)
image >> yStart;
image >> zStart;
getline(image,line);
std::istringstream solidLine(line);
while (solidLine >> n) solidValues.push_back(n);
printf("Read %i solid values \n",solidValues.size());
getline(image,line);
std::istringstream nwpLine(line);
while (nwpLine >> n) nwpValues.push_back(n);
printf("Read %i nwp values \n",nwpValues.size());
// image >> solidValue; // value assigned to the solid phase
// image >> fluidValue; // value assigned to the non-wetting phase
}
MPI_Barrier(MPI_COMM_WORLD);
// Computational domain
@ -98,61 +116,18 @@ int main(int argc, char **argv)
if ( nprocs < nprocx*nprocy*nprocz ){
ERROR("Insufficient number of processors");
}
char *SegData;
SegData = new char[Nx*Ny*Nz];
// Rank=0 reads the entire segmented data and distributes to worker processes
if (rank==0){
FILE *SEGDAT = fopen(Filename,"rb");
if (SEGDAT==NULL) ERROR("Error reading segmented data");
fread(SegData,1,Nx*Ny*Nz,SEGDAT);
fclose(SEGDAT);
printf("Read segmented data from %s \n",Filename);
}
MPI_Barrier(MPI_COMM_WORLD);
// Get the rank info
char LocalRankFilename[40];
int N = (nx+2)*(ny+2)*(nz+2);
Domain Dm(nx,ny,nz,rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BC);
for (k=0;k<nz;k++){
for (j=0;j<ny;j++){
for (i=0;i<nx;i++){
n = k*nx*ny+j*nx+i;
Dm.id[n] = 1;
}
}
}
// Set up the sub-domains
if (rank==0){
char *tmp;
tmp = new char[(nx+2)*(ny+2)*(nz+2)];
for (int kp=0; kp<Dm.kproc; kp++){
for (int jp=0; jp<Dm.jproc; jp++){
for (int ip=0; ip<Dm.iproc; ip++){
// rank of the process that gets this subdomain
int rnk = kp*Dm.nprocx*Dm.nprocy + jp*Dm.nprocx + ip;
// Pack and send the subdomain for rnk
for (k=0;k<nz+2;k++){
for (j=0;j<ny+2;j++){
for (i=0;i<nx+2;j++){
int nlocal = k*(nx+2)*(ny+2) + j*(nx+2) + i;
int nglobal = zStart*Nx*Ny + yStart*Nx + xStart +
kp*nprocx*nprocy*nx*ny*nz+ jp*nprocx*nx*ny*nz
+ ip*nx*ny*nz + k*nx*ny + j*nx + i;
tmp[nlocal] = SegData[nglobal];
}
}
}
MPI_Send(&tmp,N,MPI_CHAR,rnk,15,MPI_COMM_WORLD);
}
}
}
}
else{
// Recieve the subdomain from rank = 0
MPI_Recv(&Dm.id,N,MPI_CHAR,0,15,MPI_COMM_WORLD,MPI_STATUS_IGNORE);
}
MPI_Barrier(MPI_COMM_WORLD);
Dm.CommInit(MPI_COMM_WORLD);
// Read the phase ID
sprintf(LocalRankFilename,"ID.%05i",rank);
FILE *ID = fopen(LocalRankFilename,"rb");
fread(Dm.id,1,N,ID);
fclose(ID);
// Initialize the domain and communication
Dm.CommInit(MPI_COMM_WORLD);
nx+=2; ny+=2; nz+=2;
int count = 0;
@ -160,63 +135,179 @@ int main(int argc, char **argv)
char *id;
id = new char [N];
for (k=1;k<nz-1;k++){
for (j=1;j<ny-1;j++){
for (i=1;i<nx-1;i++){
TwoPhase Averages(Dm);
// DoubleArray Distance(nx,ny,nz);
// DoubleArray Phase(nx,ny,nz);
// Solve for the position of the solid phase
for (k=0;k<nz;k++){
for (j=0;j<ny;j++){
for (i=0;i<nx;i++){
n = k*nx*ny+j*nx+i;
bool solid=false;
for (int idx=0; idx<solidValues.size(); idx++){
if (Dm.id[n] == solidValues[idx]) solid=true;
}
if (solid==true) id[n] = 0;
else id[n] = 1;
// Initialize the solid phase
if (Dm.id[n] == 0) id[n] = 0;
else id[n] = 1;
}
}
}
DoubleArray Distance(nx,ny,nz);
// Initialize the signed distance function
for (k=0;k<nz;k++){
for (j=0;j<ny;j++){
for (i=0;i<nx;i++){
n=k*nx*ny+j*nx+i;
// Initialize distance to +/- 1
Distance(i,j,k) = 1.0*id[n]-0.5;
Averages.SDs(i,j,k) = 1.0*id[n]-0.5;
}
}
}
if (rank==0) printf("Nx = %i \n",(int)Distance.size(0));
if (rank==0) printf("Ny = %i \n",(int)Distance.size(1));
if (rank==0) printf("Nz = %i \n",(int)Distance.size(2));
if (rank==0) printf("Initialized solid phase -- Converting to Signed Distance function \n");
SSO(Averages.SDs,id,Dm,10);
printf("Initialized! Converting to Signed Distance function \n");
SSO(Distance,id,Dm,10);
char LocalRankFilename[40];
sprintf(LocalRankFilename,"Dist.%05i",rank);
sprintf(LocalRankFilename,"SignDist.%05i",rank);
FILE *DIST = fopen(LocalRankFilename,"wb");
fwrite(Distance.get(),8,Distance.length(),DIST);
fwrite(Averages.SDs.get(),8,Averages.SDs.length(),DIST);
fclose(DIST);
int symrank,sympz;
sympz = 2*nprocz - Dm.kproc;
symrank = sympz*nprocx*nprocy + Dm.jproc*nprocx + Dm.iproc;
DoubleArray SymDist(nx,ny,nz);
// Solve for the position of the non-wetting phase
for (k=0;k<nz;k++){
for (j=0;j<ny;j++){
for (i=0;i<nx;i++){
SymDist(i,j,nz-k-1)=Distance(i,j,k);
n = k*nx*ny+j*nx+i;
// Initialize the solid phase
if (Dm.id[n] == 2) id[n] = 1;
else id[n] = 0;
}
}
}
// Initialize the signed distance function
for (k=0;k<nz;k++){
for (j=0;j<ny;j++){
for (i=0;i<nx;i++){
n=k*nx*ny+j*nx+i;
// Initialize distance to +/- 1
Averages.Phase(i,j,k) = 1.0*id[n]-0.5;
}
}
}
if (rank==0) printf("Initialized non-wetting phase -- Converting to Signed Distance function \n");
SSO(Averages.Phase,id,Dm,10);
sprintf(LocalRankFilename,"Phase.%05i",rank);
FILE *PHASE = fopen(LocalRankFilename,"wb");
fwrite(Averages.Phase.get(),8,Averages.Phase.length(),PHASE);
fclose(PHASE);
for (k=0;k<nz;k++){
for (j=0;j<ny;j++){
for (i=0;i<nx;i++){
n=k*nx*ny+j*nx+i;
Averages.Phase(i,j,k) += 1.0;
if (Averages.SDs(i,j,k) > 0.0){
if (Averages.Phase(i,j,k) > 0.0){
Dm.id[n] = 2;
}
else{
Dm.id[n] = 1;
}
}
else{
Dm.id[n] = 0;
}
// Initialize distance to +/- 1
Averages.SDn(i,j,k) = Averages.Phase(i,j,k);
Averages.Phase(i,j,k) = Averages.SDn(i,j,k);
Averages.Phase_tplus(i,j,k) = Averages.SDn(i,j,k);
Averages.Phase_tminus(i,j,k) = Averages.SDn(i,j,k);
Averages.DelPhi(i,j,k) = 0.0;
Averages.Press(i,j,k) = 0.0;
Averages.Vel_x(i,j,k) = 0.0;
Averages.Vel_y(i,j,k) = 0.0;
Averages.Vel_z(i,j,k) = 0.0;
}
}
}
/* double vF,vS;
vF = vS = 0.0;
double beta = 0.95;
if (rank==0) printf("initializing the system \n");
Averages.SetupCubes(Dm);
Averages.UpdateSolid();
Averages.Initialize();
Averages.UpdateMeshValues();
Dm.CommunicateMeshHalo(Averages.Phase);
// if (rank==0) printf("computing blobs \n");
// int nblobs_global = ComputeGlobalBlobIDs(Dm.Nx-2,Dm.Ny-2,Dm.Nz-2,Dm.rank_info,
// Averages.Phase,Averages.SDs,vF,vS,Averages.BlobLabel);
// if (Dm.rank==0) printf("Number of blobs is %i \n",nblobs_global);
if (rank==0) printf("computing local averages \n");
Averages.ComputeLocalBlob();
if (rank==0) printf("reducing averages \n");
Averages.Reduce();
if (rank==0) printf("Writing blobs \n");
// Write the local blob ids
sprintf(LocalRankFilename,"BlobLabel.%05i",rank);
FILE *BLOBLOCAL = fopen(LocalRankFilename,"wb");
fwrite(Averages.BlobLabel.get(),4,Averages.BlobLabel.length(),BLOBLOCAL);
fclose(BLOBLOCAL);
printf("Wrote BlobLabel.%05i \n",rank);
if (rank==0) printf("Sorting averages \n");
// Blobs.Set(Averages.BlobAverages.NBLOBS);
int dimx = (int)Averages.BlobAverages.size(0);
int dimy = (int)Averages.BlobAverages.size(1);
int TotalBlobInfoSize=dimx*dimy;
// BlobContainer Blobs;
DoubleArray RecvBuffer(dimx);
// MPI_Allreduce(&Averages.BlobAverages.get(),&Blobs.get(),1,MPI_DOUBLE,MPI_SUM,Dm.Comm);
MPI_Barrier(MPI_COMM_WORLD);
if (rank==0) printf("Number of components is %i \n",dimy);
for (int b=0; b<dimy; b++){
MPI_Allreduce(&Averages.BlobAverages(0,b),&RecvBuffer(0),dimx,MPI_DOUBLE,MPI_SUM,MPI_COMM_WORLD);
for (int idx=0; idx<dimx-1; idx++) Averages.BlobAverages(idx,b)=RecvBuffer(idx);
MPI_Barrier(MPI_COMM_WORLD);
if (Averages.BlobAverages(0,b) > 0.0){
double Vn,pn,awn,ans,Jwn,Kwn,lwns,cwns,trawn,trJwn;
Vn = Averages.BlobAverages(1,b);
pn = Averages.BlobAverages(2,b)/Averages.BlobAverages(0,b);
awn = Averages.BlobAverages(3,b);
ans = Averages.BlobAverages(4,b);
if (awn != 0.0){
Jwn = Averages.BlobAverages(5,b)/Averages.BlobAverages(3,b);
Kwn = Averages.BlobAverages(6,b)/Averages.BlobAverages(3,b);
}
else Jwn=Kwn=0.0;
trawn = Averages.BlobAverages(12,b);
if (trawn != 0.0){
trJwn = Averages.BlobAverages(13,b)/trawn;
}
else trJwn=0.0;
lwns = Averages.BlobAverages(7,b);
if (lwns != 0.0) cwns = Averages.BlobAverages(8,b)/Averages.BlobAverages(7,b);
else cwns=0.0;
Averages.BlobAverages(2,b) = pn;
Averages.BlobAverages(5,b) = trJwn;
Averages.BlobAverages(6,b) = Kwn;
Averages.BlobAverages(8,b) = cwns;
// Averages.BlobAverages(13,b) = trJwn;
}
}
sprintf(LocalRankFilename,"Dist.%05i",symrank);
FILE *SYMDIST = fopen(LocalRankFilename,"wb");
fwrite(SymDist.get(),8,SymDist.length(),SYMDIST);
fclose(SYMDIST);
if (rank==0) printf("Sorting blobs by volume \n");
Averages.SortBlobs();
if (rank==0) WriteBlobs(Averages);
*/
MPI_Barrier(MPI_COMM_WORLD);
MPI_Finalize();
return 0;