working on DECL isosurface tools

This commit is contained in:
James E McClure 2018-07-30 16:51:37 -04:00
parent 39d7fa0430
commit db1fe9e327
3 changed files with 649 additions and 636 deletions

View File

@ -33,55 +33,64 @@ Point Vertex::coords(unsigned long int idx){
return P;
}
Halfedge::Halfedge(){
}
Halfedge::~Halfedge(){
}
unsigned long int Halfedge::v1(unsigned long int edge){
return HalfEdge(0,edge);
return data(0,edge);
}
unsigned long int Halfedge::v2(unsigned long int edge){
return HalfEdge(1,edge);
return data(1,edge);
}
unsigned long int Halfedge::face(unsigned long int edge){
return HalfEdge(2,edge);
return data(2,edge);
}
unsigned long int Halfedge::twin(unsigned long int edge){
return HalfEdge(3,edge);
return data(3,edge);
}
unsigned long int Halfedge::prev(unsigned long int edge){
return HalfEdge(4,edge);
return data(4,edge);
}
unsigned long int Halfedge::next(unsigned long int edge){
return HalfEdge(5,edge);
return data(5,edge);
}
DECL::DECL(){
}
DECL::~DECL(){
}
void DECL::LocalIsosurface(const DoubleArray A, double value, int i, int j, int k){
Point P,Q;
Point PlaceHolder;
double temp;
Point C0,C1,C2,C3,C4,C5,C6,C7;
int TriangleCount;
int NewVertexCount;
int NewVertexCount;
int CubeIndex;
int nTris, nVert;
Point VertexList[12];
Point NewVertexList[12];
int LocalRemap[12];
DTMutableList<Point> cellvertices = DTMutableList<Point>(20);
IntArray Triangles = IntArray(3,20);
// Values from array 'A' at the cube corners
double CubeValues[8];
int Nx = A.size(0);
int Ny = A.size(1);
int Nz = A.size(2);
// Points corresponding to cube corners
C0.x = 0.0; C0.y = 0.0; C0.z = 0.0;
C1.x = 1.0; C1.y = 0.0; C1.z = 0.0;
@ -92,188 +101,186 @@ void DECL::LocalIsosurface(const DoubleArray A, double value, int i, int j, int
C6.x = 1.0; C6.y = 1.0; C6.z = 1.0;
C7.x = 0.0; C7.y = 1.0; C7.z = 1.0;
CubeValues[0] = A(i,j,k) - value;
CubeValues[1] = A(i+1,j,k) - value;
CubeValues[2] = A(i+1,j+1,k) - value;
CubeValues[3] = A(i,j+1,k) - value;
CubeValues[4] = A(i,j,k+1) - value;
CubeValues[5] = A(i+1,j,k+1) - value;
CubeValues[6] = A(i+1,j+1,k+1) - value;
CubeValues[7] = A(i,j+1,k+1) -value;
CubeValues[0] = A(i,j,k) - value;
CubeValues[1] = A(i+1,j,k) - value;
CubeValues[2] = A(i+1,j+1,k) - value;
CubeValues[3] = A(i,j+1,k) - value;
CubeValues[4] = A(i,j,k+1) - value;
CubeValues[5] = A(i+1,j,k+1) - value;
CubeValues[6] = A(i+1,j+1,k+1) - value;
CubeValues[7] = A(i,j+1,k+1) -value;
//Determine the index into the edge table which
//tells us which vertices are inside of the surface
CubeIndex = 0;
if (CubeValues[0] < 0.0f) CubeIndex |= 1;
if (CubeValues[1] < 0.0f) CubeIndex |= 2;
if (CubeValues[2] < 0.0f) CubeIndex |= 4;
if (CubeValues[3] < 0.0f) CubeIndex |= 8;
if (CubeValues[4] < 0.0f) CubeIndex |= 16;
if (CubeValues[5] < 0.0f) CubeIndex |= 32;
if (CubeValues[6] < 0.0f) CubeIndex |= 64;
if (CubeValues[7] < 0.0f) CubeIndex |= 128;
//Determine the index into the edge table which
//tells us which vertices are inside of the surface
CubeIndex = 0;
if (CubeValues[0] < 0.0f) CubeIndex |= 1;
if (CubeValues[1] < 0.0f) CubeIndex |= 2;
if (CubeValues[2] < 0.0f) CubeIndex |= 4;
if (CubeValues[3] < 0.0f) CubeIndex |= 8;
if (CubeValues[4] < 0.0f) CubeIndex |= 16;
if (CubeValues[5] < 0.0f) CubeIndex |= 32;
if (CubeValues[6] < 0.0f) CubeIndex |= 64;
if (CubeValues[7] < 0.0f) CubeIndex |= 128;
//Find the vertices where the surface intersects the cube
if (edgeTable[CubeIndex] & 1){
P = VertexInterp(C0,C1,CubeValues[0],CubeValues[1]);
VertexList[0] = P;
Q = C0;
}
if (edgeTable[CubeIndex] & 2){
P = VertexInterp(C1,C2,CubeValues[1],CubeValues[2]);
VertexList[1] = P;
Q = C1;
}
if (edgeTable[CubeIndex] & 4){
P = VertexInterp(C2,C3,CubeValues[2],CubeValues[3]);
VertexList[2] = P;
Q = C2;
}
if (edgeTable[CubeIndex] & 8){
P = VertexInterp(C3,C0,CubeValues[3],CubeValues[0]);
VertexList[3] = P;
Q = C3;
}
if (edgeTable[CubeIndex] & 16){
P = VertexInterp(C4,C5,CubeValues[4],CubeValues[5]);
VertexList[4] = P;
Q = C4;
}
if (edgeTable[CubeIndex] & 32){
P = VertexInterp(C5,C6,CubeValues[5],CubeValues[6]);
VertexList[5] = P;
Q = C5;
}
if (edgeTable[CubeIndex] & 64){
P = VertexInterp(C6,C7,CubeValues[6],CubeValues[7]);
VertexList[6] = P;
Q = C6;
}
if (edgeTable[CubeIndex] & 128){
P = VertexInterp(C7,C4,CubeValues[7],CubeValues[4]);
VertexList[7] = P;
Q = C7;
}
if (edgeTable[CubeIndex] & 256){
P = VertexInterp(C0,C4,CubeValues[0],CubeValues[4]);
VertexList[8] = P;
Q = C0;
}
if (edgeTable[CubeIndex] & 512){
P = VertexInterp(C1,C5,CubeValues[1],CubeValues[5]);
VertexList[9] = P;
Q = C1;
}
if (edgeTable[CubeIndex] & 1024){
P = VertexInterp(C2,C6,CubeValues[2],CubeValues[6]);
VertexList[10] = P;
Q = C2;
}
if (edgeTable[CubeIndex] & 2048){
P = VertexInterp(C3,C7,CubeValues[3],CubeValues[7]);
VertexList[11] = P;
Q = C3;
}
//Find the vertices where the surface intersects the cube
if (edgeTable[CubeIndex] & 1){
P = VertexInterp(C0,C1,CubeValues[0],CubeValues[1]);
VertexList[0] = P;
Q = C0;
}
if (edgeTable[CubeIndex] & 2){
P = VertexInterp(C1,C2,CubeValues[1],CubeValues[2]);
VertexList[1] = P;
Q = C1;
}
if (edgeTable[CubeIndex] & 4){
P = VertexInterp(C2,C3,CubeValues[2],CubeValues[3]);
VertexList[2] = P;
Q = C2;
}
if (edgeTable[CubeIndex] & 8){
P = VertexInterp(C3,C0,CubeValues[3],CubeValues[0]);
VertexList[3] = P;
Q = C3;
}
if (edgeTable[CubeIndex] & 16){
P = VertexInterp(C4,C5,CubeValues[4],CubeValues[5]);
VertexList[4] = P;
Q = C4;
}
if (edgeTable[CubeIndex] & 32){
P = VertexInterp(C5,C6,CubeValues[5],CubeValues[6]);
VertexList[5] = P;
Q = C5;
}
if (edgeTable[CubeIndex] & 64){
P = VertexInterp(C6,C7,CubeValues[6],CubeValues[7]);
VertexList[6] = P;
Q = C6;
}
if (edgeTable[CubeIndex] & 128){
P = VertexInterp(C7,C4,CubeValues[7],CubeValues[4]);
VertexList[7] = P;
Q = C7;
}
if (edgeTable[CubeIndex] & 256){
P = VertexInterp(C0,C4,CubeValues[0],CubeValues[4]);
VertexList[8] = P;
Q = C0;
}
if (edgeTable[CubeIndex] & 512){
P = VertexInterp(C1,C5,CubeValues[1],CubeValues[5]);
VertexList[9] = P;
Q = C1;
}
if (edgeTable[CubeIndex] & 1024){
P = VertexInterp(C2,C6,CubeValues[2],CubeValues[6]);
VertexList[10] = P;
Q = C2;
}
if (edgeTable[CubeIndex] & 2048){
P = VertexInterp(C3,C7,CubeValues[3],CubeValues[7]);
VertexList[11] = P;
Q = C3;
}
NewVertexCount=0;
for (int idx=0;idx<12;idx++)
LocalRemap[idx] = -1;
NewVertexCount=0;
for (int idx=0;idx<12;idx++)
LocalRemap[idx] = -1;
for (int idx=0;triTable[CubeIndex][idx]!=-1;idx++)
{
if(LocalRemap[triTable[CubeIndex][idx]] == -1)
{
NewVertexList[NewVertexCount] = VertexList[triTable[CubeIndex][idx]];
LocalRemap[triTable[CubeIndex][idx]] = NewVertexCount;
NewVertexCount++;
}
}
for (int idx=0;triTable[CubeIndex][idx]!=-1;idx++)
{
if(LocalRemap[triTable[CubeIndex][idx]] == -1)
{
NewVertexList[NewVertexCount] = VertexList[triTable[CubeIndex][idx]];
LocalRemap[triTable[CubeIndex][idx]] = NewVertexCount;
NewVertexCount++;
}
}
for (int idx=0;idx<NewVertexCount;idx++) {
P = NewVertexList[idx];
//P.x += i;
//P.y += j;
//P.z += k;
cellvertices(idx) = P;
}
nVert = NewVertexCount;
for (int idx=0;idx<NewVertexCount;idx++) {
P = NewVertexList[idx];
//P.x += i;
//P.y += j;
//P.z += k;
cellvertices(idx) = P;
}
nVert = NewVertexCount;
TriangleCount = 0;
for (int idx=0;triTable[CubeIndex][idx]!=-1;idx+=3) {
Triangles(0,TriangleCount) = LocalRemap[triTable[CubeIndex][idx+0]];
Triangles(1,TriangleCount) = LocalRemap[triTable[CubeIndex][idx+1]];
Triangles(2,TriangleCount) = LocalRemap[triTable[CubeIndex][idx+2]];
TriangleCount++;
}
nTris = TriangleCount;
// Now add the local values to the DECL data structure
IntArray HalfEdge(6,nTris*3);
DoubleArray EdgeAngles(nTris*3);
int idx_edge=0;
for (int idx=0; idx<TriangleCount; idx++){
int V1 = Triangles(0,idx);
int V2 = Triangles(1,idx);
int V3 = Triangles(2,idx);
// first edge: V1->V2
HalfEdge(0,idx_edge) = V1; // first vertex
HalfEdge(1,idx_edge) = V2; // second vertex
HalfEdge(2,idx_edge) = idx; // triangle
HalfEdge(3,idx_edge) = -1; // twin
HalfEdge(4,idx_edge) = idx_edge+2; // previous edge
HalfEdge(5,idx_edge) = idx_edge+1; // next edge
idx_edge++;
// second edge: V2->V3
HalfEdge(0,idx_edge) = V2; // first vertex
HalfEdge(1,idx_edge) = V3; // second vertex
HalfEdge(2,idx_edge) = idx; // triangle
HalfEdge(3,idx_edge) = -1; // twin
HalfEdge(4,idx_edge) = idx_edge-1; // previous edge
HalfEdge(5,idx_edge) = idx_edge+1; // next edge
idx_edge++;
// third edge: V3->V1
HalfEdge(0,idx_edge) = V3; // first vertex
HalfEdge(1,idx_edge) = V1; // second vertex
HalfEdge(2,idx_edge) = idx; // triangle
HalfEdge(3,idx_edge) = -1; // twin
HalfEdge(4,idx_edge) = idx_edge-1; // previous edge
HalfEdge(5,idx_edge) = idx_edge-2; // next edge
idx_edge++;
}
int EdgeCount=idx_edge;
for (int idx=0; idx<EdgeCount; idx++){
int V1=HalfEdge(0,idx);
int V2=HalfEdge(1,idx);
// Find all the twins within the cube
for (int jdx=0; idx<EdgeCount; jdx++){
if (HalfEdge(1,jdx) == V1 && HalfEdge(0,jdx) == V2){
// this is the pair
HalfEdge(3,idx) = jdx;
HalfEdge(3,jdx) = idx;
}
if (HalfEdge(1,jdx) == V2 && HalfEdge(0,jdx) == V1 && !(idx==jdx)){
std::printf("WARNING: half edges with identical orientation! \n");
}
}
// Use "ghost" twins if edge is on a cube face
P = cellvertices(V1);
Q = cellvertices(V2);
if (P.x == 0.0 && Q.x == 0.0) HalfEdge(3,idx_edge) = -1; // ghost twin for x=0 face
if (P.x == 1.0 && Q.x == 1.0) HalfEdge(3,idx_edge) = -2; // ghost twin for x=1 face
if (P.y == 0.0 && Q.y == 0.0) HalfEdge(3,idx_edge) = -3; // ghost twin for y=0 face
if (P.y == 1.0 && Q.y == 1.0) HalfEdge(3,idx_edge) = -4; // ghost twin for y=1 face
if (P.z == 0.0 && Q.z == 0.0) HalfEdge(3,idx_edge) = -5; // ghost twin for z=0 face
if (P.z == 1.0 && Q.z == 1.0) HalfEdge(3,idx_edge) = -6; // ghost twin for z=1 face
}
// Map vertices to global coordinates
for (int idx=0;idx<NewVertexCount;idx++) {
P = cellvertices(idx);
P.x += i;
P.y += j;
P.z += k;
cellvertices(idx) = P;
}
TriangleCount = 0;
for (int idx=0;triTable[CubeIndex][idx]!=-1;idx+=3) {
Triangles(0,TriangleCount) = LocalRemap[triTable[CubeIndex][idx+0]];
Triangles(1,TriangleCount) = LocalRemap[triTable[CubeIndex][idx+1]];
Triangles(2,TriangleCount) = LocalRemap[triTable[CubeIndex][idx+2]];
TriangleCount++;
}
nTris = TriangleCount;
// Now add the local values to the DECL data structure
halfedge.data.resize(6,nTris*3);
int idx_edge=0;
for (int idx=0; idx<TriangleCount; idx++){
int V1 = Triangles(0,idx);
int V2 = Triangles(1,idx);
int V3 = Triangles(2,idx);
// first edge: V1->V2
halfedge.data(0,idx_edge) = V1; // first vertex
halfedge.data(1,idx_edge) = V2; // second vertex
halfedge.data(2,idx_edge) = idx; // triangle
halfedge.data(3,idx_edge) = -1; // twin
halfedge.data(4,idx_edge) = idx_edge+2; // previous edge
halfedge.data(5,idx_edge) = idx_edge+1; // next edge
idx_edge++;
// second edge: V2->V3
halfedge.data(0,idx_edge) = V2; // first vertex
halfedge.data(1,idx_edge) = V3; // second vertex
halfedge.data(2,idx_edge) = idx; // triangle
halfedge.data(3,idx_edge) = -1; // twin
halfedge.data(4,idx_edge) = idx_edge-1; // previous edge
halfedge.data(5,idx_edge) = idx_edge+1; // next edge
idx_edge++;
// third edge: V3->V1
halfedge.data(0,idx_edge) = V3; // first vertex
halfedge.data(1,idx_edge) = V1; // second vertex
halfedge.data(2,idx_edge) = idx; // triangle
halfedge.data(3,idx_edge) = -1; // twin
halfedge.data(4,idx_edge) = idx_edge-1; // previous edge
halfedge.data(5,idx_edge) = idx_edge-2; // next edge
idx_edge++;
}
int EdgeCount=idx_edge;
for (int idx=0; idx<EdgeCount; idx++){
int V1=halfedge.data(0,idx);
int V2=halfedge.data(1,idx);
// Find all the twins within the cube
for (int jdx=0; idx<EdgeCount; jdx++){
if (halfedge.data(1,jdx) == V1 && halfedge.data(0,jdx) == V2){
// this is the pair
halfedge.data(3,idx) = jdx;
halfedge.data(3,jdx) = idx;
}
if (halfedge.data(1,jdx) == V2 && halfedge.data(0,jdx) == V1 && !(idx==jdx)){
std::printf("WARNING: half edges with identical orientation! \n");
}
}
// Use "ghost" twins if edge is on a cube face
P = cellvertices(V1);
Q = cellvertices(V2);
if (P.x == 0.0 && Q.x == 0.0) halfedge.data(3,idx_edge) = -1; // ghost twin for x=0 face
if (P.x == 1.0 && Q.x == 1.0) halfedge.data(3,idx_edge) = -2; // ghost twin for x=1 face
if (P.y == 0.0 && Q.y == 0.0) halfedge.data(3,idx_edge) = -3; // ghost twin for y=0 face
if (P.y == 1.0 && Q.y == 1.0) halfedge.data(3,idx_edge) = -4; // ghost twin for y=1 face
if (P.z == 0.0 && Q.z == 0.0) halfedge.data(3,idx_edge) = -5; // ghost twin for z=0 face
if (P.z == 1.0 && Q.z == 1.0) halfedge.data(3,idx_edge) = -6; // ghost twin for z=1 face
}
// Map vertices to global coordinates
for (int idx=0;idx<NewVertexCount;idx++) {
P = cellvertices(idx);
P.x += i;
P.y += j;
P.z += k;
cellvertices(idx) = P;
}
}
Point DECL::TriNormal(int edge)
@ -281,9 +288,15 @@ Point DECL::TriNormal(int edge)
Point P,Q;
double ux,uy,uz,vx,vy,vz;
double nx,ny,nz,len;
if (edge == -1) P.x = 1.0; P.y = 0.0; P.z = 0.0; // x cube face
else if (edge == -2) P.x = 0.0; P.y = 1.0; P.z = 0.0; // y cube face
else if (edge == -3) P.x = 0.0; P.y = 0.0; P.z = 1.0; // z cube face
if (edge == -1){
P.x = 1.0; P.y = 0.0; P.z = 0.0; // x cube face
}
else if (edge == -2){
P.x = 0.0; P.y = 1.0; P.z = 0.0; // y cube face
}
else if (edge == -3){
P.x = 0.0; P.y = 0.0; P.z = 1.0; // z cube face
}
else{
// coordinates for first edge
P = vertex.coords(halfedge.v1(edge));
@ -323,26 +336,26 @@ void Isosurface(DoubleArray &A, const double &v)
Point PlaceHolder;
double temp;
Point C0,C1,C2,C3,C4,C5,C6,C7;
int TriangleCount;
int NewVertexCount;
int NewVertexCount;
int CubeIndex;
int nTris, nVert;
Point VertexList[12];
Point NewVertexList[12];
int LocalRemap[12];
DTMutableList<Point> cellvertices = DTMutableList<Point>(20);
IntArray Triangles = IntArray(3,20);
// Values from array 'A' at the cube corners
double CubeValues[8];
int Nx = A.size(0);
int Ny = A.size(1);
int Nz = A.size(2);
// Points corresponding to cube corners
C0.x = 0.0; C0.y = 0.0; C0.z = 0.0;
C1.x = 1.0; C1.y = 0.0; C1.z = 0.0;
@ -352,7 +365,7 @@ void Isosurface(DoubleArray &A, const double &v)
C5.x = 1.0; C5.y = 0.0; C5.z = 1.0;
C6.x = 1.0; C6.y = 1.0; C6.z = 1.0;
C7.x = 0.0; C7.y = 1.0; C7.z = 1.0;
for (int k=1; k<Nz-1; k++){
for (int j=1; j<Ny-1; j++){
for (int i=1; i<Nx-1; i++){
@ -538,7 +551,7 @@ void Isosurface(DoubleArray &A, const double &v)
int twin=HalfEdge(3,idx_edge);
if (twin == -1) ;
}
// Map vertices to global coordinates
for (int idx=0;idx<NewVertexCount;idx++) {
P = cellvertices(idx);

View File

@ -31,9 +31,9 @@ public:
unsigned long int face(unsigned long int edge);
unsigned long int next(unsigned long int edge);
unsigned long int prev(unsigned long int edge);
Array<unsigned long int> data;
private:
Array<unsigned long int> HalfEdge;
};
// DECL
@ -45,12 +45,12 @@ public:
unsigned long int face();
Vertex vertex;
Halfedge halfedge;
void AddCube(); // need a function to add new faces based on marching cubes surface
void LocalIsosurface(const DoubleArray A, double value, int i, int j, int k);
double origin(int edge);
double EdgeAngle(int edge);
Point TriNormal(int edge);
private:
unsigned long int *face_data;
};

View File

@ -16,23 +16,23 @@
AnalysisType& operator |=(AnalysisType &lhs, AnalysisType rhs)
{
lhs = static_cast<AnalysisType>(
static_cast<std::underlying_type<AnalysisType>::type>(lhs) |
static_cast<std::underlying_type<AnalysisType>::type>(rhs)
);
return lhs;
lhs = static_cast<AnalysisType>(
static_cast<std::underlying_type<AnalysisType>::type>(lhs) |
static_cast<std::underlying_type<AnalysisType>::type>(rhs)
);
return lhs;
}
bool matches( AnalysisType x, AnalysisType y )
{
return static_cast<std::underlying_type<AnalysisType>::type>(x) &
static_cast<std::underlying_type<AnalysisType>::type>(y) != 0;
return static_cast<std::underlying_type<AnalysisType>::type>(x) &
static_cast<std::underlying_type<AnalysisType>::type>(y) != 0;
}
template<class TYPE>
void DeleteArray( const TYPE *p )
{
delete [] p;
delete [] p;
}
@ -40,32 +40,32 @@ void DeleteArray( const TYPE *p )
class WriteRestartWorkItem: public ThreadPool::WorkItemRet<void>
{
public:
WriteRestartWorkItem( const char* filename_, std::shared_ptr<double> cphi_, std::shared_ptr<double> cfq_, int N_ ):
filename(filename_), cphi(cphi_), cfq(cfq_), N(N_) {}
virtual void run() {
PROFILE_START("Save Checkpoint",1);
double value;
ofstream File(filename,ios::binary);
for (int n=0; n<N; n++){
// Write the two density values
value = cphi.get()[n];
File.write((char*) &value, sizeof(value));
// Write the distributions
for (int q=0; q<19; q++){
value = cfq.get()[q*N+n];
File.write((char*) &value, sizeof(value));
}
}
File.close();
WriteRestartWorkItem( const char* filename_, std::shared_ptr<double> cphi_, std::shared_ptr<double> cfq_, int N_ ):
filename(filename_), cphi(cphi_), cfq(cfq_), N(N_) {}
virtual void run() {
PROFILE_START("Save Checkpoint",1);
double value;
ofstream File(filename,ios::binary);
for (int n=0; n<N; n++){
// Write the two density values
value = cphi.get()[n];
File.write((char*) &value, sizeof(value));
// Write the distributions
for (int q=0; q<19; q++){
value = cfq.get()[q*N+n];
File.write((char*) &value, sizeof(value));
}
}
File.close();
PROFILE_STOP("Save Checkpoint",1);
};
};
private:
WriteRestartWorkItem();
const char* filename;
std::shared_ptr<double> cfq,cphi;
// const DoubleArray& phase;
//const DoubleArray& dist;
const int N;
WriteRestartWorkItem();
const char* filename;
std::shared_ptr<double> cfq,cphi;
// const DoubleArray& phase;
//const DoubleArray& dist;
const int N;
};
@ -74,78 +74,78 @@ static const std::string id_map_filename = "lbpm_id_map.txt";
class BlobIdentificationWorkItem1: public ThreadPool::WorkItemRet<void>
{
public:
BlobIdentificationWorkItem1( int timestep_, int Nx_, int Ny_, int Nz_, const RankInfoStruct& rank_info_,
std::shared_ptr<const DoubleArray> phase_, const DoubleArray& dist_,
BlobIDstruct last_id_, BlobIDstruct new_index_, BlobIDstruct new_id_, BlobIDList new_list_, runAnalysis::commWrapper&& comm_ ):
timestep(timestep_), Nx(Nx_), Ny(Ny_), Nz(Nz_), rank_info(rank_info_),
phase(phase_), dist(dist_), last_id(last_id_), new_index(new_index_), new_id(new_id_), new_list(new_list_), comm(std::move(comm_))
{
}
~BlobIdentificationWorkItem1() { }
virtual void run() {
// Compute the global blob id and compare to the previous version
PROFILE_START("Identify blobs",1);
double vF = 0.0;
double vS = -1.0; // one voxel buffer region around solid
IntArray& ids = new_index->second;
new_index->first = ComputeGlobalBlobIDs(Nx-2,Ny-2,Nz-2,rank_info,*phase,dist,vF,vS,ids,comm.comm);
PROFILE_STOP("Identify blobs",1);
}
BlobIdentificationWorkItem1( int timestep_, int Nx_, int Ny_, int Nz_, const RankInfoStruct& rank_info_,
std::shared_ptr<const DoubleArray> phase_, const DoubleArray& dist_,
BlobIDstruct last_id_, BlobIDstruct new_index_, BlobIDstruct new_id_, BlobIDList new_list_, runAnalysis::commWrapper&& comm_ ):
timestep(timestep_), Nx(Nx_), Ny(Ny_), Nz(Nz_), rank_info(rank_info_),
phase(phase_), dist(dist_), last_id(last_id_), new_index(new_index_), new_id(new_id_), new_list(new_list_), comm(std::move(comm_))
{
}
~BlobIdentificationWorkItem1() { }
virtual void run() {
// Compute the global blob id and compare to the previous version
PROFILE_START("Identify blobs",1);
double vF = 0.0;
double vS = -1.0; // one voxel buffer region around solid
IntArray& ids = new_index->second;
new_index->first = ComputeGlobalBlobIDs(Nx-2,Ny-2,Nz-2,rank_info,*phase,dist,vF,vS,ids,comm.comm);
PROFILE_STOP("Identify blobs",1);
}
private:
BlobIdentificationWorkItem1();
int timestep;
int Nx, Ny, Nz;
const RankInfoStruct& rank_info;
std::shared_ptr<const DoubleArray> phase;
const DoubleArray& dist;
BlobIDstruct last_id, new_index, new_id;
BlobIDList new_list;
runAnalysis::commWrapper comm;
BlobIdentificationWorkItem1();
int timestep;
int Nx, Ny, Nz;
const RankInfoStruct& rank_info;
std::shared_ptr<const DoubleArray> phase;
const DoubleArray& dist;
BlobIDstruct last_id, new_index, new_id;
BlobIDList new_list;
runAnalysis::commWrapper comm;
};
class BlobIdentificationWorkItem2: public ThreadPool::WorkItemRet<void>
{
public:
BlobIdentificationWorkItem2( int timestep_, int Nx_, int Ny_, int Nz_, const RankInfoStruct& rank_info_,
std::shared_ptr<const DoubleArray> phase_, const DoubleArray& dist_,
BlobIDstruct last_id_, BlobIDstruct new_index_, BlobIDstruct new_id_, BlobIDList new_list_ , runAnalysis::commWrapper&& comm_ ):
timestep(timestep_), Nx(Nx_), Ny(Ny_), Nz(Nz_), rank_info(rank_info_),
phase(phase_), dist(dist_), last_id(last_id_), new_index(new_index_), new_id(new_id_), new_list(new_list_), comm(std::move(comm_))
{
}
~BlobIdentificationWorkItem2() { }
virtual void run() {
// Compute the global blob id and compare to the previous version
PROFILE_START("Identify blobs maps",1);
const IntArray& ids = new_index->second;
static int max_id = -1;
new_id->first = new_index->first;
new_id->second = new_index->second;
if ( last_id.get()!=NULL ) {
// Compute the timestep-timestep map
const IntArray& old_ids = last_id->second;
ID_map_struct map = computeIDMap(Nx,Ny,Nz,old_ids,ids,comm.comm);
// Renumber the current timestep's ids
getNewIDs(map,max_id,*new_list);
renumberIDs(*new_list,new_id->second);
writeIDMap(map,timestep,id_map_filename);
} else {
max_id = -1;
ID_map_struct map(new_id->first);
getNewIDs(map,max_id,*new_list);
writeIDMap(map,timestep,id_map_filename);
}
PROFILE_STOP("Identify blobs maps",1);
}
BlobIdentificationWorkItem2( int timestep_, int Nx_, int Ny_, int Nz_, const RankInfoStruct& rank_info_,
std::shared_ptr<const DoubleArray> phase_, const DoubleArray& dist_,
BlobIDstruct last_id_, BlobIDstruct new_index_, BlobIDstruct new_id_, BlobIDList new_list_ , runAnalysis::commWrapper&& comm_ ):
timestep(timestep_), Nx(Nx_), Ny(Ny_), Nz(Nz_), rank_info(rank_info_),
phase(phase_), dist(dist_), last_id(last_id_), new_index(new_index_), new_id(new_id_), new_list(new_list_), comm(std::move(comm_))
{
}
~BlobIdentificationWorkItem2() { }
virtual void run() {
// Compute the global blob id and compare to the previous version
PROFILE_START("Identify blobs maps",1);
const IntArray& ids = new_index->second;
static int max_id = -1;
new_id->first = new_index->first;
new_id->second = new_index->second;
if ( last_id.get()!=NULL ) {
// Compute the timestep-timestep map
const IntArray& old_ids = last_id->second;
ID_map_struct map = computeIDMap(Nx,Ny,Nz,old_ids,ids,comm.comm);
// Renumber the current timestep's ids
getNewIDs(map,max_id,*new_list);
renumberIDs(*new_list,new_id->second);
writeIDMap(map,timestep,id_map_filename);
} else {
max_id = -1;
ID_map_struct map(new_id->first);
getNewIDs(map,max_id,*new_list);
writeIDMap(map,timestep,id_map_filename);
}
PROFILE_STOP("Identify blobs maps",1);
}
private:
BlobIdentificationWorkItem2();
int timestep;
int Nx, Ny, Nz;
const RankInfoStruct& rank_info;
std::shared_ptr<const DoubleArray> phase;
const DoubleArray& dist;
BlobIDstruct last_id, new_index, new_id;
BlobIDList new_list;
runAnalysis::commWrapper comm;
BlobIdentificationWorkItem2();
int timestep;
int Nx, Ny, Nz;
const RankInfoStruct& rank_info;
std::shared_ptr<const DoubleArray> phase;
const DoubleArray& dist;
BlobIDstruct last_id, new_index, new_id;
BlobIDList new_list;
runAnalysis::commWrapper comm;
};
@ -153,36 +153,36 @@ private:
class WriteVisWorkItem: public ThreadPool::WorkItemRet<void>
{
public:
WriteVisWorkItem( int timestep_, std::vector<IO::MeshDataStruct>& visData_,
TwoPhase& Avgerages_, fillHalo<double>& fillData_, runAnalysis::commWrapper&& comm_ ):
timestep(timestep_), visData(visData_), Averages(Avgerages_), fillData(fillData_), comm(std::move(comm_))
{
}
~WriteVisWorkItem() { }
virtual void run() {
PROFILE_START("Save Vis",1);
ASSERT(visData[0].vars[0]->name=="phase");
ASSERT(visData[0].vars[1]->name=="Pressure");
ASSERT(visData[0].vars[2]->name=="SignDist");
ASSERT(visData[0].vars[3]->name=="BlobID");
Array<double>& PhaseData = visData[0].vars[0]->data;
Array<double>& PressData = visData[0].vars[1]->data;
Array<double>& SignData = visData[0].vars[2]->data;
Array<double>& BlobData = visData[0].vars[3]->data;
fillData.copy(Averages.SDn,PhaseData);
fillData.copy(Averages.Press,PressData);
fillData.copy(Averages.SDs,SignData);
fillData.copy(Averages.Label_NWP,BlobData);
IO::writeData( timestep, visData, comm.comm );
PROFILE_STOP("Save Vis",1);
};
WriteVisWorkItem( int timestep_, std::vector<IO::MeshDataStruct>& visData_,
TwoPhase& Avgerages_, fillHalo<double>& fillData_, runAnalysis::commWrapper&& comm_ ):
timestep(timestep_), visData(visData_), Averages(Avgerages_), fillData(fillData_), comm(std::move(comm_))
{
}
~WriteVisWorkItem() { }
virtual void run() {
PROFILE_START("Save Vis",1);
ASSERT(visData[0].vars[0]->name=="phase");
ASSERT(visData[0].vars[1]->name=="Pressure");
ASSERT(visData[0].vars[2]->name=="SignDist");
ASSERT(visData[0].vars[3]->name=="BlobID");
Array<double>& PhaseData = visData[0].vars[0]->data;
Array<double>& PressData = visData[0].vars[1]->data;
Array<double>& SignData = visData[0].vars[2]->data;
Array<double>& BlobData = visData[0].vars[3]->data;
fillData.copy(Averages.SDn,PhaseData);
fillData.copy(Averages.Press,PressData);
fillData.copy(Averages.SDs,SignData);
fillData.copy(Averages.Label_NWP,BlobData);
IO::writeData( timestep, visData, comm.comm );
PROFILE_STOP("Save Vis",1);
};
private:
WriteVisWorkItem();
int timestep;
std::vector<IO::MeshDataStruct>& visData;
TwoPhase& Averages;
fillHalo<double>& fillData;
runAnalysis::commWrapper comm;
WriteVisWorkItem();
int timestep;
std::vector<IO::MeshDataStruct>& visData;
TwoPhase& Averages;
fillHalo<double>& fillData;
runAnalysis::commWrapper comm;
};
@ -191,46 +191,46 @@ private:
class AnalysisWorkItem: public ThreadPool::WorkItemRet<void>
{
public:
AnalysisWorkItem( AnalysisType type_, int timestep_, TwoPhase& Averages_,
BlobIDstruct ids, BlobIDList id_list_, double beta_ ):
type(type_), timestep(timestep_), Averages(Averages_),
blob_ids(ids), id_list(id_list_), beta(beta_) { }
~AnalysisWorkItem() { }
virtual void run() {
Averages.NumberComponents_NWP = blob_ids->first;
Averages.Label_NWP = blob_ids->second;
Averages.Label_NWP_map = *id_list;
Averages.NumberComponents_WP = 1;
Averages.Label_WP.fill(0.0);
if ( matches(type,AnalysisType::CopyPhaseIndicator) ) {
// Averages.ColorToSignedDistance(beta,Averages.Phase,Averages.Phase_tplus);
}
if ( matches(type,AnalysisType::ComputeAverages) ) {
PROFILE_START("Compute dist",1);
Averages.Initialize();
Averages.ComputeDelPhi();
Averages.ColorToSignedDistance(beta,Averages.Phase,Averages.SDn);
Averages.ColorToSignedDistance(beta,Averages.Phase_tminus,Averages.Phase_tminus);
Averages.ColorToSignedDistance(beta,Averages.Phase_tplus,Averages.Phase_tplus);
Averages.UpdateMeshValues();
Averages.ComputeLocal();
Averages.Reduce();
Averages.PrintAll(timestep);
Averages.Initialize();
Averages.ComponentAverages();
Averages.SortBlobs();
Averages.PrintComponents(timestep);
PROFILE_STOP("Compute dist",1);
}
}
AnalysisWorkItem( AnalysisType type_, int timestep_, TwoPhase& Averages_,
BlobIDstruct ids, BlobIDList id_list_, double beta_ ):
type(type_), timestep(timestep_), Averages(Averages_),
blob_ids(ids), id_list(id_list_), beta(beta_) { }
~AnalysisWorkItem() { }
virtual void run() {
Averages.NumberComponents_NWP = blob_ids->first;
Averages.Label_NWP = blob_ids->second;
Averages.Label_NWP_map = *id_list;
Averages.NumberComponents_WP = 1;
Averages.Label_WP.fill(0.0);
if ( matches(type,AnalysisType::CopyPhaseIndicator) ) {
// Averages.ColorToSignedDistance(beta,Averages.Phase,Averages.Phase_tplus);
}
if ( matches(type,AnalysisType::ComputeAverages) ) {
PROFILE_START("Compute dist",1);
Averages.Initialize();
Averages.ComputeDelPhi();
Averages.ColorToSignedDistance(beta,Averages.Phase,Averages.SDn);
Averages.ColorToSignedDistance(beta,Averages.Phase_tminus,Averages.Phase_tminus);
Averages.ColorToSignedDistance(beta,Averages.Phase_tplus,Averages.Phase_tplus);
Averages.UpdateMeshValues();
Averages.ComputeLocal();
Averages.Reduce();
Averages.PrintAll(timestep);
Averages.Initialize();
Averages.ComponentAverages();
Averages.SortBlobs();
Averages.PrintComponents(timestep);
PROFILE_STOP("Compute dist",1);
}
}
private:
AnalysisWorkItem();
AnalysisType type;
int timestep;
TwoPhase& Averages;
BlobIDstruct blob_ids;
BlobIDList id_list;
double beta;
AnalysisWorkItem();
AnalysisType type;
int timestep;
TwoPhase& Averages;
BlobIDstruct blob_ids;
BlobIDList id_list;
double beta;
};
@ -238,44 +238,44 @@ private:
* MPI comm wrapper for use with analysis *
******************************************************************/
runAnalysis::commWrapper::commWrapper( int tag_, MPI_Comm comm_, runAnalysis* analysis_ ):
comm(comm_),
tag(tag_),
analysis(analysis_)
comm(comm_),
tag(tag_),
analysis(analysis_)
{
}
runAnalysis::commWrapper::commWrapper( commWrapper &&rhs ):
comm(rhs.comm),
tag(rhs.tag),
analysis(rhs.analysis)
comm(rhs.comm),
tag(rhs.tag),
analysis(rhs.analysis)
{
rhs.tag = -1;
rhs.tag = -1;
}
runAnalysis::commWrapper::~commWrapper()
{
if ( tag == -1 )
return;
MPI_Barrier( comm );
analysis->d_comm_used[tag] = false;
if ( tag == -1 )
return;
MPI_Barrier( comm );
analysis->d_comm_used[tag] = false;
}
runAnalysis::commWrapper runAnalysis::getComm( )
{
// Get a tag from root
int tag = -1;
if ( d_rank == 0 ) {
for (int i=0; i<1024; i++) {
if ( !d_comm_used[i] ) {
tag = i;
break;
}
}
if ( tag == -1 )
ERROR("Unable to get comm");
}
MPI_Bcast( &tag, 1, MPI_INT, 0, d_comm );
d_comm_used[tag] = true;
if ( d_comms[tag] == MPI_COMM_NULL )
MPI_Comm_dup( MPI_COMM_WORLD, &d_comms[tag] );
return commWrapper(tag,d_comms[tag],this);
// Get a tag from root
int tag = -1;
if ( d_rank == 0 ) {
for (int i=0; i<1024; i++) {
if ( !d_comm_used[i] ) {
tag = i;
break;
}
}
if ( tag == -1 )
ERROR("Unable to get comm");
}
MPI_Bcast( &tag, 1, MPI_INT, 0, d_comm );
d_comm_used[tag] = true;
if ( d_comms[tag] == MPI_COMM_NULL )
MPI_Comm_dup( MPI_COMM_WORLD, &d_comms[tag] );
return commWrapper(tag,d_comms[tag],this);
}
@ -283,29 +283,29 @@ runAnalysis::commWrapper runAnalysis::getComm( )
* Constructor/Destructors *
******************************************************************/
runAnalysis::runAnalysis( std::shared_ptr<Database> db,
const RankInfoStruct& rank_info, std::shared_ptr<ScaLBL_Communicator> ScaLBL_Comm, std::shared_ptr <Domain> Dm,
int Np, bool Regular, double beta, IntArray Map ):
d_Np( Np ),
d_beta( beta ),
d_regular ( Regular),
d_rank_info( rank_info ),
d_Map( Map ),
d_ScaLBL_Comm( ScaLBL_Comm),
d_fillData(Dm->Comm,Dm->rank_info,{Dm->Nx-2,Dm->Ny-2,Dm->Nz-2},{1,1,1},0,1)
const RankInfoStruct& rank_info, std::shared_ptr<ScaLBL_Communicator> ScaLBL_Comm, std::shared_ptr <Domain> Dm,
int Np, bool Regular, double beta, IntArray Map ):
d_Np( Np ),
d_beta( beta ),
d_regular ( Regular),
d_rank_info( rank_info ),
d_Map( Map ),
d_ScaLBL_Comm( ScaLBL_Comm),
d_fillData(Dm->Comm,Dm->rank_info,{Dm->Nx-2,Dm->Ny-2,Dm->Nz-2},{1,1,1},0,1)
{
char rankString[20];
sprintf(rankString,"%05d",Dm->rank());
d_N[0] = Dm->Nx;
d_N[1] = Dm->Ny;
d_N[2] = Dm->Nz;
d_restart_interval = db->getScalar<int>( "restart_interval" );
d_analysis_interval = db->getScalar<int>( "analysis_interval" );
d_blobid_interval = db->getScalar<int>( "blobid_interval" );
d_visualization_interval = db->getScalar<int>( "visualization_interval" );
auto restart_file = db->getScalar<std::string>( "restart_file" );
d_restartFile = restart_file + "." + rankString;
d_rank = MPI_WORLD_RANK();
d_N[0] = Dm->Nx;
d_N[1] = Dm->Ny;
d_N[2] = Dm->Nz;
d_restart_interval = db->getScalar<int>( "restart_interval" );
d_analysis_interval = db->getScalar<int>( "analysis_interval" );
d_blobid_interval = db->getScalar<int>( "blobid_interval" );
d_visualization_interval = db->getScalar<int>( "visualization_interval" );
auto restart_file = db->getScalar<std::string>( "restart_file" );
d_restartFile = restart_file + "." + rankString;
d_rank = MPI_WORLD_RANK();
writeIDMap(ID_map_struct(),0,id_map_filename);
// Initialize IO for silo
IO::initialize("","silo","false");
@ -337,41 +337,41 @@ runAnalysis::runAnalysis( std::shared_ptr<Database> db,
BlobIDVar->dim = 1;
BlobIDVar->data.resize(Dm->Nx-2,Dm->Ny-2,Dm->Nz-2);
d_meshData[0].vars.push_back(BlobIDVar);
// Initialize the comms
MPI_Comm_dup(MPI_COMM_WORLD,&d_comm);
for (int i=0; i<1024; i++) {
d_comms[i] = MPI_COMM_NULL;
d_comm_used[i] = false;
}
// Initialize the threads
int N_threads = db->getWithDefault<int>( "N_threads", 4 );
auto method = db->getWithDefault<std::string>( "load_balance", "default" );
createThreads( method, N_threads );
// Initialize the comms
MPI_Comm_dup(MPI_COMM_WORLD,&d_comm);
for (int i=0; i<1024; i++) {
d_comms[i] = MPI_COMM_NULL;
d_comm_used[i] = false;
}
// Initialize the threads
int N_threads = db->getWithDefault<int>( "N_threads", 4 );
auto method = db->getWithDefault<std::string>( "load_balance", "default" );
createThreads( method, N_threads );
}
runAnalysis::~runAnalysis( )
{
// Finish processing analysis
finish();
// Clear internal data
MPI_Comm_free( &d_comm );
for (int i=0; i<1024; i++) {
if ( d_comms[i] != MPI_COMM_NULL )
MPI_Comm_free(&d_comms[i]);
}
// Finish processing analysis
finish();
// Clear internal data
MPI_Comm_free( &d_comm );
for (int i=0; i<1024; i++) {
if ( d_comms[i] != MPI_COMM_NULL )
MPI_Comm_free(&d_comms[i]);
}
}
void runAnalysis::finish( )
{
PROFILE_START("finish");
// Wait for the work items to finish
PROFILE_START("finish");
// Wait for the work items to finish
d_tpool.wait_pool_finished();
// Clear the wait ids
d_wait_blobID.reset();
d_wait_analysis.reset();
d_wait_vis.reset();
d_wait_restart.reset();
// Syncronize
MPI_Barrier( d_comm );
PROFILE_STOP("finish");
// Clear the wait ids
d_wait_blobID.reset();
d_wait_analysis.reset();
d_wait_vis.reset();
d_wait_restart.reset();
// Syncronize
MPI_Barrier( d_comm );
PROFILE_STOP("finish");
}
@ -380,50 +380,50 @@ void runAnalysis::finish( )
******************************************************************/
void print( const std::vector<int>& ids )
{
if ( ids.empty() )
return;
printf("%i",ids[0]);
for (size_t i=1; i<ids.size(); i++)
printf(", %i",ids[i]);
printf("\n");
if ( ids.empty() )
return;
printf("%i",ids[0]);
for (size_t i=1; i<ids.size(); i++)
printf(", %i",ids[i]);
printf("\n");
}
void runAnalysis::createThreads( const std::string& method, int N_threads )
{
// Check if we are not using analysis threads
// Check if we are not using analysis threads
if ( method == "none" )
return;
// Check if we have thread support
int thread_support;
MPI_Query_thread( &thread_support );
return;
// Check if we have thread support
int thread_support;
MPI_Query_thread( &thread_support );
if ( thread_support < MPI_THREAD_MULTIPLE ) {
std::cerr << "Warning: Failed to start MPI with necessary thread support, thread support will be disabled" << std::endl;
return;
}
// Create the threads
const auto cores = d_tpool.getProcessAffinity();
if ( cores.empty() ) {
// We were not able to get the cores for the process
d_tpool.setNumThreads( N_threads );
} else if ( method == "default" ) {
// Create the given number of threads, but let the OS manage affinities
d_tpool.setNumThreads( N_threads );
} else if ( method == "independent" ) {
int N = cores.size() - 1;
d_tpool.setNumThreads( N );
d_tpool.setThreadAffinity( { cores[0] } );
for ( int i=0; i<N; i++)
d_tpool.setThreadAffinity( i, { cores[i+1] } );
}
// Print the current affinities
if ( d_rank == 0 ) {
printf("Affinities - rank 0:\n");
printf("Main: ");
print(d_tpool.getProcessAffinity());
for (int i=0; i<d_tpool.getNumThreads(); i++) {
printf("Thread %i: ",i+1);
print(d_tpool.getThreadAffinity(i));
}
}
return;
}
// Create the threads
const auto cores = d_tpool.getProcessAffinity();
if ( cores.empty() ) {
// We were not able to get the cores for the process
d_tpool.setNumThreads( N_threads );
} else if ( method == "default" ) {
// Create the given number of threads, but let the OS manage affinities
d_tpool.setNumThreads( N_threads );
} else if ( method == "independent" ) {
int N = cores.size() - 1;
d_tpool.setNumThreads( N );
d_tpool.setThreadAffinity( { cores[0] } );
for ( int i=0; i<N; i++)
d_tpool.setThreadAffinity( i, { cores[i+1] } );
}
// Print the current affinities
if ( d_rank == 0 ) {
printf("Affinities - rank 0:\n");
printf("Main: ");
print(d_tpool.getProcessAffinity());
for (int i=0; i<d_tpool.getNumThreads(); i++) {
printf("Thread %i: ",i+1);
print(d_tpool.getThreadAffinity(i));
}
}
}
@ -432,17 +432,17 @@ void runAnalysis::createThreads( const std::string& method, int N_threads )
******************************************************************/
AnalysisType runAnalysis::computeAnalysisType( int timestep )
{
AnalysisType type = AnalysisType::AnalyzeNone;
if ( timestep%d_analysis_interval + 8 == d_analysis_interval ) {
// Copy the phase indicator field for the earlier timestep
// printf("Copy phase indicator,timestep=%i\n",timestep);
type |= AnalysisType::CopyPhaseIndicator;
}
if ( timestep%d_blobid_interval == 0 ) {
// Identify blobs and update global ids in time
type |= AnalysisType::IdentifyBlobs;
}
/*#ifdef USE_CUDA
AnalysisType type = AnalysisType::AnalyzeNone;
if ( timestep%d_analysis_interval + 8 == d_analysis_interval ) {
// Copy the phase indicator field for the earlier timestep
// printf("Copy phase indicator,timestep=%i\n",timestep);
type |= AnalysisType::CopyPhaseIndicator;
}
if ( timestep%d_blobid_interval == 0 ) {
// Identify blobs and update global ids in time
type |= AnalysisType::IdentifyBlobs;
}
/*#ifdef USE_CUDA
if ( tpool.getQueueSize()<=3 && tpool.getNumThreads()>0 && timestep%50==0 ) {
// Keep a few blob identifications queued up to keep the processors busy,
// allowing us to track the blobs as fast as possible
@ -450,28 +450,28 @@ AnalysisType runAnalysis::computeAnalysisType( int timestep )
type |= AnalysisType::IdentifyBlobs;
}
#endif */
if ( timestep%d_analysis_interval + 4 == d_analysis_interval ) {
// Copy the averages to the CPU (and identify blobs)
//printf("Copy sim state, timestep=%i \n",timestep);
type |= AnalysisType::CopySimState;
type |= AnalysisType::IdentifyBlobs;
}
if ( timestep%d_analysis_interval == 0 ) {
// Run the analysis
//printf("Compute averages, timestep=%i \n",timestep);
type |= AnalysisType::ComputeAverages;
}
if (timestep%d_restart_interval == 0) {
// Write the restart file
type |= AnalysisType::CreateRestart;
}
if (timestep%d_visualization_interval == 0) {
// Write the visualization data
type |= AnalysisType::WriteVis;
type |= AnalysisType::CopySimState;
type |= AnalysisType::IdentifyBlobs;
}
return type;
if ( timestep%d_analysis_interval + 4 == d_analysis_interval ) {
// Copy the averages to the CPU (and identify blobs)
//printf("Copy sim state, timestep=%i \n",timestep);
type |= AnalysisType::CopySimState;
type |= AnalysisType::IdentifyBlobs;
}
if ( timestep%d_analysis_interval == 0 ) {
// Run the analysis
//printf("Compute averages, timestep=%i \n",timestep);
type |= AnalysisType::ComputeAverages;
}
if (timestep%d_restart_interval == 0) {
// Write the restart file
type |= AnalysisType::CreateRestart;
}
if (timestep%d_visualization_interval == 0) {
// Write the visualization data
type |= AnalysisType::WriteVis;
type |= AnalysisType::CopySimState;
type |= AnalysisType::IdentifyBlobs;
}
return type;
}
@ -480,28 +480,28 @@ AnalysisType runAnalysis::computeAnalysisType( int timestep )
* Run the analysis *
******************************************************************/
void runAnalysis::run( int timestep, TwoPhase& Averages, const double *Phi,
double *Pressure, double *Velocity, double *fq, double *Den)
double *Pressure, double *Velocity, double *fq, double *Den)
{
int N = d_N[0]*d_N[1]*d_N[2];
int N = d_N[0]*d_N[1]*d_N[2];
// Check which analysis steps we need to perform
auto type = computeAnalysisType( timestep );
if ( type == AnalysisType::AnalyzeNone )
return;
// Check which analysis steps we need to perform
auto type = computeAnalysisType( timestep );
if ( type == AnalysisType::AnalyzeNone )
return;
// Check how may queued items we have
if ( d_tpool.N_queued() > 20 ) {
std::cerr << "Analysis queue is getting behind, waiting ...\n";
finish();
}
// Check how may queued items we have
if ( d_tpool.N_queued() > 20 ) {
std::cerr << "Analysis queue is getting behind, waiting ...\n";
finish();
}
PROFILE_START("run");
PROFILE_START("run");
// Copy the appropriate variables to the host (so we can spawn new threads)
ScaLBL_DeviceBarrier();
PROFILE_START("Copy data to host",1);
std::shared_ptr<DoubleArray> phase;
/* if ( matches(type,AnalysisType::CopyPhaseIndicator) ||
// Copy the appropriate variables to the host (so we can spawn new threads)
ScaLBL_DeviceBarrier();
PROFILE_START("Copy data to host",1);
std::shared_ptr<DoubleArray> phase;
/* if ( matches(type,AnalysisType::CopyPhaseIndicator) ||
matches(type,AnalysisType::ComputeAverages) ||
matches(type,AnalysisType::CopySimState) ||
matches(type,AnalysisType::IdentifyBlobs) )
@ -531,113 +531,113 @@ void runAnalysis::run( int timestep, TwoPhase& Averages, const double *Phi,
}
delete [] TmpDat;
}
*/
//if ( matches(type,AnalysisType::CopyPhaseIndicator) ) {
if ( timestep%d_analysis_interval + 8 == d_analysis_interval ) {
if (d_regular)
d_ScaLBL_Comm->RegularLayout(d_Map,Phi,Averages.Phase_tplus);
else
ScaLBL_CopyToHost(Averages.Phase_tplus.data(),Phi,N*sizeof(double));
//memcpy(Averages.Phase_tplus.data(),phase->data(),N*sizeof(double));
}
if ( timestep%d_analysis_interval == 0 ) {
if (d_regular)
d_ScaLBL_Comm->RegularLayout(d_Map,Phi,Averages.Phase_tminus);
else
ScaLBL_CopyToHost(Averages.Phase_tminus.data(),Phi,N*sizeof(double));
//memcpy(Averages.Phase_tminus.data(),phase->data(),N*sizeof(double));
}
//if ( matches(type,AnalysisType::CopySimState) ) {
if ( timestep%d_analysis_interval + 4 == d_analysis_interval ) {
// Copy the members of Averages to the cpu (phase was copied above)
PROFILE_START("Copy-Pressure",1);
ScaLBL_D3Q19_Pressure(fq,Pressure,d_Np);
ScaLBL_D3Q19_Momentum(fq,Velocity,d_Np);
ScaLBL_DeviceBarrier();
PROFILE_STOP("Copy-Pressure",1);
PROFILE_START("Copy-Wait",1);
PROFILE_STOP("Copy-Wait",1);
PROFILE_START("Copy-State",1);
//memcpy(Averages.Phase.data(),phase->data(),N*sizeof(double));
if (d_regular)
d_ScaLBL_Comm->RegularLayout(d_Map,Phi,Averages.Phase);
else
ScaLBL_CopyToHost(Averages.Phase.data(),Phi,N*sizeof(double));
// copy other variables
d_ScaLBL_Comm->RegularLayout(d_Map,Pressure,Averages.Press);
d_ScaLBL_Comm->RegularLayout(d_Map,&Velocity[0],Averages.Vel_x);
d_ScaLBL_Comm->RegularLayout(d_Map,&Velocity[d_Np],Averages.Vel_y);
d_ScaLBL_Comm->RegularLayout(d_Map,&Velocity[2*d_Np],Averages.Vel_z);
PROFILE_STOP("Copy-State",1);
}
std::shared_ptr<double> cfq,cPhi;
//if ( matches(type,AnalysisType::CreateRestart) ) {
if (timestep%d_restart_interval==0){
// Copy restart data to the CPU
cPhi = std::shared_ptr<double>(new double[d_Np],DeleteArray<double>);
cfq = std::shared_ptr<double>(new double[19*d_Np],DeleteArray<double>);
ScaLBL_CopyToHost(cfq.get(),fq,19*d_Np*sizeof(double));
ScaLBL_CopyToHost(cPhi.get(),Phi,d_Np*sizeof(double));
}
PROFILE_STOP("Copy data to host",1);
*/
//if ( matches(type,AnalysisType::CopyPhaseIndicator) ) {
if ( timestep%d_analysis_interval + 8 == d_analysis_interval ) {
if (d_regular)
d_ScaLBL_Comm->RegularLayout(d_Map,Phi,Averages.Phase_tplus);
else
ScaLBL_CopyToHost(Averages.Phase_tplus.data(),Phi,N*sizeof(double));
//memcpy(Averages.Phase_tplus.data(),phase->data(),N*sizeof(double));
}
if ( timestep%d_analysis_interval == 0 ) {
if (d_regular)
d_ScaLBL_Comm->RegularLayout(d_Map,Phi,Averages.Phase_tminus);
else
ScaLBL_CopyToHost(Averages.Phase_tminus.data(),Phi,N*sizeof(double));
//memcpy(Averages.Phase_tminus.data(),phase->data(),N*sizeof(double));
}
//if ( matches(type,AnalysisType::CopySimState) ) {
if ( timestep%d_analysis_interval + 4 == d_analysis_interval ) {
// Copy the members of Averages to the cpu (phase was copied above)
PROFILE_START("Copy-Pressure",1);
ScaLBL_D3Q19_Pressure(fq,Pressure,d_Np);
ScaLBL_D3Q19_Momentum(fq,Velocity,d_Np);
ScaLBL_DeviceBarrier();
PROFILE_STOP("Copy-Pressure",1);
PROFILE_START("Copy-Wait",1);
PROFILE_STOP("Copy-Wait",1);
PROFILE_START("Copy-State",1);
//memcpy(Averages.Phase.data(),phase->data(),N*sizeof(double));
if (d_regular)
d_ScaLBL_Comm->RegularLayout(d_Map,Phi,Averages.Phase);
else
ScaLBL_CopyToHost(Averages.Phase.data(),Phi,N*sizeof(double));
// copy other variables
d_ScaLBL_Comm->RegularLayout(d_Map,Pressure,Averages.Press);
d_ScaLBL_Comm->RegularLayout(d_Map,&Velocity[0],Averages.Vel_x);
d_ScaLBL_Comm->RegularLayout(d_Map,&Velocity[d_Np],Averages.Vel_y);
d_ScaLBL_Comm->RegularLayout(d_Map,&Velocity[2*d_Np],Averages.Vel_z);
PROFILE_STOP("Copy-State",1);
}
std::shared_ptr<double> cfq,cPhi;
//if ( matches(type,AnalysisType::CreateRestart) ) {
if (timestep%d_restart_interval==0){
// Copy restart data to the CPU
cPhi = std::shared_ptr<double>(new double[d_Np],DeleteArray<double>);
cfq = std::shared_ptr<double>(new double[19*d_Np],DeleteArray<double>);
ScaLBL_CopyToHost(cfq.get(),fq,19*d_Np*sizeof(double));
ScaLBL_CopyToHost(cPhi.get(),Phi,d_Np*sizeof(double));
}
PROFILE_STOP("Copy data to host",1);
// Spawn threads to do blob identification work
if ( matches(type,AnalysisType::IdentifyBlobs) ) {
phase = std::shared_ptr<DoubleArray>(new DoubleArray(d_N[0],d_N[1],d_N[2]));
d_ScaLBL_Comm->RegularLayout(d_Map,Phi,*phase);
// Spawn threads to do blob identification work
if ( matches(type,AnalysisType::IdentifyBlobs) ) {
phase = std::shared_ptr<DoubleArray>(new DoubleArray(d_N[0],d_N[1],d_N[2]));
d_ScaLBL_Comm->RegularLayout(d_Map,Phi,*phase);
BlobIDstruct new_index(new std::pair<int,IntArray>(0,IntArray()));
BlobIDstruct new_ids(new std::pair<int,IntArray>(0,IntArray()));
BlobIDList new_list(new std::vector<BlobIDType>());
auto work1 = new BlobIdentificationWorkItem1(timestep,d_N[0],d_N[1],d_N[2],d_rank_info,
phase,Averages.SDs,d_last_ids,new_index,new_ids,new_list,getComm());
auto work2 = new BlobIdentificationWorkItem2(timestep,d_N[0],d_N[1],d_N[2],d_rank_info,
phase,Averages.SDs,d_last_ids,new_index,new_ids,new_list,getComm());
work1->add_dependency(d_wait_blobID);
work2->add_dependency(d_tpool.add_work(work1));
d_wait_blobID = d_tpool.add_work(work2);
d_last_index = new_index;
d_last_ids = new_ids;
d_last_id_map = new_list;
}
BlobIDstruct new_index(new std::pair<int,IntArray>(0,IntArray()));
BlobIDstruct new_ids(new std::pair<int,IntArray>(0,IntArray()));
BlobIDList new_list(new std::vector<BlobIDType>());
auto work1 = new BlobIdentificationWorkItem1(timestep,d_N[0],d_N[1],d_N[2],d_rank_info,
phase,Averages.SDs,d_last_ids,new_index,new_ids,new_list,getComm());
auto work2 = new BlobIdentificationWorkItem2(timestep,d_N[0],d_N[1],d_N[2],d_rank_info,
phase,Averages.SDs,d_last_ids,new_index,new_ids,new_list,getComm());
work1->add_dependency(d_wait_blobID);
work2->add_dependency(d_tpool.add_work(work1));
d_wait_blobID = d_tpool.add_work(work2);
d_last_index = new_index;
d_last_ids = new_ids;
d_last_id_map = new_list;
}
// Spawn threads to do the analysis work
//if (timestep%d_restart_interval==0){
// if ( matches(type,AnalysisType::ComputeAverages) ) {
if ( timestep%d_analysis_interval == 0 ) {
auto work = new AnalysisWorkItem(type,timestep,Averages,d_last_index,d_last_id_map,d_beta);
work->add_dependency(d_wait_blobID);
work->add_dependency(d_wait_analysis);
work->add_dependency(d_wait_vis); // Make sure we are done using analysis before modifying
d_wait_analysis = d_tpool.add_work(work);
}
// Spawn threads to do the analysis work
//if (timestep%d_restart_interval==0){
// if ( matches(type,AnalysisType::ComputeAverages) ) {
if ( timestep%d_analysis_interval == 0 ) {
auto work = new AnalysisWorkItem(type,timestep,Averages,d_last_index,d_last_id_map,d_beta);
work->add_dependency(d_wait_blobID);
work->add_dependency(d_wait_analysis);
work->add_dependency(d_wait_vis); // Make sure we are done using analysis before modifying
d_wait_analysis = d_tpool.add_work(work);
}
// Spawn a thread to write the restart file
// if ( matches(type,AnalysisType::CreateRestart) ) {
if (timestep%d_restart_interval==0){
// Spawn a thread to write the restart file
// if ( matches(type,AnalysisType::CreateRestart) ) {
if (timestep%d_restart_interval==0){
if (d_rank==0) {
FILE *Rst = fopen("Restart.txt","w");
fprintf(Rst,"%i\n",timestep+4);
fclose(Rst);
}
// Write the restart file (using a seperate thread)
auto work = new WriteRestartWorkItem(d_restartFile.c_str(),cPhi,cfq,d_Np);
work->add_dependency(d_wait_restart);
d_wait_restart = d_tpool.add_work(work);
}
if (d_rank==0) {
FILE *Rst = fopen("Restart.txt","w");
fprintf(Rst,"%i\n",timestep+4);
fclose(Rst);
}
// Write the restart file (using a seperate thread)
auto work = new WriteRestartWorkItem(d_restartFile.c_str(),cPhi,cfq,d_Np);
work->add_dependency(d_wait_restart);
d_wait_restart = d_tpool.add_work(work);
}
// Save the results for visualization
// if ( matches(type,AnalysisType::CreateRestart) ) {
if (timestep%d_restart_interval==0){
// Write the vis files
auto work = new WriteVisWorkItem( timestep, d_meshData, Averages, d_fillData, getComm() );
work->add_dependency(d_wait_blobID);
work->add_dependency(d_wait_analysis);
work->add_dependency(d_wait_vis);
d_wait_vis = d_tpool.add_work(work);
}
PROFILE_STOP("run");
// Save the results for visualization
// if ( matches(type,AnalysisType::CreateRestart) ) {
if (timestep%d_restart_interval==0){
// Write the vis files
auto work = new WriteVisWorkItem( timestep, d_meshData, Averages, d_fillData, getComm() );
work->add_dependency(d_wait_blobID);
work->add_dependency(d_wait_analysis);
work->add_dependency(d_wait_vis);
d_wait_vis = d_tpool.add_work(work);
}
PROFILE_STOP("run");
}