Refactoring TestBlobAnalyze to test the Euler characteristic in parallel

This commit is contained in:
James E McClure 2015-08-30 08:10:28 -04:00
parent f1f88ada28
commit de51a11dfd

View File

@ -262,11 +262,12 @@ int main(int argc, char **argv)
double beta = 0.95;
if (rank==0) printf("initializing the system \n");
// Averages.SetupCubes(Dm);
Averages.UpdateSolid();
Averages.Initialize();
Averages.UpdateMeshValues();
Dm.CommunicateMeshHalo(Averages.Phase);
Dm.CommunicateMeshHalo(Averages.SDn);
// if (rank==0) printf("computing blobs \n");
// int nblobs_global = ComputeGlobalBlobIDs(Dm.Nx-2,Dm.Ny-2,Dm.Nz-2,Dm.rank_info,
@ -280,147 +281,6 @@ int main(int argc, char **argv)
if (rank==0) printf("reducing averages \n");
// Averages.Reduce();
/* if (rank==0) printf("Writing blobs \n");
// Write the local blob ids
char LocalRankFilename[40];
sprintf(LocalRankFilename,"BlobLabel.%05i",rank);
FILE *BLOBLOCAL = fopen(LocalRankFilename,"wb");
fwrite(Averages.Label_NWP.get(),4,Averages.Label_NWP.length(),BLOBLOCAL);
fclose(BLOBLOCAL);
printf("Wrote BlobLabel.%05i \n",rank);
if (rank==0) printf("Sorting averages \n");
// Blobs.Set(Averages.ComponentAverages_NWP.NBLOBS);
int dimx = (int)Averages.ComponentAverages_NWP.size(0);
int dimy = (int)Averages.ComponentAverages_NWP.size(1);
int TotalBlobInfoSize=dimx*dimy;
// BlobContainer Blobs;
DoubleArray RecvBuffer(dimx);
// MPI_Allreduce(&Averages.ComponentAverages_NWP.get(),&Blobs.get(),1,MPI_DOUBLE,MPI_SUM,Dm.Comm);
MPI_Barrier(MPI_COMM_WORLD);
if (rank==0) printf("Number of components is %i \n",dimy);
for (int b=0; b<dimy; b++){
MPI_Allreduce(&Averages.ComponentAverages_NWP(0,b),&RecvBuffer(0),dimx,MPI_DOUBLE,MPI_SUM,MPI_COMM_WORLD);
for (int idx=0; idx<dimx-1; idx++) Averages.ComponentAverages_NWP(idx,b)=RecvBuffer(idx);
MPI_Barrier(MPI_COMM_WORLD);
if (Averages.ComponentAverages_NWP(0,b) > 0.0){
double Vn,pn,awn,ans,Jwn,Kwn,lwns,cwns,trawn,trJwn;
Vn = Averages.ComponentAverages_NWP(1,b);
pn = Averages.ComponentAverages_NWP(2,b)/Averages.ComponentAverages_NWP(0,b);
awn = Averages.ComponentAverages_NWP(3,b);
ans = Averages.ComponentAverages_NWP(4,b);
if (awn != 0.0){
Jwn = Averages.ComponentAverages_NWP(5,b)/Averages.ComponentAverages_NWP(3,b);
Kwn = Averages.ComponentAverages_NWP(6,b)/Averages.ComponentAverages_NWP(3,b);
}
else Jwn=Kwn=0.0;
trawn = Averages.ComponentAverages_NWP(12,b);
if (trawn != 0.0){
trJwn = Averages.ComponentAverages_NWP(13,b)/trawn;
}
else trJwn=0.0;
lwns = Averages.ComponentAverages_NWP(7,b);
if (lwns != 0.0) cwns = Averages.ComponentAverages_NWP(8,b)/Averages.ComponentAverages_NWP(7,b);
else cwns=0.0;
Averages.ComponentAverages_NWP(2,b) = pn;
Averages.ComponentAverages_NWP(5,b) = trJwn;
Averages.ComponentAverages_NWP(6,b) = Kwn;
Averages.ComponentAverages_NWP(8,b) = cwns;
// Averages.ComponentAverages_NWP(13,b) = trJwn;
}
}
if (rank==0) printf("Sorting blobs by volume \n");
Averages.SortBlobs();
if (rank==0){
WriteBlobs(Averages);
}
if (rank==0) {
int a;
double D=1.0;
double iVol=1.0/Averages.Dm.Volume;
double PoreVolume;
double nwp_volume,vol_n,pan,pn,pw,pawn,pwn,awn,ans,aws,Jwn,Kwn,lwns,cwns,clwns;
double sw,awnD,awsD,ansD,lwnsDD,JwnD,pc;
nwp_volume=vol_n=pan=awn=ans=Jwn=Kwn=lwns=clwns=pawn=0.0;
sw = Averages.sat_w;
pw = Averages.paw_global;
aws = Averages.aws;
// Compute the averages over the entire non-wetting phase
printf("Writing blobstates.tcat for %i components \n",Averages.NumberComponents_NWP);
FILE *BLOBSTATES;
BLOBSTATES = fopen("./blobstates.tcat","w");
if (BLOBSTATES==NULL) ERROR("Cannot open blobstates.tcat for writing");
for (a=0; a<Averages.NumberComponents_NWP; a++){
vol_n += Averages.ComponentAverages_NWP(0,a);
pan += Averages.ComponentAverages_NWP(2,a)*Averages.ComponentAverages_NWP(0,a);
awn += Averages.ComponentAverages_NWP(3,a);
ans += Averages.ComponentAverages_NWP(4,a);
Jwn += Averages.ComponentAverages_NWP(5,a)*Averages.ComponentAverages_NWP(3,a);
Kwn += Averages.ComponentAverages_NWP(6,a)*Averages.ComponentAverages_NWP(3,a);
lwns += Averages.ComponentAverages_NWP(7,a);
clwns += Averages.ComponentAverages_NWP(8,a)*Averages.ComponentAverages_NWP(7,a);
nwp_volume += Averages.ComponentAverages_NWP(1,a);
pawn += Averages.ComponentAverages_NWP(2,a)*Averages.ComponentAverages_NWP(3,a);
}
// Compute the pore voume (sum of wetting an non-wetting phase volumes)
PoreVolume=Averages.wp_volume_global + nwp_volume;
// Subtract off portions of non-wetting phase in order of size
for (a=Averages.NumberComponents_NWP-1; a>0; a--){
// Subtract the features one-by-one
vol_n -= Averages.ComponentAverages_NWP(0,a);
pan -= Averages.ComponentAverages_NWP(2,a)*Averages.ComponentAverages_NWP(0,a);
awn -= Averages.ComponentAverages_NWP(3,a);
ans -= Averages.ComponentAverages_NWP(4,a);
Jwn -= Averages.ComponentAverages_NWP(5,a)*Averages.ComponentAverages_NWP(3,a);
Kwn -= Averages.ComponentAverages_NWP(6,a)*Averages.ComponentAverages_NWP(3,a);
lwns -= Averages.ComponentAverages_NWP(7,a);
clwns -= Averages.ComponentAverages_NWP(8,a)*Averages.ComponentAverages_NWP(7,a);
nwp_volume -= Averages.ComponentAverages_NWP(1,a);
pawn -= Averages.ComponentAverages_NWP(2,a)*Averages.ComponentAverages_NWP(3,a);
// Update wetting phase averages
aws += Averages.ComponentAverages_NWP(4,a);
if (vol_n > 64){ // Only consider systems with "large enough" blobs -- 4^3
if (fabs(1.0 - nwp_volume/PoreVolume - sw) > 0.005 || a == 1){
sw = 1.0 - nwp_volume/PoreVolume;
JwnD = Jwn*D/awn;
//trJwnD = -trJwn*D/trawn;
cwns = clwns / lwns;
pwn = (pawn/awn-pw)*D/0.058;
pn = pan/vol_n;
awnD = awn*D*iVol;
awsD = aws*D*iVol;
ansD = ans*D*iVol;
lwnsDD = lwns*D*D*iVol;
pc = (pn-pw)*D/0.058; // hard-coded surface tension due to being lazy
fprintf(BLOBSTATES,"%.5g %.5g %.5g ",sw,pn,pw);
fprintf(BLOBSTATES,"%.5g %.5g %.5g %.5g ",awnD,awsD,ansD,lwnsDD);
fprintf(BLOBSTATES,"%.5g %.5g %.5g %.5g %i\n",pc,pwn,JwnD,cwns,a);
}
}
}
fclose(BLOBSTATES);
}
*/
//WriteBlobStates(Averages,Length,porosity);
/*FILE *BLOBS = fopen("Blobs.dat","wb");
fwrite(GlobalBlobID.get(),4,Nx*Ny*Nz,BLOBS);
fclose(BLOBS);*/
MPI_Barrier(MPI_COMM_WORLD);
MPI_Finalize();
return 0;