initialize nernst-planck simulator; to be built subject to debugging

This commit is contained in:
Zhe Rex Li
2022-04-12 11:40:39 +10:00
parent ece735e0e7
commit e1ebbce812
4 changed files with 183 additions and 1 deletions

View File

@@ -151,6 +151,52 @@ vector<int> ScaLBL_Multiphys_Controller::getIonNumIter_PNP_coupling(
return num_iter_ion; return num_iter_ion;
} }
vector<int> ScaLBL_Multiphys_Controller::getIonNumIter_NernstPlanck_coupling(
const vector<double> &IonTimeConv) {
//Return number of internal iterations for the Ion transport solver
vector<int> num_iter_ion;
vector<double>::iterator it_max =
max_element(IonTimeConv.begin(), IonTimeConv.end());
unsigned int idx_max = distance(IonTimeConv.begin(), it_max);
if (idx_max == 0) {
num_iter_ion.push_back(2);
for (unsigned int idx = 1; idx < IonTimeConv.size(); idx++) {
double temp =
2 * TimeConv[idx_max] /
TimeConv
[idx]; //the factor 2 is the number of iterations for the element has max time_conv
num_iter_ion.push_back(int(round(temp / 2) * 2));
}
} else if (idx_max == IonTimeConv.size() - 1) {
for (unsigned int idx = 0; idx < TimeConv.size() - 1; idx++) {
double temp =
2 * TimeConv[idx_max] /
TimeConv
[idx]; //the factor 2 is the number of iterations for the element has max time_conv
num_iter_ion.push_back(int(round(temp / 2) * 2));
}
num_iter_ion.push_back(2);
} else {
for (unsigned int idx = 0; idx < idx_max; idx++) {
double temp =
2 * TimeConv[idx_max] /
TimeConv
[idx]; //the factor 2 is the number of iterations for the element has max time_conv
num_iter_ion.push_back(int(round(temp / 2) * 2));
}
num_iter_ion.push_back(2);
for (unsigned int idx = idx_max + 1; idx < IonTimeConv.size(); idx++) {
double temp =
2 * TimeConv[idx_max] /
TimeConv
[idx]; //the factor 2 is the number of iterations for the element has max time_conv
num_iter_ion.push_back(int(round(temp / 2) * 2));
}
}
return num_iter_ion;
}
void ScaLBL_Multiphys_Controller::getTimeConvMax_PNP_coupling( void ScaLBL_Multiphys_Controller::getTimeConvMax_PNP_coupling(
double StokesTimeConv, const vector<double> &IonTimeConv) { double StokesTimeConv, const vector<double> &IonTimeConv) {
//Return maximum of the time converting factor from Stokes and ion solvers //Return maximum of the time converting factor from Stokes and ion solvers

View File

@@ -28,7 +28,7 @@ public:
const vector<double> &IonTimeConv); const vector<double> &IonTimeConv);
vector<int> getIonNumIter_PNP_coupling(double StokesTimeConv, vector<int> getIonNumIter_PNP_coupling(double StokesTimeConv,
const vector<double> &IonTimeConv); const vector<double> &IonTimeConv);
//void getIonNumIter_PNP_coupling(double StokesTimeConv,vector<double> &IonTimeConv,vector<int> &IonTimeMax); vector<int> getIonNumIter_NernstPlanck_coupling(const vector<double> &IonTimeConv);
void getTimeConvMax_PNP_coupling(double StokesTimeConv, void getTimeConvMax_PNP_coupling(double StokesTimeConv,
const vector<double> &IonTimeConv); const vector<double> &IonTimeConv);

View File

@@ -6,6 +6,7 @@ ADD_LBPM_EXECUTABLE( lbpm_permeability_simulator )
ADD_LBPM_EXECUTABLE( lbpm_greyscale_simulator ) ADD_LBPM_EXECUTABLE( lbpm_greyscale_simulator )
ADD_LBPM_EXECUTABLE( lbpm_greyscaleColor_simulator ) ADD_LBPM_EXECUTABLE( lbpm_greyscaleColor_simulator )
ADD_LBPM_EXECUTABLE( lbpm_electrokinetic_SingleFluid_simulator ) ADD_LBPM_EXECUTABLE( lbpm_electrokinetic_SingleFluid_simulator )
ADD_LBPM_EXECUTABLE( lbpm_nernst_planck_simulator )
ADD_LBPM_EXECUTABLE( lbpm_freelee_simulator ) ADD_LBPM_EXECUTABLE( lbpm_freelee_simulator )
ADD_LBPM_EXECUTABLE( lbpm_freelee_SingleFluidBGK_simulator ) ADD_LBPM_EXECUTABLE( lbpm_freelee_SingleFluidBGK_simulator )
#ADD_LBPM_EXECUTABLE( lbpm_BGK_simulator ) #ADD_LBPM_EXECUTABLE( lbpm_BGK_simulator )

View File

@@ -0,0 +1,135 @@
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <iostream>
#include <exception>
#include <stdexcept>
#include <fstream>
#include <math.h>
#include "models/IonModel.h"
#include "models/PoissonSolver.h"
#include "models/MultiPhysController.h"
#include "common/Utilities.h"
#include "analysis/ElectroChemistry.h"
using namespace std;
int main(int argc, char **argv)
{
// Initialize MPI and error handlers
Utilities::startup( argc, argv );
Utilities::MPI comm( MPI_COMM_WORLD );
int rank = comm.getRank();
int nprocs = comm.getSize();
{ // Limit scope so variables that contain communicators will free before MPI_Finialize
if (rank == 0){
printf("*************************************************\n");
printf("Running LBPM Nernst-Planck solver \n");
printf("*************************************************\n");
}
// Initialize compute device
int device=ScaLBL_SetDevice(rank);
NULL_USE( device );
ScaLBL_DeviceBarrier();
comm.barrier();
PROFILE_ENABLE(1);
//PROFILE_ENABLE_TRACE();
//PROFILE_ENABLE_MEMORY();
PROFILE_SYNCHRONIZE();
PROFILE_START("Main");
Utilities::setErrorHandlers();
auto filename = argv[1];
ScaLBL_IonModel IonModel(rank,nprocs,comm);
ScaLBL_Poisson PoissonSolver(rank,nprocs,comm);
ScaLBL_Multiphys_Controller Study(rank,nprocs,comm);//multiphysics controller coordinating multi-model coupling
// Load controller information
Study.ReadParams(filename);
// Load user input database files for Ion solvers
IonModel.ReadParams(filename);
IonModel.SetDomain();
IonModel.ReadInput();
IonModel.Create();
// Create analysis object
//ElectroChemistryAnalyzer Analysis(IonModel.Dm);
//IonModel.timestepMax = Study.getIonNumIter_PNP_coupling(StokesModel.time_conv,IonModel.time_conv);
IonModel.timestepMax = Study.getIonNumIter_NernstPlanck_coupling(IonModel.time_conv);
IonModel.Initialize();
// Get maximal time converting factor based on Sotkes and Ion solvers
//Study.getTimeConvMax_PNP_coupling(StokesModel.time_conv,IonModel.time_conv);
// Get time conversion factor for the main iteration loop in electrokinetic single fluid simulator
Study.time_conv_MainLoop = IonModel.timestepMax[0]*IonModel.time_conv[0];
//----------------------------------- print out for debugging ------------------------------------------//
if (rank==0){
for (size_t i=0;i<IonModel.timestepMax.size(),i++){
printf("Main loop time_conv computed from %ith ion: %.5g[s/lt]"%(IonModel.timestepMax[i]*IonModel.time_conv[i]));
}
}
//----------------------------------- print out for debugging ------------------------------------------//
// Initialize LB-Poisson model
PoissonSolver.ReadParams(filename);
PoissonSolver.SetDomain();
PoissonSolver.ReadInput();
PoissonSolver.Create();
PoissonSolver.Initialize(Study.time_conv_MainLoop);
if (rank == 0){
printf("********************************************************\n");
printf("Key Summary of LBPM electrokinetic single-fluid solver \n");
printf(" 1. Max LB Timestep: %i [lt]\n", Study.timestepMax);
printf(" 2. Time conversion factor per LB Timestep: %.6g [sec/lt]\n",Study.time_conv_MainLoop);
printf(" 3. Max Physical Time: %.6g [sec]\n",Study.timestepMax*Study.time_conv_MainLoop);
printf("********************************************************\n");
}
int timestep=0;
while (timestep < Study.timestepMax){
timestep++;
PoissonSolver.Run(IonModel.ChargeDensity,StokesModel.UseSlippingVelBC,timestep);//solve Poisson equtaion to get steady-state electrical potental
//StokesModel.Run_Lite(IonModel.ChargeDensity, PoissonSolver.ElectricField);// Solve the N-S equations to get velocity
IonModel.Run(IonModel.FluidVelocityDummy,PoissonSolver.ElectricField); //solve for ion transport and electric potential
//if (timestep%Study.analysis_interval==0){
// Analysis.Basic(IonModel,PoissonSolver,StokesModel,timestep);
//}
if (timestep%Study.visualization_interval==0){
//Analysis.WriteVis(IonModel,PoissonSolver,StokesModel,Study.db,timestep);
PoissonSolver.getElectricPotential_debug(timestep);
PoissonSolver.getElectricField_debug(timestep);
IonModel.getIonConcentration_debug(timestep);
//StokesModel.getVelocity(timestep);
}
}
//if (rank==0) printf("Save simulation raw data at maximum timestep\n");
//Analysis.WriteVis(IonModel,PoissonSolver,StokesModel,Study.db,timestep);
if (rank==0) printf("Maximum LB timestep = %i is reached and the simulation is completed\n",Study.timestepMax);
if (rank==0) printf("*************************************************************\n");
PROFILE_STOP("Main");
PROFILE_SAVE("lbpm_nernst_planck_simulator",1);
// ****************************************************
} // Limit scope so variables that contain communicators will free before MPI_Finialize
Utilities::shutdown();
}