refactor lbpm_serial_decomp

This commit is contained in:
James E McClure 2019-08-06 13:02:24 -04:00
parent 9663b13ffb
commit ed6853345c
2 changed files with 276 additions and 605 deletions

View File

@ -231,7 +231,8 @@ void Domain::Decomp(std::shared_ptr<Database> domain_db )
//....................................................................... //.......................................................................
// Reading the domain information file // Reading the domain information file
//....................................................................... //.......................................................................
int rank_offset = 0; int rank_offset = 0;
int rank = 0;
int nprocs, nprocx, nprocy, nprocz, nx, ny, nz; int nprocs, nprocx, nprocy, nprocz, nx, ny, nz;
int64_t global_Nx,global_Ny,global_Nz; int64_t global_Nx,global_Ny,global_Nz;
int64_t i,j,k,n; int64_t i,j,k,n;
@ -249,300 +250,297 @@ void Domain::Decomp(std::shared_ptr<Database> domain_db )
outlet_layers_z = 0; outlet_layers_z = 0;
checkerSize = 32; checkerSize = 32;
// read the input database if (rank() == rank){
//auto db = std::make_shared<Database>( filename ); // Read domain parameters
//auto domain_db = db->getDatabase( "Domain" ); auto Filename = domain_db->getScalar<std::string>( "Filename" );
//auto L = domain_db->getVector<double>( "L" );
// Read domain parameters auto size = domain_db->getVector<int>( "n" );
auto Filename = domain_db->getScalar<std::string>( "Filename" ); auto SIZE = domain_db->getVector<int>( "N" );
//auto L = domain_db->getVector<double>( "L" ); auto nproc = domain_db->getVector<int>( "nproc" );
auto size = domain_db->getVector<int>( "n" ); if (domain_db->keyExists( "offset" )){
auto SIZE = domain_db->getVector<int>( "N" ); auto offset = domain_db->getVector<int>( "offset" );
auto nproc = domain_db->getVector<int>( "nproc" ); xStart = offset[0];
if (domain_db->keyExists( "offset" )){ yStart = offset[1];
auto offset = domain_db->getVector<int>( "offset" ); zStart = offset[2];
xStart = offset[0]; }
yStart = offset[1]; if (domain_db->keyExists( "InletLayers" )){
zStart = offset[2]; auto InletCount = domain_db->getVector<int>( "InletLayers" );
} inlet_layers_x = InletCount[0];
if (domain_db->keyExists( "InletLayers" )){ inlet_layers_y = InletCount[1];
auto InletCount = domain_db->getVector<int>( "InletLayers" ); inlet_layers_z = InletCount[2];
inlet_layers_x = InletCount[0]; }
inlet_layers_y = InletCount[1]; if (domain_db->keyExists( "OutletLayers" )){
inlet_layers_z = InletCount[2]; auto OutletCount = domain_db->getVector<int>( "OutletLayers" );
} outlet_layers_x = OutletCount[0];
if (domain_db->keyExists( "OutletLayers" )){ outlet_layers_y = OutletCount[1];
auto OutletCount = domain_db->getVector<int>( "OutletLayers" ); outlet_layers_z = OutletCount[2];
outlet_layers_x = OutletCount[0]; }
outlet_layers_y = OutletCount[1]; if (domain_db->keyExists( "checkerSize" )){
outlet_layers_z = OutletCount[2]; checkerSize = domain_db->getScalar<int>( "checkerSize" );
} }
if (domain_db->keyExists( "checkerSize" )){ else {
checkerSize = domain_db->getScalar<int>( "checkerSize" ); checkerSize = SIZE[0];
} }
else { auto ReadValues = domain_db->getVector<int>( "ReadValues" );
checkerSize = SIZE[0]; auto WriteValues = domain_db->getVector<int>( "WriteValues" );
} auto ReadType = domain_db->getScalar<std::string>( "ReadType" );
auto ReadValues = domain_db->getVector<int>( "ReadValues" );
auto WriteValues = domain_db->getVector<int>( "WriteValues" );
auto ReadType = domain_db->getScalar<std::string>( "ReadType" );
if (ReadType == "8bit"){
}
else if (ReadType == "16bit"){
}
else{
printf("INPUT ERROR: Valid ReadType are 8bit, 16bit \n");
ReadType = "8bit";
}
nx = size[0];
ny = size[1];
nz = size[2];
nprocx = nproc[0];
nprocy = nproc[1];
nprocz = nproc[2];
global_Nx = SIZE[0];
global_Ny = SIZE[1];
global_Nz = SIZE[2];
printf("Input media: %s\n",Filename.c_str());
printf("Relabeling %lu values\n",ReadValues.size());
for (int idx=0; idx<ReadValues.size(); idx++){
int oldvalue=ReadValues[idx];
int newvalue=WriteValues[idx];
printf("oldvalue=%d, newvalue =%d \n",oldvalue,newvalue);
}
nprocs=nprocx*nprocy*nprocz;
char *SegData = NULL;
// Rank=0 reads the entire segmented data and distributes to worker processes
if (rank()==0){
printf("Dimensions of segmented image: %ld x %ld x %ld \n",global_Nx,global_Ny,global_Nz);
int64_t SIZE = global_Nx*global_Ny*global_Nz;
SegData = new char[SIZE];
if (ReadType == "8bit"){ if (ReadType == "8bit"){
printf("Reading 8-bit input data \n");
FILE *SEGDAT = fopen(Filename.c_str(),"rb");
if (SEGDAT==NULL) ERROR("Domain.cpp: Error reading segmented data");
size_t ReadSeg;
ReadSeg=fread(SegData,1,SIZE,SEGDAT);
if (ReadSeg != size_t(SIZE)) printf("Domain.cpp: Error reading segmented data \n");
fclose(SEGDAT);
} }
else if (ReadType == "16bit"){ else if (ReadType == "16bit"){
printf("Reading 16-bit input data \n");
short int *InputData;
InputData = new short int[SIZE];
FILE *SEGDAT = fopen(Filename.c_str(),"rb");
if (SEGDAT==NULL) ERROR("Domain.cpp: Error reading segmented data");
size_t ReadSeg;
ReadSeg=fread(InputData,2,SIZE,SEGDAT);
if (ReadSeg != size_t(SIZE)) printf("Domain.cpp: Error reading segmented data \n");
fclose(SEGDAT);
for (int n=0; n<SIZE; n++){
SegData[n] = char(InputData[n]);
}
} }
printf("Read segmented data from %s \n",Filename.c_str()); else{
} printf("INPUT ERROR: Valid ReadType are 8bit, 16bit \n");
ReadType = "8bit";
}
if (inlet_layers_x > 0){ nx = size[0];
// use checkerboard pattern ny = size[1];
printf("Checkerboard pattern at x inlet for %i layers \n",inlet_layers_x); nz = size[2];
for (int k = 0; k<global_Nz; k++){ nprocx = nproc[0];
for (int j = 0; j<global_Ny; j++){ nprocy = nproc[1];
for (int i = xStart; i < xStart+inlet_layers_x; i++){ nprocz = nproc[2];
if ( (j/checkerSize + k/checkerSize)%2 == 0){ global_Nx = SIZE[0];
// void checkers global_Ny = SIZE[1];
SegData[k*global_Nx*global_Ny+j*global_Nx+i] = 2; global_Nz = SIZE[2];
}
else{ printf("Input media: %s\n",Filename.c_str());
// solid checkers printf("Relabeling %lu values\n",ReadValues.size());
SegData[k*global_Nx*global_Ny+j*global_Nx+i] = 0; for (int idx=0; idx<ReadValues.size(); idx++){
} int oldvalue=ReadValues[idx];
int newvalue=WriteValues[idx];
printf("oldvalue=%d, newvalue =%d \n",oldvalue,newvalue);
}
nprocs=nprocx*nprocy*nprocz;
char *SegData = NULL;
// Rank=0 reads the entire segmented data and distributes to worker processes
if (rank==0){
printf("Dimensions of segmented image: %ld x %ld x %ld \n",global_Nx,global_Ny,global_Nz);
int64_t SIZE = global_Nx*global_Ny*global_Nz;
SegData = new char[SIZE];
if (ReadType == "8bit"){
printf("Reading 8-bit input data \n");
FILE *SEGDAT = fopen(Filename.c_str(),"rb");
if (SEGDAT==NULL) ERROR("Domain.cpp: Error reading segmented data");
size_t ReadSeg;
ReadSeg=fread(SegData,1,SIZE,SEGDAT);
if (ReadSeg != size_t(SIZE)) printf("Domain.cpp: Error reading segmented data \n");
fclose(SEGDAT);
}
else if (ReadType == "16bit"){
printf("Reading 16-bit input data \n");
short int *InputData;
InputData = new short int[SIZE];
FILE *SEGDAT = fopen(Filename.c_str(),"rb");
if (SEGDAT==NULL) ERROR("Domain.cpp: Error reading segmented data");
size_t ReadSeg;
ReadSeg=fread(InputData,2,SIZE,SEGDAT);
if (ReadSeg != size_t(SIZE)) printf("Domain.cpp: Error reading segmented data \n");
fclose(SEGDAT);
for (int n=0; n<SIZE; n++){
SegData[n] = char(InputData[n]);
} }
} }
printf("Read segmented data from %s \n",Filename.c_str());
} }
}
if (inlet_layers_y > 0){ if (inlet_layers_x > 0){
printf("Checkerboard pattern at y inlet for %i layers \n",inlet_layers_y); // use checkerboard pattern
// use checkerboard pattern printf("Checkerboard pattern at x inlet for %i layers \n",inlet_layers_x);
for (int k = 0; k<global_Nz; k++){ for (int k = 0; k<global_Nz; k++){
for (int j = yStart; i < yStart+inlet_layers_y; j++){ for (int j = 0; j<global_Ny; j++){
for (int i = 0; i<global_Nx; i++){ for (int i = xStart; i < xStart+inlet_layers_x; i++){
if ( (i/checkerSize + k/checkerSize)%2 == 0){ if ( (j/checkerSize + k/checkerSize)%2 == 0){
// void checkers // void checkers
SegData[k*global_Nx*global_Ny+j*global_Nx+i] = 2; SegData[k*global_Nx*global_Ny+j*global_Nx+i] = 2;
} }
else{ else{
// solid checkers // solid checkers
SegData[k*global_Nx*global_Ny+j*global_Nx+i] = 0; SegData[k*global_Nx*global_Ny+j*global_Nx+i] = 0;
}
}
}
}
}
if (inlet_layers_z > 0){
printf("Checkerboard pattern at z inlet for %i layers \n",inlet_layers_z);
// use checkerboard pattern
for (int k = zStart; k < zStart+inlet_layers_z; k++){
for (int j = 0; j<global_Ny; j++){
for (int i = 0; i<global_Nx; i++){
if ( (i/checkerSize+j/checkerSize)%2 == 0){
// void checkers
SegData[k*global_Nx*global_Ny+j*global_Nx+i] = 2;
}
else{
// solid checkers
SegData[k*global_Nx*global_Ny+j*global_Nx+i] = 0;
}
}
}
}
}
if (outlet_layers_x > 0){
// use checkerboard pattern
printf("Checkerboard pattern at x outlet for %i layers \n",outlet_layers_x);
for (int k = 0; k<global_Nz; k++){
for (int j = 0; j<global_Ny; j++){
for (int i = xStart + nx*nprocx - outlet_layers_x; i < xStart + nx*nprocx; i++){
if ( (j/checkerSize + k/checkerSize)%2 == 0){
// void checkers
SegData[k*global_Nx*global_Ny+j*global_Nx+i] = 2;
}
else{
// solid checkers
SegData[k*global_Nx*global_Ny+j*global_Nx+i] = 0;
}
}
}
}
}
if (outlet_layers_y > 0){
printf("Checkerboard pattern at y outlet for %i layers \n",outlet_layers_y);
// use checkerboard pattern
for (int k = 0; k<global_Nz; k++){
for (int j = yStart + ny*nprocy - outlet_layers_y; i < yStart + ny*nprocy; j++){
for (int i = 0; i<global_Nx; i++){
if ( (i/checkerSize + k/checkerSize)%2 == 0){
// void checkers
SegData[k*global_Nx*global_Ny+j*global_Nx+i] = 2;
}
else{
// solid checkers
SegData[k*global_Nx*global_Ny+j*global_Nx+i] = 0;
}
}
}
}
}
if (outlet_layers_z > 0){
printf("Checkerboard pattern at z outlet for %i layers \n",outlet_layers_z);
// use checkerboard pattern
for (int k = zStart + nz*nprocz - outlet_layers_z; k < zStart + nz*nprocz; k++){
for (int j = 0; j<global_Ny; j++){
for (int i = 0; i<global_Nx; i++){
if ( (i/checkerSize+j/checkerSize)%2 == 0){
// void checkers
SegData[k*global_Nx*global_Ny+j*global_Nx+i] = 2;
}
else{
// solid checkers
SegData[k*global_Nx*global_Ny+j*global_Nx+i] = 0;
}
}
}
}
}
// Get the rank info
int64_t N = (nx+2)*(ny+2)*(nz+2);
// number of sites to use for periodic boundary condition transition zone
int64_t z_transition_size = (nprocz*nz - (global_Nz - zStart))/2;
if (z_transition_size < 0) z_transition_size=0;
char LocalRankFilename[40];
char *loc_id;
loc_id = new char [(nx+2)*(ny+2)*(nz+2)];
std::vector<int> LabelCount(ReadValues.size(),0);
// Set up the sub-domains
if (rank()==0){
printf("Distributing subdomains across %i processors \n",nprocs);
printf("Process grid: %i x %i x %i \n",nprocx,nprocy,nprocz);
printf("Subdomain size: %i x %i x %i \n",nx,ny,nz);
printf("Size of transition region: %ld \n", z_transition_size);
for (int kp=0; kp<nprocz; kp++){
for (int jp=0; jp<nprocy; jp++){
for (int ip=0; ip<nprocx; ip++){
// rank of the process that gets this subdomain
int rnk = kp*nprocx*nprocy + jp*nprocx + ip;
// Pack and send the subdomain for rnk
for (k=0;k<nz+2;k++){
for (j=0;j<ny+2;j++){
for (i=0;i<nx+2;i++){
int64_t x = xStart + ip*nx + i-1;
int64_t y = yStart + jp*ny + j-1;
// int64_t z = zStart + kp*nz + k-1;
int64_t z = zStart + kp*nz + k-1 - z_transition_size;
if (x<xStart) x=xStart;
if (!(x<global_Nx)) x=global_Nx-1;
if (y<yStart) y=yStart;
if (!(y<global_Ny)) y=global_Ny-1;
if (z<zStart) z=zStart;
if (!(z<global_Nz)) z=global_Nz-1;
int64_t nlocal = k*(nx+2)*(ny+2) + j*(nx+2) + i;
int64_t nglobal = z*global_Nx*global_Ny+y*global_Nx+x;
loc_id[nlocal] = SegData[nglobal];
}
} }
} }
// relabel the data }
for (k=0;k<nz+2;k++){ }
for (j=0;j<ny+2;j++){ }
for (i=0;i<nx+2;i++){
n = k*(nx+2)*(ny+2) + j*(nx+2) + i;; if (inlet_layers_y > 0){
char locval = loc_id[n]; printf("Checkerboard pattern at y inlet for %i layers \n",inlet_layers_y);
for (int idx=0; idx<ReadValues.size(); idx++){ // use checkerboard pattern
signed char oldvalue=ReadValues[idx]; for (int k = 0; k<global_Nz; k++){
signed char newvalue=WriteValues[idx]; for (int j = yStart; i < yStart+inlet_layers_y; j++){
if (locval == oldvalue){ for (int i = 0; i<global_Nx; i++){
loc_id[n] = newvalue; if ( (i/checkerSize + k/checkerSize)%2 == 0){
LabelCount[idx]++; // void checkers
idx = ReadValues.size(); SegData[k*global_Nx*global_Ny+j*global_Nx+i] = 2;
} }
else{
// solid checkers
SegData[k*global_Nx*global_Ny+j*global_Nx+i] = 0;
}
}
}
}
}
if (inlet_layers_z > 0){
printf("Checkerboard pattern at z inlet for %i layers \n",inlet_layers_z);
// use checkerboard pattern
for (int k = zStart; k < zStart+inlet_layers_z; k++){
for (int j = 0; j<global_Ny; j++){
for (int i = 0; i<global_Nx; i++){
if ( (i/checkerSize+j/checkerSize)%2 == 0){
// void checkers
SegData[k*global_Nx*global_Ny+j*global_Nx+i] = 2;
}
else{
// solid checkers
SegData[k*global_Nx*global_Ny+j*global_Nx+i] = 0;
}
}
}
}
}
if (outlet_layers_x > 0){
// use checkerboard pattern
printf("Checkerboard pattern at x outlet for %i layers \n",outlet_layers_x);
for (int k = 0; k<global_Nz; k++){
for (int j = 0; j<global_Ny; j++){
for (int i = xStart + nx*nprocx - outlet_layers_x; i < xStart + nx*nprocx; i++){
if ( (j/checkerSize + k/checkerSize)%2 == 0){
// void checkers
SegData[k*global_Nx*global_Ny+j*global_Nx+i] = 2;
}
else{
// solid checkers
SegData[k*global_Nx*global_Ny+j*global_Nx+i] = 0;
}
}
}
}
}
if (outlet_layers_y > 0){
printf("Checkerboard pattern at y outlet for %i layers \n",outlet_layers_y);
// use checkerboard pattern
for (int k = 0; k<global_Nz; k++){
for (int j = yStart + ny*nprocy - outlet_layers_y; i < yStart + ny*nprocy; j++){
for (int i = 0; i<global_Nx; i++){
if ( (i/checkerSize + k/checkerSize)%2 == 0){
// void checkers
SegData[k*global_Nx*global_Ny+j*global_Nx+i] = 2;
}
else{
// solid checkers
SegData[k*global_Nx*global_Ny+j*global_Nx+i] = 0;
}
}
}
}
}
if (outlet_layers_z > 0){
printf("Checkerboard pattern at z outlet for %i layers \n",outlet_layers_z);
// use checkerboard pattern
for (int k = zStart + nz*nprocz - outlet_layers_z; k < zStart + nz*nprocz; k++){
for (int j = 0; j<global_Ny; j++){
for (int i = 0; i<global_Nx; i++){
if ( (i/checkerSize+j/checkerSize)%2 == 0){
// void checkers
SegData[k*global_Nx*global_Ny+j*global_Nx+i] = 2;
}
else{
// solid checkers
SegData[k*global_Nx*global_Ny+j*global_Nx+i] = 0;
}
}
}
}
}
// Get the rank info
int64_t N = (nx+2)*(ny+2)*(nz+2);
// number of sites to use for periodic boundary condition transition zone
int64_t z_transition_size = (nprocz*nz - (global_Nz - zStart))/2;
if (z_transition_size < 0) z_transition_size=0;
char LocalRankFilename[40];
char *loc_id;
loc_id = new char [(nx+2)*(ny+2)*(nz+2)];
std::vector<int> LabelCount(ReadValues.size(),0);
// Set up the sub-domains
if (rank==0){
printf("Distributing subdomains across %i processors \n",nprocs);
printf("Process grid: %i x %i x %i \n",nprocx,nprocy,nprocz);
printf("Subdomain size: %i x %i x %i \n",nx,ny,nz);
printf("Size of transition region: %ld \n", z_transition_size);
for (int kp=0; kp<nprocz; kp++){
for (int jp=0; jp<nprocy; jp++){
for (int ip=0; ip<nprocx; ip++){
// rank of the process that gets this subdomain
int rnk = kp*nprocx*nprocy + jp*nprocx + ip;
// Pack and send the subdomain for rnk
for (k=0;k<nz+2;k++){
for (j=0;j<ny+2;j++){
for (i=0;i<nx+2;i++){
int64_t x = xStart + ip*nx + i-1;
int64_t y = yStart + jp*ny + j-1;
// int64_t z = zStart + kp*nz + k-1;
int64_t z = zStart + kp*nz + k-1 - z_transition_size;
if (x<xStart) x=xStart;
if (!(x<global_Nx)) x=global_Nx-1;
if (y<yStart) y=yStart;
if (!(y<global_Ny)) y=global_Ny-1;
if (z<zStart) z=zStart;
if (!(z<global_Nz)) z=global_Nz-1;
int64_t nlocal = k*(nx+2)*(ny+2) + j*(nx+2) + i;
int64_t nglobal = z*global_Nx*global_Ny+y*global_Nx+x;
loc_id[nlocal] = SegData[nglobal];
} }
//if (loc_id[n]==char(SOLID)) loc_id[n] = 0;
//else if (loc_id[n]==char(NWP)) loc_id[n] = 1;
//else loc_id[n] = 2;
} }
} }
} // relabel the data
for (k=0;k<nz+2;k++){
for (j=0;j<ny+2;j++){
for (i=0;i<nx+2;i++){
n = k*(nx+2)*(ny+2) + j*(nx+2) + i;;
char locval = loc_id[n];
for (int idx=0; idx<ReadValues.size(); idx++){
signed char oldvalue=ReadValues[idx];
signed char newvalue=WriteValues[idx];
if (locval == oldvalue){
loc_id[n] = newvalue;
LabelCount[idx]++;
idx = ReadValues.size();
}
}
//if (loc_id[n]==char(SOLID)) loc_id[n] = 0;
//else if (loc_id[n]==char(NWP)) loc_id[n] = 1;
//else loc_id[n] = 2;
// Write the data for this rank data }
sprintf(LocalRankFilename,"ID.%05i",rnk+rank_offset); }
FILE *ID = fopen(LocalRankFilename,"wb"); }
fwrite(loc_id,1,(nx+2)*(ny+2)*(nz+2),ID);
fclose(ID); // Write the data for this rank data
sprintf(LocalRankFilename,"ID.%05i",rnk+rank_offset);
FILE *ID = fopen(LocalRankFilename,"wb");
fwrite(loc_id,1,(nx+2)*(ny+2)*(nz+2),ID);
fclose(ID);
}
} }
} }
} }
for (int idx=0; idx<ReadValues.size(); idx++){
int label=ReadValues[idx];
int count=LabelCount[idx];
printf("Label=%d, Count=%d \n",label,count);
}
} }
for (int idx=0; idx<ReadValues.size(); idx++){
int label=ReadValues[idx];
int count=LabelCount[idx];
printf("Label=%d, Count=%d \n",label,count);
}
} }
/******************************************************** /********************************************************

View File

@ -17,25 +17,6 @@ int main(int argc, char **argv)
{ {
int rank=0; int rank=0;
/* bool MULTINPUT=false;
int NWP,SOLID,rank_offset;
SOLID=atoi(argv[1]);
NWP=atoi(argv[2]);
if (rank==0){
printf("Solid Label: %i \n",SOLID);
printf("NWP Label: %i \n",NWP);
}
if (argc > 3){
rank_offset = atoi(argv[3]);
}
else{
MULTINPUT=true;
rank_offset=0;
}
*/
string filename; string filename;
if (argc > 1) if (argc > 1)
filename=argv[1]; filename=argv[1];
@ -44,320 +25,12 @@ int main(int argc, char **argv)
} }
int rank_offset=0; int rank_offset=0;
//.......................................................................
// Reading the domain information file
//.......................................................................
int nprocs, nprocx, nprocy, nprocz, nx, ny, nz, nspheres;
double Lx, Ly, Lz;
int64_t Nx,Ny,Nz;
int64_t i,j,k,n;
int BC=0;
int64_t xStart,yStart,zStart;
int checkerSize;
int inlet_count_x, inlet_count_y, inlet_count_z;
int outlet_count_x, outlet_count_y, outlet_count_z;
// char fluidValue,solidValue;
xStart=yStart=zStart=0;
inlet_count_x = 0;
inlet_count_y = 0;
inlet_count_z = 0;
outlet_count_x = 0;
outlet_count_y = 0;
outlet_count_z = 0;
checkerSize = 32;
// read the input database // read the input database
auto db = std::make_shared<Database>( filename ); auto db = std::make_shared<Database>( filename );
auto domain_db = db->getDatabase( "Domain" ); auto domain_db = db->getDatabase( "Domain" );
// Read domain parameters std::shared_ptr<Domain> Dm (new Domain(domain_db,comm));
auto Filename = domain_db->getScalar<std::string>( "Filename" );
//auto L = domain_db->getVector<double>( "L" );
auto size = domain_db->getVector<int>( "n" );
auto SIZE = domain_db->getVector<int>( "N" );
auto nproc = domain_db->getVector<int>( "nproc" );
if (domain_db->keyExists( "offset" )){
auto offset = domain_db->getVector<int>( "offset" );
xStart = offset[0];
yStart = offset[1];
zStart = offset[2];
}
if (domain_db->keyExists( "InletLayers" )){
auto InletCount = domain_db->getVector<int>( "InletLayers" );
inlet_count_x = InletCount[0];
inlet_count_y = InletCount[1];
inlet_count_z = InletCount[2];
}
if (domain_db->keyExists( "OutletLayers" )){
auto OutletCount = domain_db->getVector<int>( "OutletLayers" );
outlet_count_x = OutletCount[0];
outlet_count_y = OutletCount[1];
outlet_count_z = OutletCount[2];
}
if (domain_db->keyExists( "checkerSize" )){
checkerSize = domain_db->getScalar<int>( "checkerSize" );
}
else {
checkerSize = SIZE[0];
}
auto ReadValues = domain_db->getVector<int>( "ReadValues" );
auto WriteValues = domain_db->getVector<int>( "WriteValues" );
auto ReadType = domain_db->getScalar<std::string>( "ReadType" );
if (ReadType == "8bit"){
}
else if (ReadType == "16bit"){
}
else{
printf("INPUT ERROR: Valid ReadType are 8bit, 16bit \n");
ReadType = "8bit";
}
nx = size[0]; Dm->Decomp(domain_db);
ny = size[1];
nz = size[2];
nprocx = nproc[0];
nprocy = nproc[1];
nprocz = nproc[2];
Nx = SIZE[0];
Ny = SIZE[1];
Nz = SIZE[2];
printf("Input media: %s\n",Filename.c_str());
printf("Relabeling %lu values\n",ReadValues.size());
for (int idx=0; idx<ReadValues.size(); idx++){
int oldvalue=ReadValues[idx];
int newvalue=WriteValues[idx];
printf("oldvalue=%d, newvalue =%d \n",oldvalue,newvalue);
}
nprocs=nprocx*nprocy*nprocz;
char *SegData = NULL;
// Rank=0 reads the entire segmented data and distributes to worker processes
if (rank==0){
printf("Dimensions of segmented image: %ld x %ld x %ld \n",Nx,Ny,Nz);
int64_t SIZE = Nx*Ny*Nz;
SegData = new char[SIZE];
if (ReadType == "8bit"){
printf("Reading 8-bit input data \n");
FILE *SEGDAT = fopen(Filename.c_str(),"rb");
if (SEGDAT==NULL) ERROR("Error reading segmented data");
size_t ReadSeg;
ReadSeg=fread(SegData,1,SIZE,SEGDAT);
if (ReadSeg != size_t(SIZE)) printf("lbpm_segmented_decomp: Error reading segmented data (rank=%i)\n",rank);
fclose(SEGDAT);
}
else if (ReadType == "16bit"){
printf("Reading 16-bit input data \n");
short int *InputData;
InputData = new short int[SIZE];
FILE *SEGDAT = fopen(Filename.c_str(),"rb");
if (SEGDAT==NULL) ERROR("Error reading segmented data");
size_t ReadSeg;
ReadSeg=fread(InputData,2,SIZE,SEGDAT);
if (ReadSeg != size_t(SIZE)) printf("lbpm_segmented_decomp: Error reading segmented data (rank=%i)\n",rank);
fclose(SEGDAT);
for (int n=0; n<SIZE; n++){
SegData[n] = char(InputData[n]);
}
}
printf("Read segmented data from %s \n",Filename.c_str());
}
if (inlet_count_x > 0){
// use checkerboard pattern
printf("Checkerboard pattern at x inlet for %i layers \n",inlet_count_x);
for (int k = 0; k<Nz; k++){
for (int j = 0; j<Ny; j++){
for (int i = xStart; i < xStart+inlet_count_x; i++){
if ( (j/checkerSize + k/checkerSize)%2 == 0){
// void checkers
SegData[k*Nx*Ny+j*Nx+i] = 2;
}
else{
// solid checkers
SegData[k*Nx*Ny+j*Nx+i] = 0;
}
}
}
}
}
if (inlet_count_y > 0){
printf("Checkerboard pattern at y inlet for %i layers \n",inlet_count_y);
// use checkerboard pattern
for (int k = 0; k<Nz; k++){
for (int j = yStart; i < yStart+inlet_count_y; j++){
for (int i = 0; i<Nx; i++){
if ( (i/checkerSize + k/checkerSize)%2 == 0){
// void checkers
SegData[k*Nx*Ny+j*Nx+i] = 2;
}
else{
// solid checkers
SegData[k*Nx*Ny+j*Nx+i] = 0;
}
}
}
}
}
if (inlet_count_z > 0){
printf("Checkerboard pattern at z inlet for %i layers \n",inlet_count_z);
// use checkerboard pattern
for (int k = zStart; k < zStart+inlet_count_z; k++){
for (int j = 0; j<Ny; j++){
for (int i = 0; i<Nx; i++){
if ( (i/checkerSize+j/checkerSize)%2 == 0){
// void checkers
SegData[k*Nx*Ny+j*Nx+i] = 2;
}
else{
// solid checkers
SegData[k*Nx*Ny+j*Nx+i] = 0;
}
}
}
}
}
if (outlet_count_x > 0){
// use checkerboard pattern
printf("Checkerboard pattern at x outlet for %i layers \n",outlet_count_x);
for (int k = 0; k<Nz; k++){
for (int j = 0; j<Ny; j++){
for (int i = xStart + nx*nprocx - outlet_count_x; i < xStart + nx*nprocx; i++){
if ( (j/checkerSize + k/checkerSize)%2 == 0){
// void checkers
SegData[k*Nx*Ny+j*Nx+i] = 2;
}
else{
// solid checkers
SegData[k*Nx*Ny+j*Nx+i] = 0;
}
}
}
}
}
if (outlet_count_y > 0){
printf("Checkerboard pattern at y outlet for %i layers \n",outlet_count_y);
// use checkerboard pattern
for (int k = 0; k<Nz; k++){
for (int j = yStart + ny*nprocy - outlet_count_y; i < yStart + ny*nprocy; j++){
for (int i = 0; i<Nx; i++){
if ( (i/checkerSize + k/checkerSize)%2 == 0){
// void checkers
SegData[k*Nx*Ny+j*Nx+i] = 2;
}
else{
// solid checkers
SegData[k*Nx*Ny+j*Nx+i] = 0;
}
}
}
}
}
if (outlet_count_z > 0){
printf("Checkerboard pattern at z outlet for %i layers \n",outlet_count_z);
// use checkerboard pattern
for (int k = zStart + nz*nprocz - outlet_count_z; k < zStart + nz*nprocz; k++){
for (int j = 0; j<Ny; j++){
for (int i = 0; i<Nx; i++){
if ( (i/checkerSize+j/checkerSize)%2 == 0){
// void checkers
SegData[k*Nx*Ny+j*Nx+i] = 2;
}
else{
// solid checkers
SegData[k*Nx*Ny+j*Nx+i] = 0;
}
}
}
}
}
// Get the rank info
int64_t N = (nx+2)*(ny+2)*(nz+2);
// number of sites to use for periodic boundary condition transition zone
int64_t z_transition_size = (nprocz*nz - (Nz - zStart))/2;
if (z_transition_size < 0) z_transition_size=0;
char LocalRankFilename[40];
char *loc_id;
loc_id = new char [(nx+2)*(ny+2)*(nz+2)];
std::vector<int> LabelCount(ReadValues.size(),0);
// Set up the sub-domains
if (rank==0){
printf("Distributing subdomains across %i processors \n",nprocs);
printf("Process grid: %i x %i x %i \n",nprocx,nprocy,nprocz);
printf("Subdomain size: %i x %i x %i \n",nx,ny,nz);
printf("Size of transition region: %ld \n", z_transition_size);
for (int kp=0; kp<nprocz; kp++){
for (int jp=0; jp<nprocy; jp++){
for (int ip=0; ip<nprocx; ip++){
// rank of the process that gets this subdomain
int rnk = kp*nprocx*nprocy + jp*nprocx + ip;
// Pack and send the subdomain for rnk
for (k=0;k<nz+2;k++){
for (j=0;j<ny+2;j++){
for (i=0;i<nx+2;i++){
int64_t x = xStart + ip*nx + i-1;
int64_t y = yStart + jp*ny + j-1;
// int64_t z = zStart + kp*nz + k-1;
int64_t z = zStart + kp*nz + k-1 - z_transition_size;
if (x<xStart) x=xStart;
if (!(x<Nx)) x=Nx-1;
if (y<yStart) y=yStart;
if (!(y<Ny)) y=Ny-1;
if (z<zStart) z=zStart;
if (!(z<Nz)) z=Nz-1;
int64_t nlocal = k*(nx+2)*(ny+2) + j*(nx+2) + i;
int64_t nglobal = z*Nx*Ny+y*Nx+x;
loc_id[nlocal] = SegData[nglobal];
}
}
}
// relabel the data
for (k=0;k<nz+2;k++){
for (j=0;j<ny+2;j++){
for (i=0;i<nx+2;i++){
n = k*(nx+2)*(ny+2) + j*(nx+2) + i;;
char locval = loc_id[n];
for (int idx=0; idx<ReadValues.size(); idx++){
signed char oldvalue=ReadValues[idx];
signed char newvalue=WriteValues[idx];
if (locval == oldvalue){
loc_id[n] = newvalue;
LabelCount[idx]++;
idx = ReadValues.size();
}
}
//if (loc_id[n]==char(SOLID)) loc_id[n] = 0;
//else if (loc_id[n]==char(NWP)) loc_id[n] = 1;
//else loc_id[n] = 2;
}
}
}
// Write the data for this rank data
sprintf(LocalRankFilename,"ID.%05i",rnk+rank_offset);
FILE *ID = fopen(LocalRankFilename,"wb");
fwrite(loc_id,1,(nx+2)*(ny+2)*(nz+2),ID);
fclose(ID);
}
}
}
}
for (int idx=0; idx<ReadValues.size(); idx++){
int label=ReadValues[idx];
int count=LabelCount[idx];
printf("Label=%d, Count=%d \n",label,count);
}
} }