#include #include extern "C" void ScaLBL_D3Q7_Membrane_AssignLinkCoef(int *membrane, int *Map, double *Distance, double *Psi, double *coef, double Threshold, double MassFractionIn, double MassFractionOut, double ThresholdMassFractionIn, double ThresholdMassFractionOut, int memLinks, int Nx, int Ny, int Nz, int Np){ int link,iq,ip,nq,np,nqm,npm; double aq, ap, membranePotential; //double dq, dp, dist, orientation; /* Interior Links */ for (link=0; link Threshold){ aq = ThresholdMassFractionIn; ap = ThresholdMassFractionOut; } /* Save the mass transfer coefficients */ //coef[2*link] = aq*orientation; coef[2*link+1] = ap*orientation; coef[2*link] = aq; coef[2*link+1] = ap; } } extern "C" void ScaLBL_D3Q7_Membrane_AssignLinkCoef_halo( const int Cqx, const int Cqy, int const Cqz, int *Map, double *Distance, double *Psi, double Threshold, double MassFractionIn, double MassFractionOut, double ThresholdMassFractionIn, double ThresholdMassFractionOut, int *d3q7_recvlist, int *d3q7_linkList, double *coef, int start, int nlinks, int count, const int N, const int Nx, const int Ny, const int Nz) { //.................................................................................... // Unack distribution from the recv buffer // Distribution q matche Cqx, Cqy, Cqz // swap rule means that the distributions in recvbuf are OPPOSITE of q // dist may be even or odd distributions stored by stream layout //.................................................................................... int n, idx, label, nqm, npm, i, j, k; double distanceLocal;//, distanceNonlocal; double psiLocal, psiNonlocal, membranePotential; double ap,aq; // coefficient for (idx = 0; idx < count; idx++) { n = d3q7_recvlist[idx]; label = d3q7_linkList[idx]; ap = 1.0; // regular streaming rule aq = 1.0; if (label > 0 && !(n < 0)){ nqm = Map[n]; distanceLocal = Distance[nqm]; psiLocal = Psi[nqm]; // Get the 3-D indices from the send process k = nqm/(Nx*Ny); j = (nqm-Nx*Ny*k)/Nx; i = nqm-Nx*Ny*k-Nx*j; // Streaming link the non-local distribution i -= Cqx; j -= Cqy; k -= Cqz; npm = k*Nx*Ny + j*Nx + i; //distanceNonlocal = Distance[npm]; psiNonlocal = Psi[npm]; membranePotential = psiLocal - psiNonlocal; aq = MassFractionIn; ap = MassFractionOut; /* link is inside membrane */ if (distanceLocal > 0.0){ if (membranePotential < Threshold*(-1.0)){ ap = MassFractionIn; aq = MassFractionOut; } else { ap = ThresholdMassFractionIn; aq = ThresholdMassFractionOut; } } else if (membranePotential > Threshold){ aq = ThresholdMassFractionIn; ap = ThresholdMassFractionOut; } } coef[2*idx]=aq; coef[2*idx+1]=ap; } } extern "C" void ScaLBL_D3Q7_Membrane_Unpack(int q, int *d3q7_recvlist, double *recvbuf, int count, double *dist, int N, double *coef) { //.................................................................................... // Unack distribution from the recv buffer // Distribution q matche Cqx, Cqy, Cqz // swap rule means that the distributions in recvbuf are OPPOSITE of q // dist may be even or odd distributions stored by stream layout //.................................................................................... int n, idx; double fq,fp,fqq,ap,aq; // coefficient /* First unpack the regular links */ for (idx = 0; idx < count; idx++) { n = d3q7_recvlist[idx]; // update link based on mass transfer coefficients if (!(n < 0)){ aq = coef[2*idx]; ap = coef[2*idx+1]; fq = dist[q * N + n]; fp = recvbuf[idx]; fqq = (1-aq)*fq+ap*fp; dist[q * N + n] = fqq; } //printf(" LINK: site=%i, index=%i \n", n, idx); } } extern "C" void ScaLBL_D3Q7_Membrane_IonTransport(int *membrane, double *coef, double *dist, double *Den, int memLinks, int Np){ int link,iq,ip,nq,np; double aq, ap, fq, fp, fqq, fpp, Cq, Cp; for (link=0; link 10Np => odd part of dist) f1 = dist[nr1]; // reading the f1 data into register fq // q=2 nr2 = neighborList[n + Np]; // neighbor 1 ( < 10Np => even part of dist) f2 = dist[nr2]; // reading the f2 data into register fq // q=3 nr3 = neighborList[n + 2 * Np]; // neighbor 4 f3 = dist[nr3]; // q=4 nr4 = neighborList[n + 3 * Np]; // neighbor 3 f4 = dist[nr4]; // q=5 nr5 = neighborList[n + 4 * Np]; f5 = dist[nr5]; // q=6 nr6 = neighborList[n + 5 * Np]; f6 = dist[nr6]; // compute diffusive flux //Ci = f0 + f1 + f2 + f3 + f4 + f5 + f6; flux_diffusive_x = (1.0 - 0.5 * rlx) * ((f1 - f2) - ux * Ci); flux_diffusive_y = (1.0 - 0.5 * rlx) * ((f3 - f4) - uy * Ci); flux_diffusive_z = (1.0 - 0.5 * rlx) * ((f5 - f6) - uz * Ci); FluxDiffusive[n + 0 * Np] = flux_diffusive_x; FluxDiffusive[n + 1 * Np] = flux_diffusive_y; FluxDiffusive[n + 2 * Np] = flux_diffusive_z; FluxAdvective[n + 0 * Np] = ux * Ci; FluxAdvective[n + 1 * Np] = uy * Ci; FluxAdvective[n + 2 * Np] = uz * Ci; FluxElectrical[n + 0 * Np] = uEPx * Ci; FluxElectrical[n + 1 * Np] = uEPy * Ci; FluxElectrical[n + 2 * Np] = uEPz * Ci; //Den[n] = Ci; /* use logistic function to prevent negative distributions*/ //X = 4.0 * (ux + uEPx); //Y = 4.0 * (uy + uEPy); //Z = 4.0 * (uz + uEPz); //factor_x = X / sqrt(1 + X*X); //factor_y = Y / sqrt(1 + Y*Y); //factor_z = Z / sqrt(1 + Z*Z); // q=0 dist[n] = f0 * (1.0 - rlx) + rlx * 0.25 * Ci; // q = 1 dist[nr2] = f1 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + 4.0 * (ux + uEPx)); // f1 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + factor_x); // q=2 dist[nr1] = f2 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - 4.0 * (ux + uEPx)); // f2 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - factor_x); // q = 3 dist[nr4] = f3 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + 4.0 * (uy + uEPy)); // f3 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + factor_y ); // q = 4 dist[nr3] = f4 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - 4.0 * (uy + uEPy)); // f4 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - factor_y); // q = 5 dist[nr6] = f5 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + 4.0 * (uz + uEPz)); // f5 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + factor_z); // q = 6 dist[nr5] = f6 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - 4.0 * (uz + uEPz)); // f6 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - factor_z); } } extern "C" void ScaLBL_D3Q7_AAeven_Ion_v0( double *dist, double *Den, double *FluxDiffusive, double *FluxAdvective, double *FluxElectrical, double *Velocity, double *ElectricField, double Di, int zi, double rlx, double Vt, int start, int finish, int Np) { int n; double Ci; double ux, uy, uz; double uEPx, uEPy, uEPz; //electrochemical induced velocity double Ex, Ey, Ez; //electrical field double flux_diffusive_x, flux_diffusive_y, flux_diffusive_z; double f0, f1, f2, f3, f4, f5, f6; //double X,Y,Z, factor_x, factor_y, factor_z; for (n = start; n < finish; n++) { //Load data Ci = Den[n]; Ex = ElectricField[n + 0 * Np]; Ey = ElectricField[n + 1 * Np]; Ez = ElectricField[n + 2 * Np]; ux = Velocity[n + 0 * Np]; uy = Velocity[n + 1 * Np]; uz = Velocity[n + 2 * Np]; uEPx = zi * Di / Vt * Ex; uEPy = zi * Di / Vt * Ey; uEPz = zi * Di / Vt * Ez; f0 = dist[n]; f1 = dist[2 * Np + n]; f2 = dist[1 * Np + n]; f3 = dist[4 * Np + n]; f4 = dist[3 * Np + n]; f5 = dist[6 * Np + n]; f6 = dist[5 * Np + n]; // compute diffusive flux //Ci = f0 + f1 + f2 + f3 + f4 + f5 + f6; flux_diffusive_x = (1.0 - 0.5 * rlx) * ((f1 - f2) - ux * Ci); flux_diffusive_y = (1.0 - 0.5 * rlx) * ((f3 - f4) - uy * Ci); flux_diffusive_z = (1.0 - 0.5 * rlx) * ((f5 - f6) - uz * Ci); FluxDiffusive[n + 0 * Np] = flux_diffusive_x; FluxDiffusive[n + 1 * Np] = flux_diffusive_y; FluxDiffusive[n + 2 * Np] = flux_diffusive_z; FluxAdvective[n + 0 * Np] = ux * Ci; FluxAdvective[n + 1 * Np] = uy * Ci; FluxAdvective[n + 2 * Np] = uz * Ci; FluxElectrical[n + 0 * Np] = uEPx * Ci; FluxElectrical[n + 1 * Np] = uEPy * Ci; FluxElectrical[n + 2 * Np] = uEPz * Ci; //Den[n] = Ci; /* use logistic function to prevent negative distributions*/ //X = 4.0 * (ux + uEPx); //Y = 4.0 * (uy + uEPy); //Z = 4.0 * (uz + uEPz); //factor_x = X / sqrt(1 + X*X); //factor_y = Y / sqrt(1 + Y*Y); //factor_z = Z / sqrt(1 + Z*Z); // q=0 dist[n] = f0 * (1.0 - rlx) + rlx * 0.25 * Ci; // q = 1 dist[1 * Np + n] = f1 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + 4.0 * (ux + uEPx)); // f1 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + factor_x); // q=2 dist[2 * Np + n] = f2 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - 4.0 * (ux + uEPx)); // f2 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - factor_x); // q = 3 dist[3 * Np + n] = f3 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + 4.0 * (uy + uEPy)); // f3 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + factor_y); // q = 4 dist[4 * Np + n] = f4 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - 4.0 * (uy + uEPy)); // f4 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - factor_y); // q = 5 dist[5 * Np + n] = f5 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + 4.0 * (uz + uEPz)); // f5 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + factor_z); // q = 6 dist[6 * Np + n] = f6 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - 4.0 * (uz + uEPz)); // f6 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - factor_z); } } extern "C" void ScaLBL_D3Q7_AAodd_Ion(int *neighborList, double *dist, double *Den, double *FluxDiffusive, double *FluxAdvective, double *FluxElectrical, double *Velocity, double *ElectricField, double Di, int zi, double rlx, double Vt, int start, int finish, int Np) { int n; double Ci; double ux, uy, uz; double uEPx, uEPy, uEPz; //electrochemical induced velocity double Ex, Ey, Ez; //electrical field double flux_diffusive_x, flux_diffusive_y, flux_diffusive_z; double f0, f1, f2, f3, f4, f5, f6; //double X,Y,Z,factor_x, factor_y, factor_z; int nr1, nr2, nr3, nr4, nr5, nr6; for (n = start; n < finish; n++) { //Load data //Ci = Den[n]; Ex = ElectricField[n + 0 * Np]; Ey = ElectricField[n + 1 * Np]; Ez = ElectricField[n + 2 * Np]; ux = Velocity[n + 0 * Np]; uy = Velocity[n + 1 * Np]; uz = Velocity[n + 2 * Np]; uEPx = zi * Di / Vt * Ex; uEPy = zi * Di / Vt * Ey; uEPz = zi * Di / Vt * Ez; // q=0 f0 = dist[n]; // q=1 nr1 = neighborList[n]; // neighbor 2 ( > 10Np => odd part of dist) f1 = dist[nr1]; // reading the f1 data into register fq // q=2 nr2 = neighborList[n + Np]; // neighbor 1 ( < 10Np => even part of dist) f2 = dist[nr2]; // reading the f2 data into register fq // q=3 nr3 = neighborList[n + 2 * Np]; // neighbor 4 f3 = dist[nr3]; // q=4 nr4 = neighborList[n + 3 * Np]; // neighbor 3 f4 = dist[nr4]; // q=5 nr5 = neighborList[n + 4 * Np]; f5 = dist[nr5]; // q=6 nr6 = neighborList[n + 5 * Np]; f6 = dist[nr6]; // compute diffusive flux Ci = f0 + f1 + f2 + f3 + f4 + f5 + f6; flux_diffusive_x = (1.0 - 0.5 * rlx) * ((f1 - f2) - ux * Ci); flux_diffusive_y = (1.0 - 0.5 * rlx) * ((f3 - f4) - uy * Ci); flux_diffusive_z = (1.0 - 0.5 * rlx) * ((f5 - f6) - uz * Ci); FluxDiffusive[n + 0 * Np] = flux_diffusive_x; FluxDiffusive[n + 1 * Np] = flux_diffusive_y; FluxDiffusive[n + 2 * Np] = flux_diffusive_z; FluxAdvective[n + 0 * Np] = ux * Ci; FluxAdvective[n + 1 * Np] = uy * Ci; FluxAdvective[n + 2 * Np] = uz * Ci; FluxElectrical[n + 0 * Np] = uEPx * Ci; FluxElectrical[n + 1 * Np] = uEPy * Ci; FluxElectrical[n + 2 * Np] = uEPz * Ci; Den[n] = Ci; /* use logistic function to prevent negative distributions*/ //X = 4.0 * (ux + uEPx); //Y = 4.0 * (uy + uEPy); //Z = 4.0 * (uz + uEPz); //factor_x = X / sqrt(1 + X*X); //factor_y = Y / sqrt(1 + Y*Y); //factor_z = Z / sqrt(1 + Z*Z); // q=0 dist[n] = f0 * (1.0 - rlx) + rlx * 0.25 * Ci; // q = 1 dist[nr2] = f1 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + 4.0 * (ux + uEPx)); // f1 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + factor_x); // q=2 dist[nr1] = f2 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - 4.0 * (ux + uEPx)); // f2 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - factor_x); // q = 3 dist[nr4] = f3 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + 4.0 * (uy + uEPy)); // f3 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + factor_y ); // q = 4 dist[nr3] = f4 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - 4.0 * (uy + uEPy)); // f4 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - factor_y); // q = 5 dist[nr6] = f5 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + 4.0 * (uz + uEPz)); // f5 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + factor_z); // q = 6 dist[nr5] = f6 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - 4.0 * (uz + uEPz)); // f6 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - factor_z); } } extern "C" void ScaLBL_D3Q7_AAeven_Ion( double *dist, double *Den, double *FluxDiffusive, double *FluxAdvective, double *FluxElectrical, double *Velocity, double *ElectricField, double Di, int zi, double rlx, double Vt, int start, int finish, int Np) { int n; double Ci; double ux, uy, uz; double uEPx, uEPy, uEPz; //electrochemical induced velocity double Ex, Ey, Ez; //electrical field double flux_diffusive_x, flux_diffusive_y, flux_diffusive_z; double f0, f1, f2, f3, f4, f5, f6; //double X,Y,Z, factor_x, factor_y, factor_z; for (n = start; n < finish; n++) { //Load data //Ci = Den[n]; Ex = ElectricField[n + 0 * Np]; Ey = ElectricField[n + 1 * Np]; Ez = ElectricField[n + 2 * Np]; ux = Velocity[n + 0 * Np]; uy = Velocity[n + 1 * Np]; uz = Velocity[n + 2 * Np]; uEPx = zi * Di / Vt * Ex; uEPy = zi * Di / Vt * Ey; uEPz = zi * Di / Vt * Ez; f0 = dist[n]; f1 = dist[2 * Np + n]; f2 = dist[1 * Np + n]; f3 = dist[4 * Np + n]; f4 = dist[3 * Np + n]; f5 = dist[6 * Np + n]; f6 = dist[5 * Np + n]; // compute diffusive flux Ci = f0 + f1 + f2 + f3 + f4 + f5 + f6; flux_diffusive_x = (1.0 - 0.5 * rlx) * ((f1 - f2) - ux * Ci); flux_diffusive_y = (1.0 - 0.5 * rlx) * ((f3 - f4) - uy * Ci); flux_diffusive_z = (1.0 - 0.5 * rlx) * ((f5 - f6) - uz * Ci); FluxDiffusive[n + 0 * Np] = flux_diffusive_x; FluxDiffusive[n + 1 * Np] = flux_diffusive_y; FluxDiffusive[n + 2 * Np] = flux_diffusive_z; FluxAdvective[n + 0 * Np] = ux * Ci; FluxAdvective[n + 1 * Np] = uy * Ci; FluxAdvective[n + 2 * Np] = uz * Ci; FluxElectrical[n + 0 * Np] = uEPx * Ci; FluxElectrical[n + 1 * Np] = uEPy * Ci; FluxElectrical[n + 2 * Np] = uEPz * Ci; Den[n] = Ci; /* use logistic function to prevent negative distributions*/ //X = 4.0 * (ux + uEPx); //Y = 4.0 * (uy + uEPy); //Z = 4.0 * (uz + uEPz); //factor_x = X / sqrt(1 + X*X); //factor_y = Y / sqrt(1 + Y*Y); //factor_z = Z / sqrt(1 + Z*Z); // q=0 dist[n] = f0 * (1.0 - rlx) + rlx * 0.25 * Ci; // q = 1 dist[1 * Np + n] = f1 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + 4.0 * (ux + uEPx)); // f1 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + factor_x); // q=2 dist[2 * Np + n] = f2 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - 4.0 * (ux + uEPx)); // f2 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - factor_x); // q = 3 dist[3 * Np + n] = f3 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + 4.0 * (uy + uEPy)); // f3 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + factor_y); // q = 4 dist[4 * Np + n] = f4 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - 4.0 * (uy + uEPy)); // f4 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - factor_y); // q = 5 dist[5 * Np + n] = f5 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + 4.0 * (uz + uEPz)); // f5 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + factor_z); // q = 6 dist[6 * Np + n] = f6 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - 4.0 * (uz + uEPz)); // f6 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - factor_z); } } extern "C" void ScaLBL_D3Q7_Ion_Init(double *dist, double *Den, double DenInit, int Np) { int n; for (n = 0; n < Np; n++) { dist[0 * Np + n] = 0.25 * DenInit; dist[1 * Np + n] = 0.125 * DenInit; dist[2 * Np + n] = 0.125 * DenInit; dist[3 * Np + n] = 0.125 * DenInit; dist[4 * Np + n] = 0.125 * DenInit; dist[5 * Np + n] = 0.125 * DenInit; dist[6 * Np + n] = 0.125 * DenInit; Den[n] = DenInit; } } extern "C" void ScaLBL_D3Q7_Ion_Init_FromFile(double *dist, double *Den, int Np) { int n; double DenInit; for (n = 0; n < Np; n++) { DenInit = Den[n]; dist[0 * Np + n] = 0.25 * DenInit; dist[1 * Np + n] = 0.125 * DenInit; dist[2 * Np + n] = 0.125 * DenInit; dist[3 * Np + n] = 0.125 * DenInit; dist[4 * Np + n] = 0.125 * DenInit; dist[5 * Np + n] = 0.125 * DenInit; dist[6 * Np + n] = 0.125 * DenInit; } } extern "C" void ScaLBL_D3Q7_Ion_ChargeDensity(double *Den, double *ChargeDensity, double IonValence, int ion_component, int start, int finish, int Np) { int n; double Ci; //ion concentration of species i double CD; //charge density double CD_tmp; double F = 96485.0; //Faraday's constant; unit[C/mol]; F=e*Na, where Na is the Avogadro constant for (n = start; n < finish; n++) { Ci = Den[n + ion_component * Np]; CD = ChargeDensity[n]; CD_tmp = F * IonValence * Ci; ChargeDensity[n] = CD * (ion_component > 0) + CD_tmp; } }