LBPM/tests/TestColorGradDFH.cpp
2021-01-13 21:44:23 -05:00

214 lines
6.1 KiB
C++

//*************************************************************************
// Lattice Boltzmann Simulator for Single Phase Flow in Porous Media
// James E. McCLure
//*************************************************************************
#include <stdio.h>
#include <iostream>
#include <fstream>
#include "common/ScaLBL.h"
#include "common/MPI.h"
using namespace std;
std::shared_ptr<Database> loadInputs( int nprocs )
{
auto db = std::make_shared<Database>();
db->putScalar<int>( "BC", 0 );
db->putVector<int>( "nproc", { 1, 1, 1 } );
db->putVector<int>( "n", { 100, 100, 100 } );
db->putScalar<int>( "nspheres", 1 );
db->putVector<double>( "L", { 1, 1, 1 } );
return db;
}
//***************************************************************************************
int main(int argc, char **argv)
{
// Initialize MPI
Utilities::startup( argc, argv );
Utilities::MPI comm( MPI_COMM_WORLD );
int rank = comm.getRank();
int nprocs = comm.getSize();
int check=0;
{
// parallel domain size (# of sub-domains)
if (rank == 0){
printf("********************************************************\n");
printf("Running Color Model: TestColorGradDFH \n");
printf("********************************************************\n");
}
// BGK Model parameters
string FILENAME;
// Domain variables
int i,j,k,n;
// Load inputs
auto db = loadInputs( nprocs );
int Nx = db->getVector<int>( "n" )[0];
int Ny = db->getVector<int>( "n" )[1];
int Nz = db->getVector<int>( "n" )[2];
if (rank==0){
printf("********************************************************\n");
printf("Sub-domain size = %i x %i x %i\n",Nx,Ny,Nz);
printf("********************************************************\n");
}
// Get the rank info
auto Dm = std::make_shared<Domain>(db,comm);
Nx += 2;
Ny += 2;
Nz += 2;
int N = Nx*Ny*Nz;
double *PhaseLabel;
PhaseLabel = new double[N];
//.......................................................................
for (k=0;k<Nz;k++){
for (j=0;j<Ny;j++){
for (i=0;i<Nx;i++){
n = k*Nx*Ny+j*Nx+i;
Dm->id[n]=1;
// Initialize gradient ColorGrad = (1,2,3)
double value=double(3*k+2*j+i);
PhaseLabel[n]= value;
}
}
}
Dm->CommInit();
comm.barrier();
if (rank == 0) cout << "Domain set." << endl;
if (rank==0) printf ("Create ScaLBL_Communicator \n");
//Create a second communicator based on the regular data layout
std::shared_ptr<ScaLBL_Communicator> ScaLBL_Comm(new ScaLBL_Communicator(Dm));
// LBM variables
if (rank==0) printf ("Set up the neighborlist \n");
int Np=0; // number of local pore nodes
for (k=1;k<Nz-1;k++){
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
Np++;
}
}
}
int Npad=(Np/16 + 2)*16;
int *neighborList;
IntArray Map(Nx,Ny,Nz);
neighborList= new int[18*Npad];
Np = ScaLBL_Comm->MemoryOptimizedLayoutAA(Map,neighborList,Dm->id.data(),Np,1);
comm.barrier();
//......................device distributions.................................
int neighborSize=18*Np*sizeof(int);
if (rank==0) printf ("Allocating distributions \n");
int *NeighborList;
int *dvcMap;
double *Phi;
double *Potential;
double *ColorGrad;
//...........................................................................
ScaLBL_AllocateDeviceMemory((void **) &NeighborList, neighborSize);
ScaLBL_AllocateDeviceMemory((void **) &dvcMap, sizeof(int)*Np);
ScaLBL_AllocateDeviceMemory((void **) &Phi, sizeof(double)*Np);
ScaLBL_AllocateDeviceMemory((void **) &Potential, sizeof(double)*Np);
ScaLBL_AllocateDeviceMemory((void **) &ColorGrad, 3*sizeof(double)*Np);
//...........................................................................
// Update GPU data structures
if (rank==0) printf ("Setting up device map and neighbor list \n");
int *TmpMap;
TmpMap=new int[Np*sizeof(int)];
for (k=1; k<Nz-1; k++){
for (j=1; j<Ny-1; j++){
for (i=1; i<Nx-1; i++){
int idx=Map(i,j,k);
if (!(idx < 0))
TmpMap[idx] = k*Nx*Ny+j*Nx+i;
}
}
}
ScaLBL_CopyToDevice(dvcMap, TmpMap, sizeof(int)*Np);
ScaLBL_DeviceBarrier();
delete [] TmpMap;
// copy the neighbor list
ScaLBL_CopyToDevice(NeighborList, neighborList, neighborSize);
double *PHASE;
PHASE=new double [Np];
for (k=1; k<Nz-1; k++){
for (j=1; j<Ny-1; j++){
for (i=1; i<Nx-1; i++){
int idx=Map(i,j,k);
if (!(idx < 0)){
PHASE[idx] = PhaseLabel[k*Nx*Ny+j*Nx+i];
}
}
}
}
ScaLBL_CopyToDevice(Phi, PHASE, Np*sizeof(double));
//...........................................................................
// compute the gradient
ScaLBL_D3Q19_Gradient_DFH(neighborList, Phi, ColorGrad, ScaLBL_Comm->first_interior, ScaLBL_Comm->last_interior, Np);
ScaLBL_Comm->SendHalo(Phi);
ScaLBL_D3Q19_Gradient_DFH(neighborList, Phi, ColorGrad, 0, ScaLBL_Comm->first_interior, Np);
ScaLBL_Comm->RecvGrad(Phi,ColorGrad);
double *COLORGRAD;
COLORGRAD= new double [3*Np];
int SIZE=3*Np*sizeof(double);
ScaLBL_CopyToHost(&COLORGRAD[0],&ColorGrad[0],SIZE);
for (k=1;k<Nz-1;k++){
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
if (Dm->id[n] > 0){
int idx = Map(i,j,k);
printf("%i ",idx);
}
}
printf("\n");
}
printf("-------\n");
}
double CX,CY,CZ;
for (k=1;k<Nz-1;k++){
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
if (Dm->id[n] > 0){
int idx = Map(i,j,k);
CX=COLORGRAD[idx];
CY=COLORGRAD[Np+idx];
CZ=COLORGRAD[2*Np+idx];
double error=sqrt((CX-1.0)*(CX-1.0)+(CY-2.0)*(CY-2.0)+ (CZ-3.0)*(CZ-3.0));
if (error > 1e-8){
printf("i,j,k=%i,%i,%i; idx=%i: Color gradient=%f,%f,%f \n",i,j,k,idx,CX,CY,CZ);
/* for (int q=0; q<18; q++){
int nn = neighborList[q*Np+idx]%Np;
double value= PHASE[nn];
printf(" q=%i, nn=%i, value=%f \n",q,nn,value);
}
*/
}
}
}
}
}
}
Utilities::shutdown();
return check;
}