LBPM/tests/TestMap.cpp
2021-01-13 21:44:23 -05:00

199 lines
5.7 KiB
C++

//*************************************************************************
// Lattice Boltzmann Simulator for Single Phase Flow in Porous Media
// James E. McCLure
//*************************************************************************
#include <stdio.h>
#include <iostream>
#include <fstream>
#include "common/ScaLBL.h"
#include "common/MPI.h"
using namespace std;
std::shared_ptr<Database> loadInputs( int nprocs )
{
//auto db = std::make_shared<Database>( "Domain.in" );
auto db = std::make_shared<Database>();
db->putScalar<int>( "BC", 0 );
db->putVector<int>( "nproc", { 1, 1, 1 } );
db->putVector<int>( "n", { 5, 5, 5 } );
db->putScalar<int>( "nspheres", 1 );
db->putVector<double>( "L", { 1, 1, 1 } );
return db;
}
//***************************************************************************************
int main(int argc, char **argv)
{
// Initialize MPI
Utilities::startup( argc, argv );
Utilities::MPI comm( MPI_COMM_WORLD );
int check=0;
{
int i,j,k,n;
static int D3Q19[18][3]={{1,0,0},{-1,0,0},{0,1,0},{0,-1,0},{0,0,1},{0,0,-1},
{1,1,0},{-1,-1,0},{1,-1,0},{-1,1,0},
{1,0,1},{-1,0,-1},{1,0,-1},{-1,0,1},
{0,1,1},{0,-1,-1},{0,1,-1},{0,-1,1}};
int rank = comm.getRank();
if (rank == 0){
printf("********************************************************\n");
printf("Running unit test: TestMap \n");
printf("********************************************************\n");
}
// Load inputs
auto db = loadInputs( comm.getSize() );
int Nx = db->getVector<int>( "n" )[0];
int Ny = db->getVector<int>( "n" )[1];
int Nz = db->getVector<int>( "n" )[2];
auto Dm = std::make_shared<Domain>(db,comm);
Nx += 2;
Ny += 2;
Nz += 2;
int N = Nx*Ny*Nz;
//.......................................................................
int Np = 0;
for (k=1;k<Nz-1;k++){
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
Dm->id[n] = 1;
Np++;
}
}
}
Dm->CommInit();
// Create a communicator for the device (will use optimized layout)
std::shared_ptr<ScaLBL_Communicator> ScaLBL_Comm(new ScaLBL_Communicator(Dm));
//Create a second communicator based on the regular data layout
std::shared_ptr<ScaLBL_Communicator> ScaLBL_Comm_Regular(new ScaLBL_Communicator(Dm));
if (rank==0){
printf("Total domain size = %i \n",N);
printf("Reduced domain size = %i \n",Np);
}
// LBM variables
if (rank==0) printf ("Set up the neighborlist \n");
int Npad=Np+32;
int neighborSize=18*Npad*sizeof(int);
int *neighborList;
IntArray Map(Nx,Ny,Nz);
neighborList= new int[18*Npad];
Np = ScaLBL_Comm->MemoryOptimizedLayoutAA(Map,neighborList,Dm->id.data(),Np,1);
comm.barrier();
// Check the neighborlist
printf("Check neighborlist: exterior %i, first interior %i last interior %i \n",ScaLBL_Comm->LastExterior(),ScaLBL_Comm->FirstInterior(),ScaLBL_Comm->LastInterior());
for (int idx=0; idx<ScaLBL_Comm->LastExterior(); idx++){
for (int q=0; q<18; q++){
int nn = neighborList[q*Np+idx]%Np;
if (nn>Np) printf("neighborlist error (exterior) at q=%i, idx=%i \n",q,idx);
}
}
for (int idx=ScaLBL_Comm->FirstInterior(); idx<ScaLBL_Comm->LastInterior(); idx++){
for (int q=0; q<18; q++){
int nn = neighborList[q*Np+idx]%Np;
if (nn>Np) printf("neighborlist error (exterior) at q=%i, idx=%i \n",q,idx);
}
}
//......................device distributions.................................
int *NeighborList;
int *dvcMap;
//...........................................................................
ScaLBL_AllocateDeviceMemory((void **) &NeighborList, neighborSize);
ScaLBL_AllocateDeviceMemory((void **) &dvcMap, sizeof(int)*Npad);
//...........................................................................
// Update GPU data structures
if (rank==0) printf ("Setting up device map and neighbor list \n");
int *TmpMap;
TmpMap=new int[Np*sizeof(int)];
for (k=1; k<Nz-1; k++){
for (j=1; j<Ny-1; j++){
for (i=1; i<Nx-1; i++){
int idx=Map(i,j,k);
if (!(idx < 0))
TmpMap[idx] = k*Nx*Ny+j*Nx+i;
}
}
}
ScaLBL_CopyToDevice(dvcMap, TmpMap, sizeof(int)*Np);
ScaLBL_DeviceBarrier();
// Create a dummy distribution data structure
double *fq;
fq = new double[19*Np];
if (rank==0) printf ("Setting up distributions \n");
for (k=1; k<Nz-1; k++){
for (j=1; j<Ny-1; j++){
for (i=1; i<Nx-1; i++){
int idx=Map(i,j,k);
if (!(idx<0)){
for (int q=0; q<19; q++){
fq[q*Np+idx]=k*100.f+j*10.f+i*1.f+0.01*q;
}
}
}
}
}
/* for (int idx=0; idx<Np; idx++){
n = TmpMap[idx];
// back out the 3D indices
k = n/(Nx*Ny);
j = (n-Nx*Ny*k)/Nx;
i = n-Nx*Ny*k-Nx*j;
for (int q=0; q<19; q++){
fq[q*Np+idx]=k*100.f+j*10.f+i*1.f+0.01*q;
}
}
if (rank==0) printf ("Setting up distributions \n");
*/
// Loop over the distributions for interior lattice sites
if (rank==0) printf ("Loop over distributions \n");
for (int idx=ScaLBL_Comm->first_interior; idx<ScaLBL_Comm->last_interior; idx++){
n = TmpMap[idx];
k = n/(Nx*Ny);
j = (n-Nx*Ny*k)/Nx;
i = n-Nx*Ny*k-Nx*j;
for (int q=1; q<19; q++){
int nn = neighborList[(q-1)*Np+idx];
double value=fq[nn];
// 3D index of neighbor
int iq=i-D3Q19[q-1][0];
int jq=j-D3Q19[q-1][1];
int kq=k-D3Q19[q-1][2];
if (iq==0) iq=1;
if (jq==0) jq=1;
if (kq==0) kq=1;
if (iq==Nx-1) iq=Nx-2;
if (jq==Ny-1) jq=Ny-2;
if (kq==Nz-1) kq=Nz-2;
double check = kq*100.f+jq*10.f+iq*1.f+q*0.01;
if (value != check)
printf("Neighbor q=%i, i=%i,j=%i,k=%i: %f \n",q,iq,jq,kq,value);
}
}
delete [] TmpMap;
}
Utilities::shutdown();
return check;
}