LBPM/tests/TestPNP_Stokes.cpp
2022-01-18 01:15:35 -05:00

129 lines
4.7 KiB
C++

#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <iostream>
#include <exception>
#include <stdexcept>
#include <fstream>
#include <math.h>
#include "models/IonModel.h"
#include "models/StokesModel.h"
#include "models/PoissonSolver.h"
#include "models/MultiPhysController.h"
#include "common/Utilities.h"
using namespace std;
//***************************************************************************
// Test lattice-Boltzmann Ion Model coupled with Poisson equation
//***************************************************************************
int main(int argc, char **argv)
{
// Initialize MPI
Utilities::startup( argc, argv );
Utilities::MPI comm( MPI_COMM_WORLD );
int rank = comm.getRank();
int nprocs = comm.getSize();
{ // Limit scope so variables that contain communicators will free before MPI_Finialize
if (rank == 0){
printf("********************************************************\n");
printf("Running Test for LB-Poisson-Ion Coupling \n");
printf("********************************************************\n");
}
// Initialize compute device
int device=ScaLBL_SetDevice(rank);
NULL_USE( device );
ScaLBL_DeviceBarrier();
comm.barrier();
PROFILE_ENABLE(1);
//PROFILE_ENABLE_TRACE();
//PROFILE_ENABLE_MEMORY();
PROFILE_SYNCHRONIZE();
PROFILE_START("Main");
Utilities::setErrorHandlers();
auto filename = argv[1];
ScaLBL_StokesModel StokesModel(rank,nprocs,comm);
ScaLBL_IonModel IonModel(rank,nprocs,comm);
ScaLBL_Poisson PoissonSolver(rank,nprocs,comm);
ScaLBL_Multiphys_Controller Study(rank,nprocs,comm);//multiphysics controller coordinating multi-model coupling
// Load controller information
Study.ReadParams(filename);
// Load user input database files for Navier-Stokes and Ion solvers
StokesModel.ReadParams(filename);
IonModel.ReadParams(filename);
// Setup other model specific structures
StokesModel.SetDomain();
StokesModel.ReadInput();
StokesModel.Create(); // creating the model will create data structure to match the pore structure and allocate variables
IonModel.SetDomain();
IonModel.ReadInput();
IonModel.Create();
// Get internal iteration number
StokesModel.timestepMax = Study.getStokesNumIter_PNP_coupling(StokesModel.time_conv,IonModel.time_conv);
StokesModel.Initialize(); // initializing the model will set initial conditions for variables
IonModel.timestepMax = Study.getIonNumIter_PNP_coupling(StokesModel.time_conv,IonModel.time_conv);
IonModel.Initialize();
// Initialize LB-Poisson model
PoissonSolver.ReadParams(filename);
PoissonSolver.SetDomain();
PoissonSolver.ReadInput();
PoissonSolver.Create();
PoissonSolver.Initialize(0);
int timestep=0;
double error = 1.0;
double error_ion = 1.0;
double error_stokes = 1.0;
vector<double>ci_avg_previous{0.0,0.0};//assuming 1:1 solution
double vel_avg_previous = 0.0;
while (timestep < Study.timestepMax && error > Study.tolerance){
timestep++;
PoissonSolver.Run(IonModel.ChargeDensity,StokesModel.UseSlippingVelBC,0);//solve Poisson equtaion to get steady-state electrical potental
StokesModel.Run_Lite(IonModel.ChargeDensity, PoissonSolver.ElectricField);// Solve the N-S equations to get velocity
IonModel.Run(StokesModel.Velocity,PoissonSolver.ElectricField); //solve for ion transport and electric potential
timestep++;//AA operations
if (timestep%Study.analysis_interval==0){
error_ion = IonModel.CalIonDenConvergence(ci_avg_previous);
error_stokes = StokesModel.CalVelocityConvergence(vel_avg_previous,IonModel.ChargeDensity,PoissonSolver.ElectricField);
error = max(error_ion,error_stokes);
}
}
PoissonSolver.getElectricPotential_debug(timestep);
PoissonSolver.getElectricField_debug(timestep);
IonModel.getIonConcentration_debug(timestep);
StokesModel.getVelocity_debug(timestep);
if (rank==0) printf("Maximum timestep is reached and the simulation is completed\n");
if (rank==0) printf("*************************************************************\n");
PROFILE_STOP("Main");
PROFILE_SAVE("TestPNP_Stokes",1);
// ****************************************************
} // Limit scope so variables that contain communicators will free before MPI_Finialize
Utilities::shutdown();
}