LBPM/tests/TestTopo3D.cpp
2021-01-04 19:33:27 -05:00

232 lines
6.6 KiB
C++

// Sequential blob analysis
// Reads parallel simulation data and performs connectivity analysis
// and averaging on a blob-by-blob basis
// James E. McClure 2014
#include <iostream>
#include <math.h>
#include "common/Communication.h"
#include "analysis/analysis.h"
#include "analysis/Minkowski.h"
#include "IO/MeshDatabase.h"
std::shared_ptr<Database> loadInputs( int nprocs )
{
//auto db = std::make_shared<Database>( "Domain.in" );
auto db = std::make_shared<Database>();
db->putScalar<int>( "BC", 0 );
db->putVector<int>( "nproc", { 1, 1, 1 } );
db->putVector<int>( "n", { 100, 100, 100 } );
db->putScalar<int>( "nspheres", 1 );
db->putVector<double>( "L", { 1, 1, 1 } );
return db;
}
int main(int argc, char **argv)
{
// Initialize MPI
Utilities::startup( argc, argv );
Utilities::MPI comm( MPI_COMM_WORLD );
int rank = comm.getRank();
int nprocs = comm.getSize();
{ // Limit scope so variables that contain communicators will free before MPI_Finialize
if ( rank==0 ) {
printf("-----------------------------------------------------------\n");
printf("Unit test 3D topologies \n");
printf("-----------------------------------------------------------\n");
}
//.......................................................................
// Reading the domain information file
//.......................................................................
int i,j,k,n;
// Load inputs
auto db = loadInputs( nprocs );
int Nx = db->getVector<int>( "n" )[0];
int Ny = db->getVector<int>( "n" )[1];
int Nz = db->getVector<int>( "n" )[2];
int nprocx = db->getVector<int>( "nproc" )[0];
int nprocy = db->getVector<int>( "nproc" )[1];
int nprocz = db->getVector<int>( "nproc" )[2];
if (rank==0){
printf("********************************************************\n");
printf("Sub-domain size = %i x %i x %i\n",Nx,Ny,Nz);
printf("********************************************************\n");
}
// Get the rank info
auto Dm = std::make_shared<Domain>(db,comm);
Nx += 2;
Ny += 2;
Nz += 2;
//.......................................................................
for ( k=1;k<Nz-1;k++){
for ( j=1;j<Ny-1;j++){
for ( i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
Dm->id[n] = 1;
}
}
}
//.......................................................................
Dm->CommInit(); // Initialize communications for domains
//.......................................................................
// Create visualization structure
std::vector<IO::MeshDataStruct> visData;
fillHalo<double> fillData(Dm->Comm,Dm->rank_info,{Dm->Nx-2,Dm->Ny-2,Dm->Nz-2},{1,1,1},0,1);;
IO::initialize("","silo","false");
// Create the MeshDataStruct
visData.resize(1);
visData[0].meshName = "domain";
visData[0].mesh = std::make_shared<IO::DomainMesh>( Dm->rank_info,Dm->Nx-2,Dm->Ny-2,Dm->Nz-2,Dm->Lx,Dm->Ly,Dm->Lz );
auto PhaseVar = std::make_shared<IO::Variable>();
PhaseVar->name = "phase";
PhaseVar->type = IO::VariableType::VolumeVariable;
PhaseVar->dim = 1;
PhaseVar->data.resize(Dm->Nx-2,Dm->Ny-2,Dm->Nz-2);
visData[0].vars.push_back(PhaseVar);
//.......................................................................
// Assign the phase ID field based and the signed distance
//.......................................................................
double R1,R2,R;
double CX,CY,CZ; //CY1,CY2;
CX=Nx*nprocx*0.5;
CY=Ny*nprocy*0.5;
CZ=Nz*nprocz*0.5;
R1 = (Nx-2)*nprocx*0.3; // middle radius
R2 = (Nx-2)*nprocx*0.1; // donut thickness
R = 0.4*nprocx*(Nx-2);
Minkowski Object(Dm);
int timestep = 0;
double x,y,z;
// partial torus
timestep += 1;
for ( k=1;k<Nz-1;k++){
for ( j=1;j<Ny-1;j++){
for ( i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
// global position relative to center
x = Dm->iproc()*(Nx-2)+i - CX - 0.1;
y = Dm->jproc()*(Ny-2)+j - CY - 0.1;
z = Dm->kproc()*(Nz-2)+k - CZ -0.1;
//..............................................................................
if (x <= 0 || y<=0) {
// Single torus
Object.distance(i,j,k) = R2 - sqrt((sqrt(x*x+y*y) - R1)*(sqrt(x*x+y*y) - R1) + z*z);
}
else {
double d1 = R2-sqrt(x*x +(y-R1)*(y-R1) + z*z);
double d2 = R2-sqrt((x-R1)*(x-R1)+y*y + z*z);
Object.distance(i,j,k) = max(d1,d2);
}
if (Object.distance(i,j,k) > 0.0){
Dm->id[n] = 2;
Object.id(i,j,k) = 2;
}
else{
Dm->id[n] = 1;
Object.id(i,j,k) = 1;
}
}
}
}
ASSERT(visData[0].vars[0]->name=="phase");
Array<double>& PhaseData = visData[0].vars[0]->data;
fillData.copy(Object.distance,PhaseData);
IO::writeData( timestep, visData, comm );
//spherical shell
timestep += 1;
for ( k=1;k<Nz-1;k++){
for ( j=1;j<Ny-1;j++){
for ( i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
// global position relative to center
x = Dm->iproc()*(Nx-2)+i - CX - 0.1;
y = Dm->jproc()*(Ny-2)+j - CY - 0.1;
z = Dm->kproc()*(Nz-2)+k - CZ - 0.1;
//..............................................................................
// Single torus
double d1 = sqrt(x*x+y*y+z*z)-(R1-R2);
double d2 = R-sqrt(x*x+y*y+z*z);
Object.distance(i,j,k) = min(d1,d2);
if (Object.distance(i,j,k) > 0.0){
Dm->id[n] = 2;
Object.id(i,j,k) = 2;
}
else{
Dm->id[n] = 1;
Object.id(i,j,k) = 1;
}
}
}
}
ASSERT(visData[0].vars[0]->name=="phase");
PhaseData = visData[0].vars[0]->data;
fillData.copy(Object.distance,PhaseData);
IO::writeData( timestep, visData, comm );
// bowl
timestep += 1;
for ( k=1;k<Nz-1;k++){
for ( j=1;j<Ny-1;j++){
for ( i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
// global position relative to center
x = Dm->iproc()*(Nx-2)+i - CX - 0.1;
y = Dm->jproc()*(Ny-2)+j - CY - 0.1;
z = Dm->kproc()*(Nz-2)+k - CZ - 0.1;
//..............................................................................
// Bowl
if (z > 0 ){
Object.distance(i,j,k) = R2-sqrt((sqrt(x*x+y*y) - R1)*(sqrt(x*x+y*y) - R1) + z*z);
}
else
{
double d1 = sqrt(x*x+y*y+z*z)-(R1-R2);
double d2 = R-sqrt(x*x+y*y+z*z);
Object.distance(i,j,k) = min(d1,d2);
}
if (Object.distance(i,j,k) > 0.0){
Dm->id[n] = 2;
Object.id(i,j,k) = 2;
}
else{
Dm->id[n] = 1;
Object.id(i,j,k) = 1;
}
}
}
}
ASSERT(visData[0].vars[0]->name=="phase");
PhaseData = visData[0].vars[0]->data;
fillData.copy(Object.distance,PhaseData);
IO::writeData( timestep, visData, comm );
} // Limit scope so variables that contain communicators will free before MPI_Finialize
Utilities::shutdown();
return 0;
}