LBPM/tests/lbpm_color_macro_simulator.cpp
2021-01-04 19:33:27 -05:00

666 lines
25 KiB
C++

#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <iostream>
#include <exception>
#include <stdexcept>
#include <fstream>
#include "common/Communication.h"
#include "analysis/TwoPhase.h"
#include "analysis/runAnalysis.h"
#include "common/MPI_Helpers.h"
#include "ProfilerApp.h"
#include "threadpool/thread_pool.h"
/*
* Simulator for two-phase flow in porous media
* James E. McClure 2013-2018
*/
using namespace std;
//*************************************************************************
// Implementation of Two-Phase Immiscible LBM
//*************************************************************************
int main(int argc, char **argv)
{
// Initialize MPI
int provided_thread_support = -1;
MPI_Init_thread(&argc,&argv,MPI_THREAD_MULTIPLE,&provided_thread_support);
MPI_Comm comm;
MPI_Comm_dup(MPI_COMM_WORLD,&comm);
int rank = comm_rank(comm);
int nprocs = comm_size(comm);
{ // Limit scope so variables that contain communicators will free before MPI_Finialize
// parallel domain size (# of sub-domains)
int nprocx,nprocy,nprocz;
int iproc,jproc,kproc;
MPI_Request req1[18],req2[18];
MPI_Status stat1[18],stat2[18];
if (rank == 0){
printf("********************************************************\n");
printf("Running Color LBM \n");
printf("********************************************************\n");
}
// Initialize compute device
// int device=ScaLBL_SetDevice(rank);
//printf("Using GPU ID %i for rank %i \n",device,rank);
ScaLBL_DeviceBarrier();
MPI_Barrier(comm);
PROFILE_ENABLE(1);
//PROFILE_ENABLE_TRACE();
//PROFILE_ENABLE_MEMORY();
PROFILE_SYNCHRONIZE();
PROFILE_START("Main");
Utilities::setErrorHandlers();
int ANALYSIS_INTERVAL = 1000;
int BLOBID_INTERVAL = 1000;
std::string analysis_method = "independent";
if (argc >= 3) {
ANALYSIS_INTERVAL = atoi(argv[1]);
BLOBID_INTERVAL = atoi(argv[2]);
}
if (argc >= 4)
analysis_method = std::string(argv[3]);
// Variables that specify the computational domain
string FILENAME;
int Nx,Ny,Nz,Np; // local sub-domain size
double Lx,Ly,Lz; // Domain length
double D = 1.0; // reference length for non-dimensionalization
// Color Model parameters
int timestepMax;
double tauA, tauB, rhoA,rhoB;
double Fx,Fy,Fz,tol,err;
double alpha, beta;
int BoundaryCondition;
int InitialCondition;
// bool pBC,Restart;
int i,j,k,n;
double din, dout, flux;
double inletA,inletB,outletA,outletB;
inletA=1.f;
inletB=0.f;
outletA=0.f;
outletB=1.f;
flux = 10.f;
dout=1.f;
int RESTART_INTERVAL=20000;
//int ANALYSIS_)INTERVAL=1000;
int BLOB_ANALYSIS_INTERVAL=1000;
int timestep = 6;
if (rank==0){
//.............................................................
// READ SIMULATION PARMAETERS FROM INPUT FILE
//.............................................................
ifstream input("Color.in");
if (input.is_open()){
// Line 1: model parameters (tau, alpha, beta, das, dbs)
input >> tauA; // Viscosity non-wetting
input >> tauB; // Viscosity wetting
input >> rhoA; // density non-wetting
input >> rhoB; // density wetting
input >> alpha; // Surface Tension parameter
input >> beta; // Width of the interface
// Line 2: External force components (Fx,Fy, Fz)
input >> Fx;
input >> Fy;
input >> Fz;
// Line 4: Pressure Boundary conditions
input >> InitialCondition;
input >> BoundaryCondition;
input >> din;
input >> dout;
// Line 5: time-stepping criteria
input >> timestepMax; // max no. of timesteps
input >> RESTART_INTERVAL; // restart interval
input >> tol; // error tolerance
// Line 6: Analysis options
input >> BLOB_ANALYSIS_INTERVAL; // interval to analyze blob states
//.............................................................
}
else{
// Set default values
// Print warning
printf("WARNING: No input file provided (Color.in is missing)! Default parameters will be used. \n");
tauA = tauB = 1.0;
rhoA = rhoB = 1.0;
alpha=0.005;
beta= 0.9;
Fx = Fy = Fz = 0.0;
InitialCondition=0;
BoundaryCondition=0;
din=dout=1.0;
timestepMax=0;
}
//.......................................................................
// Reading the domain information file
//.......................................................................
ifstream domain("Domain.in");
if (input.is_open()){
domain >> nprocx;
domain >> nprocy;
domain >> nprocz;
domain >> Nx;
domain >> Ny;
domain >> Nz;
domain >> Lx;
domain >> Ly;
domain >> Lz;
//.......................................................................
}
else{
// Set default values
// Print warning
printf("WARNING: No input file provided (Domain.in is missing)! Default parameters will be used. \n");
nprocx=nprocy=nprocz=1;
Nx=Ny=Nz=10;
Lx=Ly=Lz=1.0;
}
}
// **************************************************************
// Broadcast simulation parameters from rank 0 to all other procs
MPI_Barrier(comm);
//.................................................
MPI_Bcast(&tauA,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&tauB,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&rhoA,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&rhoB,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&alpha,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&beta,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&BoundaryCondition,1,MPI_INT,0,comm);
MPI_Bcast(&InitialCondition,1,MPI_INT,0,comm);
MPI_Bcast(&din,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&dout,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Fx,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Fy,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Fz,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&timestepMax,1,MPI_INT,0,comm);
MPI_Bcast(&RESTART_INTERVAL,1,MPI_INT,0,comm);
MPI_Bcast(&tol,1,MPI_DOUBLE,0,comm);
// Computational domain
MPI_Bcast(&Nx,1,MPI_INT,0,comm);
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
MPI_Bcast(&Nz,1,MPI_INT,0,comm);
MPI_Bcast(&nprocx,1,MPI_INT,0,comm);
MPI_Bcast(&nprocy,1,MPI_INT,0,comm);
MPI_Bcast(&nprocz,1,MPI_INT,0,comm);
MPI_Bcast(&Lx,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Ly,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Lz,1,MPI_DOUBLE,0,comm);
//.................................................
flux = 0.f;
if (BoundaryCondition==4) flux = din*rhoA; // mass flux must adjust for density (see formulation for details
// Get the rank info
const RankInfoStruct rank_info(rank,nprocx,nprocy,nprocz);
MPI_Barrier(comm);
if (nprocs != nprocx*nprocy*nprocz){
printf("nprocx = %i \n",nprocx);
printf("nprocy = %i \n",nprocy);
printf("nprocz = %i \n",nprocz);
INSIST(nprocs == nprocx*nprocy*nprocz,"Fatal error in processor count!");
}
if (rank==0){
printf("********************************************************\n");
printf("tau (non-wetting) = %f \n", tauA);
printf("tau (wetting) = %f \n", tauB);
printf("density (non-wetting) = %f \n", rhoA);
printf("density (wetting) = %f \n", rhoB);
printf("alpha = %f \n", alpha);
printf("beta = %f \n", beta);
printf("gamma_{wn} = %f \n", 5.796*alpha);
printf("Force(x) = %f \n", Fx);
printf("Force(y) = %f \n", Fy);
printf("Force(z) = %f \n", Fz);
printf("Sub-domain size = %i x %i x %i\n",Nx,Ny,Nz);
printf("Parallel domain size = %i x %i x %i\n",nprocx,nprocy,nprocz);
if (BoundaryCondition==0) printf("Periodic boundary conditions will applied \n");
if (BoundaryCondition==1) printf("Pressure boundary conditions will be applied \n");
if (BoundaryCondition==2) printf("Velocity boundary conditions will be applied \n");
if (BoundaryCondition==3) printf("Dynamic pressure boundary conditions will be applied \n");
if (BoundaryCondition==4) printf("Average flux boundary conditions will be applied \n");
if (InitialCondition==0) printf("Initial conditions assigned from phase ID file \n");
if (InitialCondition==1) printf("Initial conditions assigned from restart file \n");
printf("********************************************************\n");
}
// Initialized domain and averaging framework for Two-Phase Flow
bool pBC,velBC;
if (BoundaryCondition==1 || BoundaryCondition==3 || BoundaryCondition == 4)
pBC=true;
else pBC=false;
if (BoundaryCondition==2) velBC=true;
else velBC=false;
bool Restart;
if (InitialCondition==1) Restart=true;
else Restart=false;
NULL_USE(pBC); NULL_USE(velBC);
// Full domain used for averaging (do not use mask for analysis)
Domain Dm(Nx,Ny,Nz,rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BoundaryCondition);
for (i=0; i<Dm.Nx*Dm.Ny*Dm.Nz; i++) Dm.id[i] = 1;
std::shared_ptr<TwoPhase> Averages( new TwoPhase(Dm) );
// TwoPhase Averages(Dm);
Dm.CommInit();
// Mask that excludes the solid phase
Domain Mask(Nx,Ny,Nz,rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BoundaryCondition);
MPI_Barrier(comm);
Nx+=2; Ny+=2; Nz += 2;
int N = Nx*Ny*Nz;
//.......................................................................
if (rank == 0) printf("Read input media... \n");
//.......................................................................
//.......................................................................
// Filenames used
char LocalRankString[8];
char LocalRankFilename[40];
char LocalRestartFile[40];
char tmpstr[10];
sprintf(LocalRankString,"%05d",rank);
sprintf(LocalRankFilename,"%s%s","ID.",LocalRankString);
sprintf(LocalRestartFile,"%s%s","Restart.",LocalRankString);
// printf("Local File Name = %s \n",LocalRankFilename);
// .......... READ THE INPUT FILE .......................................
// char value;
char *id;
id = new char[N];
double sum, sum_local;
double iVol_global = 1.0/(1.0*(Nx-2)*(Ny-2)*(Nz-2)*nprocs);
if (BoundaryCondition > 0) iVol_global = 1.0/(1.0*(Nx-2)*nprocx*(Ny-2)*nprocy*((Nz-2)*nprocz-6));
double porosity, pore_vol;
//...........................................................................
if (rank == 0) cout << "Reading in domain from signed distance function..." << endl;
//.......................................................................
// Read the signed distance
sprintf(LocalRankString,"%05d",rank);
sprintf(LocalRankFilename,"%s%s","SignDist.",LocalRankString);
ReadBinaryFile(LocalRankFilename, Averages->SDs.data(), N);
MPI_Barrier(comm);
if (rank == 0) cout << "Domain set." << endl;
if (rank==0) printf("Initialize from segmented data: solid=0, NWP=1, WP=2 \n");
sprintf(LocalRankFilename,"ID.%05i",rank);
size_t readID;
FILE *IDFILE = fopen(LocalRankFilename,"rb");
if (IDFILE==NULL) ERROR("lbpm_color_simulator: Error opening file: ID.xxxxx");
readID=fread(id,1,N,IDFILE);
if (readID != size_t(N)) printf("lbpm_color_simulator: Error reading ID (rank=%i) \n",rank);
fclose(IDFILE);
// Read id from restart
if (Restart == true){
if (rank==0){
printf("Reading restart file! \n");
ifstream restart("Restart.txt");
if (restart.is_open()){
restart >> timestep;
printf("Restarting from timestep =%i \n",timestep);
}
else{
printf("WARNING:No Restart.txt file, setting timestep=0 \n");
timestep=0;
}
}
MPI_Bcast(&timestep,1,MPI_INT,0,comm);
FILE *RESTART = fopen(LocalRestartFile,"rb");
if (IDFILE==NULL) ERROR("lbpm_color_simulator: Error opening file: Restart.xxxxx");
readID=fread(id,1,N,RESTART);
if (readID != size_t(N)) printf("lbpm_color_simulator: Error reading Restart (rank=%i) \n",rank);
fclose(RESTART);
/*
// Read in the restart file to CPU buffers
double *cDen = new double[2*Np];
double *cfq = new double[19*Np];
ReadCheckpoint(LocalRestartFile, cDen, cfq, Np);
// Copy the restart data to the GPU
ScaLBL_CopyToDevice(fq,cfq,19*Np*sizeof(double));
ScaLBL_CopyToDevice(Den,cDen,2*Np*sizeof(double));
ScaLBL_DeviceBarrier();
delete [] cDen;
delete [] cfq;
*/
MPI_Barrier(comm);
}
fflush(stdout);
//.......................................................................
// Compute the media porosity, assign phase labels and solid composition
//.......................................................................
sum_local=0.0;
Np=0; // number of local pore nodes
//.......................................................................
for (k=1;k<Nz-1;k++){
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
if (id[n] > 0){
sum_local+=1.0;
Np++;
}
}
}
}
MPI_Allreduce(&sum_local,&sum,1,MPI_DOUBLE,MPI_SUM,comm);
porosity = sum*iVol_global;
if (rank==0) printf("Media porosity = %f \n",porosity);
//.........................................................
// If external boundary conditions are applied remove solid
if (BoundaryCondition > 0 && Dm.kproc() == 0){
for (k=0; k<3; k++){
for (j=0;j<Ny;j++){
for (i=0;i<Nx;i++){
int n = k*Nx*Ny+j*Nx+i;
//id[n] = 1;
Averages->SDs(n) = max(Averages->SDs(n),1.0*(2.5-k));
}
}
}
}
if (BoundaryCondition > 0 && Dm.kproc() == nprocz-1){
for (k=Nz-3; k<Nz; k++){
for (j=0;j<Ny;j++){
for (i=0;i<Nx;i++){
int n = k*Nx*Ny+j*Nx+i;
//id[n] = 2;
Averages->SDs(n) = max(Averages->SDs(n),1.0*(k-Nz+2.5));
}
}
}
}
//.........................................................
// don't perform computations at the eight corners
id[0] = id[Nx-1] = id[(Ny-1)*Nx] = id[(Ny-1)*Nx + Nx-1] = 0;
id[(Nz-1)*Nx*Ny] = id[(Nz-1)*Nx*Ny+Nx-1] = id[(Nz-1)*Nx*Ny+(Ny-1)*Nx] = id[(Nz-1)*Nx*Ny+(Ny-1)*Nx + Nx-1] = 0;
//.........................................................
// Initialize communication structures in averaging domain
for (i=0; i<Mask.Nx*Mask.Ny*Mask.Nz; i++) Mask.id[i] = id[i];
Mask.CommInit(comm);
double *PhaseLabel;
PhaseLabel = new double[N];
Mask.AssignComponentLabels(PhaseLabel);
fflush(stdout);
//...........................................................................
if (rank==0) printf ("Create ScaLBL_Communicator \n");
// Create a communicator for the device (will use optimized layout)
ScaLBL_Communicator ScaLBL_Comm(Mask);
//Create a second communicator based on the regular data layout
ScaLBL_Communicator ScaLBL_Comm_Regular(Mask);
int Npad=Np+32;
int *neighborList;
IntArray Map(Nx,Ny,Nz);
neighborList= new int[18*Npad];
Np = ScaLBL_Comm.MemoryOptimizedLayoutAA(Map,neighborList,Mask.id,Np);
if (rank==0) printf ("Set up memory efficient layout Npad=%i, Np=%i \n",Npad,Np);
MPI_Barrier(comm);
//...........................................................................
// MAIN VARIABLES ALLOCATED HERE
//...........................................................................
// LBM variables
if (rank==0) printf ("Allocating distributions \n");
//......................device distributions.................................
fflush(stdout);
int dist_mem_size = Np*sizeof(double);
int neighborSize=18*(Np*sizeof(int));
int *NeighborList;
int *dvcMap;
double *fq, *Aq, *Bq;
double *Den, *Phi;
double *ColorGrad;
double *Velocity;
double *Pressure;
//...........................................................................
ScaLBL_AllocateDeviceMemory((void **) &NeighborList, neighborSize);
ScaLBL_AllocateDeviceMemory((void **) &dvcMap, sizeof(int)*Np);
ScaLBL_AllocateDeviceMemory((void **) &fq, 19*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Aq, 7*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Bq, 7*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Den, 2*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Phi, sizeof(double)*Nx*Ny*Nz);
ScaLBL_AllocateDeviceMemory((void **) &Pressure, sizeof(double)*Np);
ScaLBL_AllocateDeviceMemory((void **) &Velocity, 3*sizeof(double)*Np);
ScaLBL_AllocateDeviceMemory((void **) &ColorGrad, 3*sizeof(double)*Np);
//...........................................................................
// Update GPU data structures
if (rank==0) printf ("Setting up device map and neighbor list \n");
fflush(stdout);
int *TmpMap;
TmpMap=new int[Np];
for (k=1; k<Nz-1; k++){
for (j=1; j<Ny-1; j++){
for (i=1; i<Nx-1; i++){
int idx=Map(i,j,k);
if (!(idx < 0))
TmpMap[idx] = k*Nx*Ny+j*Nx+i;
}
}
}
// check that TmpMap is valid
for (int idx=0; idx<ScaLBL_Comm.last_interior; idx++){
if (idx == ScaLBL_Comm.next) idx = ScaLBL_Comm.first_interior;
int n = TmpMap[idx];
if (n > Nx*Ny*Nz){
printf("Bad value! idx=%i \n");
TmpMap[idx] = Nx*Ny*Nz-1;
}
}
ScaLBL_CopyToDevice(dvcMap, TmpMap, sizeof(int)*Np);
ScaLBL_DeviceBarrier();
delete [] TmpMap;
// copy the neighbor list
ScaLBL_CopyToDevice(NeighborList, neighborList, neighborSize);
// initialize phi based on PhaseLabel (include solid component labels)
ScaLBL_CopyToDevice(Phi, PhaseLabel, N*sizeof(double));
//...........................................................................
if (rank==0) printf ("Initializing distributions \n");
ScaLBL_D3Q19_Init(fq, Np);
if (rank==0) printf ("Initializing phase field \n");
ScaLBL_PhaseField_Init(dvcMap, Phi, Den, Aq, Bq, 0, ScaLBL_Comm.next, Np);
ScaLBL_PhaseField_Init(dvcMap, Phi, Den, Aq, Bq, ScaLBL_Comm.first_interior, ScaLBL_Comm.last_interior, Np);
if (BoundaryCondition >0 ){
if (Dm.kproc()==0){
ScaLBL_SetSlice_z(Phi,1.0,Nx,Ny,Nz,0);
ScaLBL_SetSlice_z(Phi,1.0,Nx,Ny,Nz,1);
ScaLBL_SetSlice_z(Phi,1.0,Nx,Ny,Nz,2);
}
if (Dm.kproc() == nprocz-1){
ScaLBL_SetSlice_z(Phi,-1.0,Nx,Ny,Nz,Nz-1);
ScaLBL_SetSlice_z(Phi,-1.0,Nx,Ny,Nz,Nz-2);
ScaLBL_SetSlice_z(Phi,-1.0,Nx,Ny,Nz,Nz-3);
}
}
//.......................................................................
// Once phase has been initialized, map solid to account for 'smeared' interface
//for (i=0; i<N; i++) Averages.SDs(i) -= (1.0);
// Make sure the id match for the two domains
for (i=0; i<N; i++) Dm.id[i] = Mask.id[i];
//.......................................................................
// Finalize setup for averaging domain
Averages->UpdateSolid();
//.......................................................................
ScaLBL_D3Q19_Pressure(fq,Pressure,Np);
ScaLBL_D3Q19_Momentum(fq,Velocity,Np);
//...........................................................................
// Copy the phase indicator field for the earlier timestep
ScaLBL_DeviceBarrier();
ScaLBL_CopyToHost(Averages->Phase_tplus.data(),Phi,N*sizeof(double));
//...........................................................................
// Copy the data for for the analysis timestep
//...........................................................................
// Copy the phase from the GPU -> CPU
//...........................................................................
ScaLBL_DeviceBarrier();
ScaLBL_CopyToHost(Averages->Phase.data(),Phi,N*sizeof(double));
ScaLBL_Comm.RegularLayout(Map,Pressure,Averages->Press);
ScaLBL_Comm.RegularLayout(Map,&Velocity[0],Averages->Vel_x);
ScaLBL_Comm.RegularLayout(Map,&Velocity[Np],Averages->Vel_y);
ScaLBL_Comm.RegularLayout(Map,&Velocity[2*Np],Averages->Vel_z);
//...........................................................................
if (rank==0){
printf("********************************************************\n");
printf("No. of timesteps: %i \n", timestepMax);
fflush(stdout);
}
//.......create and start timer............
double starttime,stoptime,cputime;
ScaLBL_DeviceBarrier();
MPI_Barrier(comm);
starttime = MPI_Wtime();
//.........................................
err = 1.0;
double sat_w_previous = 1.01; // slightly impossible value!
if (rank==0) printf("Begin timesteps: error tolerance is %f \n", tol);
if (rank==0){
printf("Analysis intervals: (restart) %i, (TCAT) %i, (blobtracking) %i \n",RESTART_INTERVAL,ANALYSIS_INTERVAL,BLOBID_INTERVAL);
}
//************ MAIN ITERATION LOOP ***************************************/
PROFILE_START("Loop");
std::shared_ptr<Database> analysis_db;
runAnalysis analysis( analysis_db, rank_info, ScaLBL_Comm, Dm, Np, pBC, beta, Map );
analysis.createThreads( analysis_method, 4 );
while (timestep < timestepMax && err > tol ) {
//if ( rank==0 ) { printf("Running timestep %i (%i MB)\n",timestep+1,(int)(Utilities::getMemoryUsage()/1048576)); }
PROFILE_START("Update");
// *************ODD TIMESTEP*************
timestep++;
// Compute the Phase indicator field
// Read for Aq, Bq happens in this routine (requires communication)
ScaLBL_Comm.BiSendD3Q7AA(Aq,Bq); //READ FROM NORMAL
ScaLBL_D3Q7_AAodd_PhaseField(NeighborList, dvcMap, Aq, Bq, Den, Phi, ScaLBL_Comm.first_interior, ScaLBL_Comm.last_interior, Np);
ScaLBL_Comm.BiRecvD3Q7AA(Aq,Bq); //WRITE INTO OPPOSITE
ScaLBL_D3Q7_AAodd_PhaseField(NeighborList, dvcMap, Aq, Bq, Den, Phi, 0, ScaLBL_Comm.next, Np);
// Perform the collision operation
ScaLBL_Comm.SendD3Q19AA(fq); //READ FROM NORMAL
// Halo exchange for phase field
ScaLBL_Comm_Regular.SendHalo(Phi);
ScaLBL_D3Q19_AAodd_Color(NeighborList, dvcMap, fq, Aq, Bq, Den, Phi, Velocity, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, ScaLBL_Comm.first_interior, ScaLBL_Comm.last_interior, Np);
ScaLBL_Comm_Regular.RecvHalo(Phi);
ScaLBL_Comm.RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
// Set BCs
if (BoundaryCondition > 0){
ScaLBL_Comm.Color_BC_z(dvcMap, Phi, Den, inletA, inletB);
ScaLBL_Comm.Color_BC_Z(dvcMap, Phi, Den, outletA, outletB);
}
if (BoundaryCondition == 3){
ScaLBL_Comm.D3Q19_Pressure_BC_z(NeighborList, fq, din, timestep);
ScaLBL_Comm.D3Q19_Pressure_BC_Z(NeighborList, fq, dout, timestep);
}
if (BoundaryCondition == 4){
din = ScaLBL_Comm.D3Q19_Flux_BC_z(NeighborList, fq, flux, timestep);
ScaLBL_Comm.D3Q19_Pressure_BC_Z(NeighborList, fq, dout, timestep);
}
ScaLBL_D3Q19_AAodd_Color(NeighborList, dvcMap, fq, Aq, Bq, Den, Phi, Velocity, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, 0, ScaLBL_Comm.next, Np);
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
// *************EVEN TIMESTEP*************
timestep++;
// Compute the Phase indicator field
ScaLBL_Comm.BiSendD3Q7AA(Aq,Bq); //READ FROM NORMAL
ScaLBL_D3Q7_AAeven_PhaseField(dvcMap, Aq, Bq, Den, Phi, ScaLBL_Comm.first_interior, ScaLBL_Comm.last_interior, Np);
ScaLBL_Comm.BiRecvD3Q7AA(Aq,Bq); //WRITE INTO OPPOSITE
ScaLBL_D3Q7_AAeven_PhaseField(dvcMap, Aq, Bq, Den, Phi, 0, ScaLBL_Comm.next, Np);
// Perform the collision operation
ScaLBL_Comm.SendD3Q19AA(fq); //READ FORM NORMAL
// Halo exchange for phase field
ScaLBL_Comm_Regular.SendHalo(Phi);
ScaLBL_D3Q19_AAeven_Color(dvcMap, fq, Aq, Bq, Den, Phi, Velocity, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, ScaLBL_Comm.first_interior, ScaLBL_Comm.last_interior, Np);
ScaLBL_Comm_Regular.RecvHalo(Phi);
ScaLBL_Comm.RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
// Set boundary conditions
if (BoundaryCondition > 0){
ScaLBL_Comm.Color_BC_z(dvcMap, Phi, Den, inletA, inletB);
ScaLBL_Comm.Color_BC_Z(dvcMap, Phi, Den, outletA, outletB);
}
if (BoundaryCondition == 3){
ScaLBL_Comm.D3Q19_Pressure_BC_z(NeighborList, fq, din, timestep);
ScaLBL_Comm.D3Q19_Pressure_BC_Z(NeighborList, fq, dout, timestep);
}
else if (BoundaryCondition == 4){
din = ScaLBL_Comm.D3Q19_Flux_BC_z(NeighborList, fq, flux, timestep);
ScaLBL_Comm.D3Q19_Pressure_BC_Z(NeighborList, fq, dout, timestep);
}
ScaLBL_D3Q19_AAeven_Color(dvcMap, fq, Aq, Bq, Den, Phi, Velocity, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, 0, ScaLBL_Comm.next, Np);
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
//************************************************************************
MPI_Barrier(comm);
PROFILE_STOP("Update");
// Run the analysis
analysis.run( timestep, *Averages, Phi, Pressure, Velocity, fq, Den );
}
analysis.finish();
PROFILE_STOP("Loop");
PROFILE_SAVE("lbpm_color_simulator",1);
//************************************************************************
ScaLBL_DeviceBarrier();
MPI_Barrier(comm);
stoptime = MPI_Wtime();
if (rank==0) printf("-------------------------------------------------------------------\n");
// Compute the walltime per timestep
cputime = (stoptime - starttime)/timestep;
// Performance obtained from each node
double MLUPS = double(Np)/cputime/1000000;
if (rank==0) printf("********************************************************\n");
if (rank==0) printf("CPU time = %f \n", cputime);
if (rank==0) printf("Lattice update rate (per core)= %f MLUPS \n", MLUPS);
MLUPS *= nprocs;
if (rank==0) printf("Lattice update rate (total)= %f MLUPS \n", MLUPS);
if (rank==0) printf("********************************************************\n");
// ************************************************************************
PROFILE_STOP("Main");
PROFILE_SAVE("lbpm_color_simulator",1);
// ****************************************************
MPI_Barrier(comm);
} // Limit scope so variables that contain communicators will free before MPI_Finialize
Utilities::shutdown();
}