LBPM/tests/lbpm_color_simulator.cpp
2023-03-30 15:31:17 -04:00

207 lines
8.1 KiB
C++

#include <exception>
#include <fstream>
#include <iostream>
#include <stdexcept>
#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include "common/Utilities.h"
#include "models/ColorModel.h"
/*
* Simulator for two-phase flow in porous media
* James E. McClure 2013-2014
*/
//*************************************************************************
// Implementation of Two-Phase Immiscible LBM using CUDA
//*************************************************************************
int main( int argc, char **argv )
{
// Initialize
Utilities::startup( argc, argv, true );
{ // Limit scope so variables that contain communicators will free before MPI_Finialize
Utilities::MPI comm( MPI_COMM_WORLD );
int rank = comm.getRank();
int nprocs = comm.getSize();
std::string SimulationMode = "production";
// Load the input database
//auto db = std::make_shared<Database>( argv[1] );
//if (argc > 2) {
// SimulationMode = "legacy";
//}
if ( rank == 0 ) {
printf( "********************************************************\n" );
printf( "Running Color LBM \n" );
printf( "********************************************************\n" );
if (SimulationMode == "legacy")
printf("**** LEGACY MODE ENABLED *************\n");
}
// Initialize compute device
int device = ScaLBL_SetDevice( rank );
NULL_USE( device );
ScaLBL_DeviceBarrier();
comm.barrier();
PROFILE_ENABLE( 1 );
// PROFILE_ENABLE_TRACE();
// PROFILE_ENABLE_MEMORY();
PROFILE_SYNCHRONIZE();
PROFILE_START( "Main" );
Utilities::setErrorHandlers();
auto filename = argv[1];
ScaLBL_ColorModel ColorModel( rank, nprocs, comm );
ColorModel.ReadParams( filename );
ColorModel.SetDomain();
ColorModel.ReadInput();
ColorModel.Create(); // creating the model will create data structure to match the pore
// structure and allocate variables
ColorModel.Initialize(); // initializing the model will set initial conditions for variables
if (SimulationMode == "legacy"){
ColorModel.Run();
}
else {
double MLUPS=0.0;
int timestep = 0;
bool ContinueSimulation = true;
/* Variables for simulation protocols */
auto PROTOCOL = ColorModel.color_db->getWithDefault<std::string>( "protocol", "default" );
/* image sequence protocol */
int IMAGE_INDEX = 0;
int IMAGE_COUNT = 0;
std::vector<std::string> ImageList;
/* flow adaptor keys to control behavior */
int SKIP_TIMESTEPS = 0;
int MAX_STEADY_TIME = 1000000;
double ENDPOINT_THRESHOLD = 0.1;
double FRACTIONAL_FLOW_INCREMENT = 0.0; // this will skip the flow adaptor if not enabled
double SEED_WATER = 0.0;
if (ColorModel.db->keyExists( "FlowAdaptor" )){
auto flow_db = ColorModel.db->getDatabase( "FlowAdaptor" );
MAX_STEADY_TIME = flow_db->getWithDefault<int>( "max_steady_timesteps", 1000000 );
SKIP_TIMESTEPS = flow_db->getWithDefault<int>( "skip_timesteps", 50000 );
ENDPOINT_THRESHOLD = flow_db->getWithDefault<double>( "endpoint_threshold", 0.1);
/* protocol specific key values */
if (PROTOCOL == "image sequence" || PROTOCOL == "core flooding")
SKIP_TIMESTEPS = 0;
if (PROTOCOL == "fractional flow")
FRACTIONAL_FLOW_INCREMENT = flow_db->getWithDefault<double>( "fractional_flow_increment", 0.05);
if (PROTOCOL == "seed water"){
SEED_WATER = flow_db->getWithDefault<double>( "seed_water", 0.01);
FRACTIONAL_FLOW_INCREMENT = flow_db->getWithDefault<double>( "fractional_flow_increment", 0.05);
}
}
/* analysis keys*/
int ANALYSIS_INTERVAL = ColorModel.timestepMax;
if (ColorModel.analysis_db->keyExists( "analysis_interval" )){
ANALYSIS_INTERVAL = ColorModel.analysis_db->getScalar<int>( "analysis_interval" );
}
/* Launch the simulation */
FlowAdaptor Adapt(ColorModel);
runAnalysis analysis(ColorModel);
while (ContinueSimulation){
/* this will run steady points */
if (PROTOCOL == "fractional flow" || PROTOCOL == "seed water" || PROTOCOL == "shell aggregation" || PROTOCOL == "image sequence" )
timestep += MAX_STEADY_TIME;
else
timestep += ColorModel.timestepMax;
/* Run the simulation timesteps*/
MLUPS = ColorModel.Run(timestep);
if (rank==0) printf("Lattice update rate (per MPI process)= %f MLUPS \n", MLUPS);
if (ColorModel.timestep >= ColorModel.timestepMax){
ContinueSimulation = false;
}
/* Load a new image if image sequence is specified */
if (PROTOCOL == "image sequence"){
IMAGE_INDEX++;
if (IMAGE_INDEX < IMAGE_COUNT){
std::string next_image = ImageList[IMAGE_INDEX];
if (rank==0) printf("***Loading next image in sequence (%i) ***\n",IMAGE_INDEX);
ColorModel.color_db->putScalar<int>("image_index",IMAGE_INDEX);
Adapt.ImageInit(ColorModel, next_image);
}
else{
if (rank==0) printf("Finished simulating image sequence \n");
ColorModel.timestep = ColorModel.timestepMax;
ContinueSimulation = false;
}
}
/*********************************************************/
/* update the fluid configuration with the flow adapter */
int skip_time = 0;
timestep = ColorModel.timestep;
/* get the averaged flow measures computed internally for the last simulation point*/
double SaturationChange = 0.0;
double volB = ColorModel.Averages->gwb.V;
double volA = ColorModel.Averages->gnb.V;
double initialSaturation = volB/(volA + volB);
double vA_x = ColorModel.Averages->gnb.Px/ColorModel.Averages->gnb.M;
double vA_y = ColorModel.Averages->gnb.Py/ColorModel.Averages->gnb.M;
double vA_z = ColorModel.Averages->gnb.Pz/ColorModel.Averages->gnb.M;
double vB_x = ColorModel.Averages->gwb.Px/ColorModel.Averages->gwb.M;
double vB_y = ColorModel.Averages->gwb.Py/ColorModel.Averages->gwb.M;
double vB_z = ColorModel.Averages->gwb.Pz/ColorModel.Averages->gwb.M;
double speedA = sqrt(vA_x*vA_x + vA_y*vA_y + vA_z*vA_z);
double speedB = sqrt(vB_x*vB_x + vB_y*vB_y + vB_z*vB_z);
/* stop simulation if previous point was sufficiently close to the endpoint*/
if (volA*speedA < ENDPOINT_THRESHOLD*volB*speedB) ContinueSimulation = false;
if (ContinueSimulation && SKIP_TIMESTEPS > 0 ){
while (skip_time < SKIP_TIMESTEPS && fabs(SaturationChange) < fabs(FRACTIONAL_FLOW_INCREMENT) ){
timestep += ANALYSIS_INTERVAL;
if (PROTOCOL == "fractional flow") {
Adapt.UpdateFractionalFlow(ColorModel);
}
else if (PROTOCOL == "shell aggregation"){
double target_volume_change = FRACTIONAL_FLOW_INCREMENT*initialSaturation - SaturationChange;
Adapt.ShellAggregation(ColorModel,target_volume_change);
}
else if (PROTOCOL == "seed water"){
Adapt.SeedPhaseField(ColorModel,SEED_WATER);
}
/* Run some LBM timesteps to let the system relax a bit */
MLUPS = ColorModel.Run(timestep);
/* Recompute the volume fraction now that the system has adjusted */
double volB = ColorModel.Averages->gwb.V;
double volA = ColorModel.Averages->gnb.V;
SaturationChange = volB/(volA + volB) - initialSaturation;
skip_time += ANALYSIS_INTERVAL;
}
if (rank==0) printf(" ********************************************************************* \n");
if (rank==0) printf(" Updated fractional flow with saturation change = %f \n", SaturationChange);
if (rank==0) printf(" Used protocol = %s \n", PROTOCOL.c_str());
if (rank==0) printf(" ********************************************************************* \n");
}
/*********************************************************/
if (rank==0) printf(" (flatten density field) \n");
if (PROTOCOL == "fractional flow") {
Adapt.Flatten(ColorModel);
}
}
}
/*
PROFILE_STOP( "Main" );
auto file = db->getWithDefault<std::string>( "TimerFile", "lbpm_color_simulator" );
auto level = db->getWithDefault<int>( "TimerLevel", 1 );
NULL_USE(level);
PROFILE_SAVE( file, level );
*/
// ****************************************************
} // Limit scope so variables that contain communicators will free before MPI_Finialize
cout << flush;
Utilities::shutdown();
return 0;
}