LBPM/tests/lbpm_juanes_bench_disc_pp.cpp
2021-01-04 19:33:27 -05:00

496 lines
16 KiB
C++

#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <iostream>
#include <exception>
#include <stdexcept>
#include <fstream>
#include "analysis/pmmc.h"
#include "common/Domain.h"
#include "common/Communication.h"
#include "common/MPI_Helpers.h" // This includes mpi.h
#include "common/SpherePack.h"
/*
* Pre-Processor to generate signed distance function from disc packing
* to use as an input domain for lattice Boltzmann simulator
* James E. McClure 2014
*/
using namespace std;
inline void ReadDiscPacking(int ndiscs, double *List_cx, double *List_cy, double *List_rad)
{
// Read in the full disc pack
//...... READ IN THE DISCS...................................
cout << "Reading the packing file..." << endl;
FILE *fid = fopen("DiscPack.in","rb");
INSIST(fid!=NULL,"Error opening DistPack.in");
//............................................
char * line = new char[100];
// We will read until a blank like or end-of-file is reached
int count = 0;
while ( !feof(fid) && fgets(line,100,fid)!=NULL ) {
char* line2 = line;
List_cx[count] = strtod(line2,&line2);
List_cy[count] = strtod(line2,&line2);
List_rad[count] = strtod(line2,&line2);
count++;
}
cout << "Number of discs extracted is: " << count << endl;
INSIST( count==ndiscs, "Specified number of discs is probably incorrect!" );
// .............................................................
}
inline void SignedDistanceDiscPack(double *Distance, int ndiscs, double *List_cx, double *List_cy, double *List_rad,
double Lx, double Ly, double Lz, int Nx, int Ny, int Nz,
int iproc, int jproc, int kproc, int nprocx, int nprocy, int nprocz)
{
// Use sphere lists to determine which nodes are in porespace
// Write out binary file for nodes
int N = Nx*Ny*Nz; // Domain size, including the halo
double hx,hy,hz;
double x,y,z;
double cx,cy,cz,r;
int imin,imax,jmin,jmax,kmin,kmax;
int p,i,j,k,n;
//............................................
double min_x,min_y,min_z;
double distance;
//............................................
// Lattice spacing for the entire domain
// It should generally be true that hx=hy=hz
// Otherwise, you will end up with ellipsoids
hx = Lx/((Nx-2)*nprocx-1);
hy = Ly/((Ny-2)*nprocy-1);
hz = Lz/((Nz-2)*nprocz-1);
//............................................
// Get maximum and minimum for this domain
// Halo is included !
min_x = double(iproc*(Nx-2)-1)*hx;
min_y = double(jproc*(Ny-2)-1)*hy;
min_z = double(kproc*(Nz-2)-1)*hz;
NULL_USE(min_x);
//............................................
//............................................
// Pre-initialize Distance
for (n=0;n<N;n++){
Distance[n]=100.0;
}
//............................................
//............................................
// .........Loop over the spheres.............
for (p=0;p<ndiscs;p++){
// Get the sphere from the list, map to local min
cx = List_cx[p] - min_y;
cy = List_cy[p] - min_z;
r = List_rad[p];
// Check if
// Range for this sphere in global indexing
imin = int ((cx-2*r)/hx);
imax = int ((cx+2*r)/hx)+2;
jmin = int ((cy-2*r)/hy);
jmax = int ((cy+2*r)/hy)+2;
// Obviously we have to do something at the edges
if (imin<0) imin = 0;
if (imin>Nx) imin = Nx-1;
if (imax<0) jmax = 0;
if (imax>Nx) jmax = Nx-1;
if (jmin<0) jmin = 0;
if (jmin>Ny) jmin = Ny-1;
if (jmax<0) jmax = 0;
if (jmax>Ny) jmax = Ny-1;
if (imin < Nx-1 && jmin< Ny-1 && imax > 0 && jmax >0){
// Loop over the domain for this sphere (may be null)
for (k=0;k<Nz;k++){
for (j=jmin;j<jmax;j++){
for (i=imin;i<imax;i++){
// x,y,z is distance in physical units
x = i*hx;
y = j*hy;
// if inside disc, set to zero
// get the position in the list -- x direction assigned the same
n = k*Nx*Ny+j*Nx+i;
// Compute the distance
distance = sqrt((cx-x)*(cx-x)+(cy-y)*(cy-y)) - r;
// Assign the minimum distance
if (distance < Distance[n]) Distance[n] = distance;
}
}
}
}
}
// Map the distance to lattice units
for (n=0; n<N; n++) Distance[n] = Distance[n]/hx;
}
int main(int argc, char **argv)
{
//*****************************************
// ***** MPI STUFF ****************
//*****************************************
// Initialize MPI
Utilities::startup( argc, argv );
Utilities::MPI comm( MPI_COMM_WORLD );
int rank = comm.getRank();
int nprocs = comm.getSize();
// parallel domain size (# of sub-domains)
int nprocx,nprocy,nprocz;
int iproc,jproc,kproc;
int sendtag,recvtag;
//*****************************************
// MPI ranks for all 18 neighbors
//**********************************
int rank_x,rank_y,rank_z,rank_X,rank_Y,rank_Z;
int rank_xy,rank_XY,rank_xY,rank_Xy;
int rank_xz,rank_XZ,rank_xZ,rank_Xz;
int rank_yz,rank_YZ,rank_yZ,rank_Yz;
//**********************************
MPI_Request req1[18],req2[18];
MPI_Status stat1[18],stat2[18];
if (rank == 0){
printf("********************************************************\n");
printf("Running Disc Packing Pre-Processor for LBPM-WIA \n");
printf("********************************************************\n");
}
// Variables that specify the computational domain
string FILENAME;
int Nx,Ny,Nz; // local sub-domain size
int ndiscs; // number of spheres in the packing
double Lx,Ly,Lz; // Domain length
double D = 1.0; // reference length for non-dimensionalization
int inlet_radius; // radius of the inlet hole (flow goes through)
int outlet_radius; // radius of the outlet layer (flow goes around)
int depth; // depth fo the micromodel
int i,j,k,n;
int BCx,BCX,BCy,BCY;
BCx = BCX = BCy = BCY = 0;
if (rank==0){
//.......................................................................
// Reading the domain information file
//.......................................................................
ifstream domain("Domain.in");
domain >> nprocx;
domain >> nprocy;
domain >> nprocz;
domain >> Nx;
domain >> Ny;
domain >> Nz;
domain >> ndiscs;
domain >> Lx;
domain >> Ly;
domain >> Lz;
//.......................................................................
}
// **************************************************************
// Broadcast simulation parameters from rank 0 to all other procs
MPI_Barrier(comm);
//.................................................
// Computational domain
MPI_Bcast(&Nx,1,MPI_INT,0,comm);
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
MPI_Bcast(&Nz,1,MPI_INT,0,comm);
MPI_Bcast(&nprocx,1,MPI_INT,0,comm);
MPI_Bcast(&nprocy,1,MPI_INT,0,comm);
MPI_Bcast(&nprocz,1,MPI_INT,0,comm);
MPI_Bcast(&ndiscs,1,MPI_INT,0,comm);
MPI_Bcast(&Lx,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Ly,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Lz,1,MPI_DOUBLE,0,comm);
//.................................................
MPI_Barrier(comm);
// **************************************************************
double Rin,Rout;
if (argc == 8){
Rin=strtod(argv[1],NULL);
Rout=strtod(argv[2],NULL);
depth = atoi(argv[3]);
BCx = atoi(argv[4]);
BCX = atoi(argv[5]);
BCy = atoi(argv[6]);
BCY = atoi(argv[7]);
//inlet_radius=atoi(argv[1]);
//outlet_radius=atoi(argv[2]);
}
else{
INSIST(argc==8,"Did not provide correct input arguments! Rin, Rout, Depth");
}
if (nprocs != nprocx*nprocy*nprocz){
printf("nprocx = %i \n",nprocx);
printf("nprocy = %i \n",nprocy);
printf("nprocz = %i \n",nprocz);
INSIST(nprocs == nprocx*nprocy*nprocz,"Fatal error in processor count!");
}
InitializeRanks( rank, nprocx, nprocy, nprocz, iproc, jproc, kproc,
rank_x, rank_y, rank_z, rank_X, rank_Y, rank_Z,
rank_xy, rank_XY, rank_xY, rank_Xy, rank_xz, rank_XZ, rank_xZ, rank_Xz,
rank_yz, rank_YZ, rank_yZ, rank_Yz );
MPI_Barrier(comm);
Nx += 2; Ny += 2; Nz += 2;
int N = Nx*Ny*Nz;
int dist_mem_size = N*sizeof(double);
// Maximum depth based on the
if (depth > Nz-12) depth = Nz-12;
if (rank==0){
printf("Process grid = %ix%ix%i \n", nprocx,nprocy,nprocz);
printf("Sub-domain size = %ix%ix%i \n", Nx,Ny,Nz);
printf("Physical domain size = %fx%fx%f \n",Lx,Ly,Lz);
printf("Micromodel depth = %i voxels \n",depth);
}
//.......................................................................
if (rank == 0) printf("Read input media... \n");
//.......................................................................
//.......................................................................
// Filenames used
char LocalRankString[8];
char LocalRankFilename[40];
char LocalRestartFile[40];
char tmpstr[10];
sprintf(LocalRankString,"%05d",rank);
sprintf(LocalRankFilename,"%s%s","ID.",LocalRankString);
sprintf(LocalRestartFile,"%s%s","Restart.",LocalRankString);
// printf("Local File Name = %s \n",LocalRankFilename);
// .......... READ THE INPUT FILE .......................................
// char value;
char *id;
id = new char[N];
int sum = 0;
double sum_local;
double iVol_global = 1.0/(1.0*(Nx-2)*(Ny-2)*(Nz-2)*nprocs);
double porosity, pore_vol;
//...........................................................................
DoubleArray SignDist(Nx,Ny,Nz);
//.......................................................................
// Read in sphere pack
if (rank==1) printf("ndiscs =%i \n",ndiscs);
//.......................................................................
double *cx,*cy,*cz,*rad;
cx = new double[ndiscs];
cy = new double[ndiscs];
rad = new double[ndiscs];
//.......................................................................
if (rank == 0) printf("Reading the disc packing \n");
if (rank == 0) ReadDiscPacking(ndiscs,cx,cy,rad);
MPI_Barrier(comm);
// Broadcast the sphere packing to all processes
MPI_Bcast(cx,ndiscs,MPI_DOUBLE,0,comm);
MPI_Bcast(cy,ndiscs,MPI_DOUBLE,0,comm);
MPI_Bcast(rad,ndiscs,MPI_DOUBLE,0,comm);
//...........................................................................
MPI_Barrier(comm);
/* if (rank == 0){
cout << "Domain set." << endl;
printf("************ \n");
printf("Discs are: \n");
for (int disc=0; disc<ndiscs; disc++){
printf("%f,%f,%f\n",cx[disc],cy[disc],rad[disc]);
}
printf("************ \n");
}
*/
MPI_Barrier(comm);
if (nprocz > 1 && rank==0) printf("Disc packs are 2D -- are you sure you want nprocz > 1? \n");
if (rank ==0) printf("Compute the signed distance part I \n");
//.......................................................................
SignedDistanceDiscPack(SignDist.data(),ndiscs,cx,cy,rad,Lx,Ly,Lz,Nx,Ny,Nz,
iproc,jproc,kproc,nprocx,nprocy,nprocz);
//.......................................................................
// Assign walls in the signed distance functions (x,y boundaries)
double dst;
int center_x=nprocx*Nx/2;
int center_y=nprocy*Ny/2;
inlet_radius = int(nprocx*Nx*(Rin/Lx));
outlet_radius = int(nprocx*Nx*(Rout/Lx));
//inlet_radius=int(Rin);
//outlet_radius=int(Rout);
if (rank ==0) printf("Compute the signed distance part II \n");
if (rank ==0) printf(" Inlet radius = %i \n",inlet_radius);
if (rank ==0) printf(" Outlet radius = %i \n",outlet_radius);
int TopDisc = (Nz+depth)/2;
int BotDisc = (Nz-depth)/2;
double MidBot = 0.5*double(BotDisc+4);
double MidTop = 0.5*double(TopDisc+Nz-5);
double DiscThickness = (double(BotDisc)-MidBot);
if (rank ==0) printf(" Bottom Middle = %f \n",MidBot);
if (rank ==0) printf(" Top Middle = %f \n",MidTop);
if (rank ==0) printf(" Disc thickness = %f \n",DiscThickness);
for (k=0;k<Nz;k++){
for (j=0;j<Ny;j++){
for (i=0;i<Nx;i++){
// global index
int gi = iproc*Nx + i;
int gj = jproc*Ny + j;
// distance to the bottom layer
//double dist_to_bottom = fabs(5.0 - double(k)) - 0.5;
//double dist_to_top = fabs(6.0 - double(Nz - k)) - 0.5;
double dist_to_bottom = fabs(double(MidBot-k)) - DiscThickness;
double dist_to_top = fabs(double(MidTop-k)) - DiscThickness;
double dist_to_inlet = double(inlet_radius) - sqrt(double((gi-center_x)*(gi-center_x) + (gj-center_y)*(gj-center_y)));
double dist_to_outlet = sqrt(double((gi-center_x)*(gi-center_x) + (gj-center_y)*(gj-center_y))) - double(outlet_radius);
if (k<Nz/2){
// distance map for the solid boundary at the inlet layer
if (dist_to_inlet > 0.f) dst = dist_to_inlet;
else if (dist_to_bottom > 0.f) dst = dist_to_bottom;
else dst = dist_to_inlet;
}
else{
// distance map for the solid boundary at the outlet layer
if (dist_to_top > 0.f) dst = dist_to_top;
else if (dist_to_outlet > 0.f) dst = sqrt(dist_to_top*dist_to_top + dist_to_outlet*dist_to_outlet);
else dst = dist_to_outlet;
}
if (k<int(MidBot-DiscThickness)) SignDist(i,j,k) = dist_to_bottom;
else if (k>int(MidTop+DiscThickness)) SignDist(i,j,k) = dist_to_top;
else if (dst < SignDist(i,j,k)) SignDist(i,j,k) = dst;
}
}
}
//.......................................................................
// Assign the phase ID field based on the signed distance
//.......................................................................
for (k=0;k<Nz;k++){
for (j=0;j<Ny;j++){
for (i=0;i<Nx;i++){
n = k*Nx*Ny+j*Nx+i;
id[n] = 0;
}
}
}
sum=0;
pore_vol = 0.0;
printf("Bottom disc=%i\n",BotDisc);
printf("Top disc=%i\n",TopDisc);
for ( k=0;k<Nz;k++){
for ( j=0;j<Ny;j++){
for ( i=0;i<Nx;i++){
// global index
int gi = iproc*Nx + i;
int gj = jproc*Ny + j;
// distance to the bottom layer
//double dist_to_bottom = fabs(5.0 - double(k)) - 0.5;
//double dist_to_top = fabs(6.0 - double(Nz - k)) - 0.5;
//double dist_to_bottom = fabs(double(BotDisc-k)) - 0.5;
//double dist_to_top = fabs(double(TopDisc-k)) - 0.5;
double dist_to_bottom = fabs(double(MidBot-k)) - DiscThickness;
double dist_to_top = fabs(double(MidTop-k)) - DiscThickness;
double dist_to_inlet = double(inlet_radius) - sqrt(double((gi-center_x)*(gi-center_x) + (gj-center_y)*(gj-center_y)));
double dist_to_outlet = sqrt(double((gi-center_x)*(gi-center_x) + (gj-center_y)*(gj-center_y))) - double(outlet_radius);
//printf("%f \n",dist_to_inlet);
n = k*Nx*Ny+j*Nx+i;
if (SignDist(n) > 0.0){
if (k<5) id[n]=1;
else if (k>Nz-6) id[n]=2;
else if (dist_to_inlet > 0.f) id[n]=1;
else if (dist_to_outlet > 0.f) id[n]=2;
else id[n]=2;
}
// compute the porosity (actual interface location used)
if (SignDist(n) > 0.0){
sum++;
}
}
}
}
sum_local = 1.0*sum;
MPI_Allreduce(&sum_local,&porosity,1,MPI_DOUBLE,MPI_SUM,comm);
porosity = porosity*iVol_global;
if (rank==0) printf("Media porosity = %f \n",porosity);
// Compute the pore volume
sum_local = 0.0;
for ( k=1;k<Nz-1;k++){
for ( j=1;j<Ny-1;j++){
for ( i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
if (id[n] > 0){
sum_local += 1.0;
}
}
}
}
MPI_Allreduce(&sum_local,&pore_vol,1,MPI_DOUBLE,MPI_SUM,comm);
//.........................................................
// don't perform computations at the eight corners
id[0] = id[Nx-1] = id[(Ny-1)*Nx] = id[(Ny-1)*Nx + Nx-1] = 0;
id[(Nz-1)*Nx*Ny] = id[(Nz-1)*Nx*Ny+Nx-1] = id[(Nz-1)*Nx*Ny+(Ny-1)*Nx] = id[(Nz-1)*Nx*Ny+(Ny-1)*Nx + Nx-1] = 0;
//.........................................................
sprintf(LocalRankFilename,"ID.%05i",rank);
FILE *ID = fopen(LocalRankFilename,"wb");
fwrite(id,1,N,ID);
fclose(ID);
if (rank==0) printf("Writing mirror domain\n");
char * mirror;
mirror = new char [N];
for (n=0; n<N; n++){
int nm = N-1-n;
mirror[n] = id[nm];
}
sprintf(LocalRankFilename,"mirrorID.%05i",rank);
FILE *MIR = fopen(LocalRankFilename,"wb");
fwrite(mirror,1,N,MIR);
fclose(MIR);
//.......................................................................
sprintf(LocalRankString,"%05d",rank);
sprintf(LocalRankFilename,"%s%s","SignDist.",LocalRankString);
WriteLocalSolidDistance(LocalRankFilename, SignDist.data(), N);
//......................................................................
// ****************************************************
comm.barrier();
Utilities::shutdown();
// ****************************************************
}