LBPM/tests/lbpm_nondarcy_simulator.cpp
2021-01-04 19:33:27 -05:00

582 lines
22 KiB
C++

#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <iostream>
#include <exception>
#include <stdexcept>
#include <fstream>
#include "common/ScaLBL.h"
#include "common/Communication.h"
#include "analysis/TwoPhase.h"
#include "common/MPI_Helpers.h"
//#define WRITE_SURFACES
/*
* Simulator for two-phase flow in porous media
* James E. McClure 2013-2014
*/
using namespace std;
//*************************************************************************
// Steady State Single-Phase LBM to generate non-Darcy curves
//*************************************************************************
int main(int argc, char **argv)
{
std::string help("--help");
std::string arg1("");
if (argc > 1) arg1=argv[1];
if (help.compare(arg1) == 0){
printf("********************************************************** \n");
printf("Pore-scale lattice Boltzmann simulator for non-Darcy flow in porous media \n \n");
printf("Simulate non-Darcy flow in porous media \n");
printf(" MPI-based lattice Boltzmann simulator \n");
printf(" Multi-relaxation time (ScaLBL_D3Q19_MRT) D3Q19 \n \n");
printf(" Launch with MPI (e.g.) \n \n");
printf(" mpirun -np $NUMPROCS $LBPM_WIA_DIR/lbpm_nondarcy_simulator \n \n");
printf("**********CITATION********** \n");
printf(" Dye, A.L., McClure, J.E., Gray, W.G. and C.T. Miller\n");
printf(" Description of Non-Darcy Flows in Porous Medium Systems \n");
printf(" Physical Review E 87 (3), 033012 \n \n");
printf("**********INPUT********** \n");
printf("1. Domain.in (describes the simulation domain and domain decomposition) \n");
printf(" ----(e.g. Domain.in)-----\n");
printf(" nprocx nprocy nprocz (process grid)\n");
printf(" Nx Ny Nz (local sub-domain)\n");
printf(" Lx Ly Lz (physical domain size) \n");
printf(" --------------------------\n");
printf("2. SignDist.xxxxx (Distance map of porespace) \n");
printf(" - one file for each MPI process \n");
printf(" - double precision values \n");
printf(" - dimensions are [Nx+2,Ny+2,Nz+2] (include halo)\n \n");
//printf("3. parameters for LBM are hard-coded! \n \n");
printf("**********OUTPUT********** \n");
printf("1. nondary.csv - list of averaged quantities obtained from steady-state flow fields\n");
printf(" - D32 - Sauter mean grain diamter \n");
printf(" - vx - average velocity in the x-direction \n");
printf(" - vy - average velocity in the y-direction \n");
printf(" - vz - average velocity in the z-direction \n");
printf(" - Fx - body force applied in the x-direction \n");
printf(" - Fy - body force applied in the y-direction \n");
printf(" - Fz - body force applied in the z-direction \n");
printf(" - Fo - Gallilei number \n");
printf(" - Re - Reynolds number \n");
printf("********************************************************** \n");
/*printf("*******DIMENSIONLESS FORCHEIMER EQUATION********\n");
printf(" - force = |F| (total magnitude of force) \n");
printf(" - velocity = F dot v / |F| (flow velocity aligned with force) \n");
printf(" - Fo = density*D32^3*(density*force) / (viscosity^2) \n");
printf(" - Re = density*D32*velocity / viscosity \n");
printf(" - Fo = a*Re + b*Re^2 \n");
*/
// *************************************************************************
}
else {
//*****************************************
// ***** MPI STUFF ****************
//*****************************************
// Initialize MPI
Utilities::startup( argc, argv );
Utilities::MPI comm( MPI_COMM_WORLD );
int rank = comm.getRank();
int nprocs = comm.getSize();
{
// parallel domain size (# of sub-domains)
int nprocx,nprocy,nprocz;
int iproc,jproc,kproc;
//*****************************************
// MPI ranks for all 18 neighbors
//**********************************
int rank_x,rank_y,rank_z,rank_X,rank_Y,rank_Z;
int rank_xy,rank_XY,rank_xY,rank_Xy;
int rank_xz,rank_XZ,rank_xZ,rank_Xz;
int rank_yz,rank_YZ,rank_yZ,rank_Yz;
//**********************************
MPI_Request req1[18],req2[18];
MPI_Status stat1[18],stat2[18];
double REYNOLDS_NUMBER = 100.f;
if (argc > 1){
REYNOLDS_NUMBER=strtod(argv[1],NULL);
}
if (rank == 0){
printf("********************************************************\n");
printf("Simulating Single Phase Non-Darcy Curve, Re < %f \n",REYNOLDS_NUMBER);
printf("********************************************************\n");
}
// Variables that specify the computational domain
string FILENAME;
int Nx,Ny,Nz; // local sub-domain size
int nspheres; // number of spheres in the packing
double Lx,Ly,Lz; // Domain length
double D = 1.0; // reference length for non-dimensionalization
// Color Model parameters
int timestepMax, interval;
double tau,Fx,Fy,Fz,tol,err;
double din,dout;
bool pBC,Restart;
int i,j,k,n;
int RESTART_INTERVAL=20000;
if (rank==0){
//.......................................................................
// Reading the domain information file
//.......................................................................
ifstream domain("Domain.in");
domain >> nprocx;
domain >> nprocy;
domain >> nprocz;
domain >> Nx;
domain >> Ny;
domain >> Nz;
domain >> nspheres;
domain >> Lx;
domain >> Ly;
domain >> Lz;
//.......................................................................
/*
* Set simulation parameters internally
*/
tau=0.7;
Fx = 0.f;
Fy = 0.f;
Fz = 1.0e-7;
pBC = 0;
din = 1.0;
dout = 1.0;
timestepMax = nprocz*Nz*100;
interval = 500;
tol = 1.0e-4;
}
// **************************************************************
// Broadcast simulation parameters from rank 0 to all other procs
MPI_Barrier(comm);
//.................................................
MPI_Bcast(&tau,1,MPI_DOUBLE,0,comm);
//MPI_Bcast(&pBC,1,MPI_LOGICAL,0,comm);
// MPI_Bcast(&Restart,1,MPI_LOGICAL,0,comm);
MPI_Bcast(&din,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&dout,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Fx,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Fy,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Fz,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&timestepMax,1,MPI_INT,0,comm);
MPI_Bcast(&interval,1,MPI_INT,0,comm);
MPI_Bcast(&tol,1,MPI_DOUBLE,0,comm);
// Computational domain
MPI_Bcast(&Nx,1,MPI_INT,0,comm);
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
MPI_Bcast(&Nz,1,MPI_INT,0,comm);
MPI_Bcast(&nprocx,1,MPI_INT,0,comm);
MPI_Bcast(&nprocy,1,MPI_INT,0,comm);
MPI_Bcast(&nprocz,1,MPI_INT,0,comm);
MPI_Bcast(&nspheres,1,MPI_INT,0,comm);
MPI_Bcast(&Lx,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Ly,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Lz,1,MPI_DOUBLE,0,comm);
//.................................................
MPI_Barrier(comm);
RESTART_INTERVAL=interval;
// **************************************************************
// **************************************************************
double rlxA = 1.f/tau;
double rlxB = 8.f*(2.f-rlxA)/(8.f-rlxA);
if (nprocs != nprocx*nprocy*nprocz){
printf("nprocx = %i \n",nprocx);
printf("nprocy = %i \n",nprocy);
printf("nprocz = %i \n",nprocz);
INSIST(nprocs == nprocx*nprocy*nprocz,"Fatal error in processor count!");
}
if (rank==0){
printf("********************************************************\n");
printf("tau = %f \n", tau);
printf("Force(x) = %f \n", Fx);
printf("Force(y) = %f \n", Fy);
printf("Force(z) = %f \n", Fz);
printf("Sub-domain size = %i x %i x %i\n",Nx,Ny,Nz);
printf("Process grid = %i x %i x %i\n",nprocx,nprocy,nprocz);
printf("********************************************************\n");
}
double viscosity=(tau-0.5)/3.0;
// Initialized domain and averaging framework for Two-Phase Flow
int BC=pBC;
Domain Dm(Nx,Ny,Nz,rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BC);
TwoPhase Averages(Dm);
InitializeRanks( rank, nprocx, nprocy, nprocz, iproc, jproc, kproc,
rank_x, rank_y, rank_z, rank_X, rank_Y, rank_Z,
rank_xy, rank_XY, rank_xY, rank_Xy, rank_xz, rank_XZ, rank_xZ, rank_Xz,
rank_yz, rank_YZ, rank_yZ, rank_Yz );
MPI_Barrier(comm);
Nx += 2; Ny += 2; Nz += 2;
int N = Nx*Ny*Nz;
int dist_mem_size = N*sizeof(double);
//.......................................................................
if (rank == 0) printf("Read input media... \n");
//.......................................................................
//.......................................................................
// Filenames used
char LocalRankString[8];
char LocalRankFilename[40];
char LocalRestartFile[40];
char tmpstr[10];
sprintf(LocalRankString,"%05d",rank);
sprintf(LocalRankFilename,"%s%s","ID.",LocalRankString);
sprintf(LocalRestartFile,"%s%s","Restart.",LocalRankString);
// printf("Local File Name = %s \n",LocalRankFilename);
// .......... READ THE INPUT FILE .......................................
// char value;
char *id;
id = new char[N];
int sum = 0;
double sum_local;
double iVol_global = 1.0/(1.0*(Nx-2)*(Ny-2)*(Nz-2)*nprocs);
if (pBC) iVol_global = 1.0/(1.0*(Nx-2)*nprocx*(Ny-2)*nprocy*((Nz-2)*nprocz-6));
double porosity, pore_vol;
//...........................................................................
if (rank == 0) cout << "Reading in domain from signed distance function..." << endl;
//.......................................................................
sprintf(LocalRankString,"%05d",rank);
// sprintf(LocalRankFilename,"%s%s","ID.",LocalRankString);
// WriteLocalSolidID(LocalRankFilename, id, N);
sprintf(LocalRankFilename,"%s%s","SignDist.",LocalRankString);
ReadBinaryFile(LocalRankFilename, Averages.SDs.data(), N);
MPI_Barrier(comm);
if (rank == 0) cout << "Domain set." << endl;
//.......................................................................
// Assign the phase ID field based on the signed distance
//.......................................................................
for (k=0;k<Nz;k++){
for (j=0;j<Ny;j++){
for (i=0;i<Nx;i++){
n = k*Nx*Ny+j*Nx+i;
id[n] = 0;
}
}
}
sum=0;
pore_vol = 0.0;
for ( k=1;k<Nz-1;k++){
for ( j=1;j<Ny-1;j++){
for ( i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
if (Averages.SDs(n) > 0.0){
id[n] = 2;
}
// compute the porosity (actual interface location used)
if (Averages.SDs(n) > 0.0){
sum++;
}
}
}
}
// Set up kstart, kfinish so that the reservoirs are excluded from averaging
int kstart,kfinish;
kstart = 1;
kfinish = Nz-1;
if (pBC && kproc==0) kstart = 4;
if (pBC && kproc==nprocz-1) kfinish = Nz-4;
// Compute the pore volume
sum_local = 0.0;
for ( k=kstart;k<kfinish;k++){
for ( j=1;j<Ny-1;j++){
for ( i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
if (id[n] > 0){
sum_local += 1.0;
}
}
}
}
MPI_Allreduce(&sum_local,&pore_vol,1,MPI_DOUBLE,MPI_SUM,comm);
// MPI_Allreduce(&sum_local,&porosity,1,MPI_DOUBLE,MPI_SUM,comm);
porosity = pore_vol*iVol_global;
if (rank==0) printf("Media porosity = %f \n",porosity);
//.........................................................
// If pressure boundary conditions are applied remove solid
if (pBC && kproc == 0){
for (k=0; k<3; k++){
for (j=0;j<Ny;j++){
for (i=0;i<Nx;i++){
n = k*Nx*Ny+j*Nx+i;
id[n] = 1;
Averages.SDs(n) = max(Averages.SDs(n),1.0*(2.5-k));
}
}
}
}
if (pBC && kproc == nprocz-1){
for (k=Nz-3; k<Nz; k++){
for (j=0;j<Ny;j++){
for (i=0;i<Nx;i++){
n = k*Nx*Ny+j*Nx+i;
id[n] = 2;
Averages.SDs(n) = max(Averages.SDs(n),1.0*(k-Nz+2.5));
}
}
}
}
//.........................................................
// don't perform computations at the eight corners
id[0] = id[Nx-1] = id[(Ny-1)*Nx] = id[(Ny-1)*Nx + Nx-1] = 0;
id[(Nz-1)*Nx*Ny] = id[(Nz-1)*Nx*Ny+Nx-1] = id[(Nz-1)*Nx*Ny+(Ny-1)*Nx] = id[(Nz-1)*Nx*Ny+(Ny-1)*Nx + Nx-1] = 0;
//.........................................................
// Initialize communication structures in averaging domain
for (i=0; i<Dm.Nx*Dm.Ny*Dm.Nz; i++) Dm.id[i] = id[i];
Dm.CommInit();
//...........................................................................
if (rank==0) printf ("Create ScaLBL_Communicator \n");
// Create a communicator for the device
ScaLBL_Communicator ScaLBL_Comm(Dm);
//...........device phase ID.................................................
if (rank==0) printf ("Copying phase ID to device \n");
char *ID;
ScaLBL_AllocateDeviceMemory((void **) &ID, N); // Allocate device memory
// Copy to the device
ScaLBL_CopyToDevice(ID, id, N);
//...........................................................................
//...........................................................................
// MAIN VARIABLES ALLOCATED HERE
//...........................................................................
// LBM variables
if (rank==0) printf ("Allocating distributions \n");
//......................device distributions.................................
double *f_even,*f_odd;
//...........................................................................
ScaLBL_AllocateDeviceMemory((void **) &f_even, 10*dist_mem_size); // Allocate device memory
ScaLBL_AllocateDeviceMemory((void **) &f_odd, 9*dist_mem_size); // Allocate device memory
//...........................................................................
double *Velocity, *Pressure, *dvcSignDist;
//...........................................................................
ScaLBL_AllocateDeviceMemory((void **) &Pressure, dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &dvcSignDist, dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Velocity, 3*dist_mem_size);
//...........................................................................
// Copy signed distance for device initialization
ScaLBL_CopyToDevice(dvcSignDist, Averages.SDs.data(), dist_mem_size);
//...........................................................................
int logcount = 0; // number of surface write-outs
//...........................................................................
// MAIN VARIABLES INITIALIZED HERE
//...........................................................................
//...........................................................................
if (rank==0) printf("Setting the distributions, size = %i\n", N);
//...........................................................................
ScaLBL_D3Q19_Init(ID, f_even, f_odd, Nx, Ny, Nz);
//......................................................................
//.......................................................................
// Finalize setup for averaging domain
//Averages.SetupCubes(Dm);
Averages.UpdateSolid();
// Initialize two phase flow variables (all wetting phase)
for (k=0;k<Nz;k++){
for (j=0;j<Ny;j++){
for (i=0;i<Nx;i++){
n=k*Nx*Ny+j*Nx+i;
Averages.Phase(i,j,k) = -1.0;
Averages.SDn(i,j,k) = Averages.Phase(i,j,k);
Averages.Phase_tplus(i,j,k) = Averages.SDn(i,j,k);
Averages.Phase_tminus(i,j,k) = Averages.SDn(i,j,k);
Averages.DelPhi(i,j,k) = 0.0;
Averages.Press(i,j,k) = 0.0;
Averages.Vel_x(i,j,k) = 0.0;
Averages.Vel_y(i,j,k) = 0.0;
Averages.Vel_z(i,j,k) = 0.0;
}
}
}
//.......................................................................
if (rank==0 && pBC){
printf("Setting inlet pressure = %f \n", din);
printf("Setting outlet pressure = %f \n", dout);
}
if (pBC && kproc == 0) {
ScaLBL_D3Q19_Pressure_BC_z(f_even,f_odd,din,Nx,Ny,Nz);
}
if (pBC && kproc == nprocz-1){
ScaLBL_D3Q19_Pressure_BC_Z(f_even,f_odd,dout,Nx,Ny,Nz,Nx*Ny*(Nz-2));
}
int timestep = 0;
if (rank==0) printf("********************************************************\n");
if (rank==0) printf("No. of timesteps: %i \n", timestepMax);
//.......create and start timer............
double starttime,stoptime,cputime;
MPI_Barrier(comm);
starttime = MPI_Wtime();
//.........................................
double D32,vawx,vawy,vawz,Fo,Re,velocity,err1D,mag_force,vel_prev;
FILE * NONDARCY;
if (rank == 0){
NONDARCY = fopen("nondarcy.csv","a");
fprintf(NONDARCY,"D32 Fx Fy Fz vx vy vz Re Fo\n");
}
Re = 0.f;
// Generate a bunch of points until sufficiently high Re is obtained
while (Re < REYNOLDS_NUMBER){
// Increase the external force and simulate to steady state
Fz = 2.0*Fz;
err = vel_prev = 1.0;
if (rank==0) printf("Begin timesteps: error tolerance is %f \n", tol);
//************ MAIN ITERATION LOOP ***************************************/
while (timestep < timestepMax && err > tol ){
//*************************************************************************
// Fused Color Gradient and Collision
//*************************************************************************
ScaLBL_D3Q19_MRT( ID,f_even,f_odd,rlxA,rlxB,Fx,Fy,Fz,Nx,Ny,Nz);
//*************************************************************************
//*************************************************************************
// Pack and send the D3Q19 distributions
ScaLBL_Comm.SendD3Q19(f_even, f_odd);
//*************************************************************************
// Swap the distributions for momentum transport
//*************************************************************************
ScaLBL_D3Q19_Swap(ID, f_even, f_odd, Nx, Ny, Nz);
//*************************************************************************
// Wait for communications to complete and unpack the distributions
ScaLBL_Comm.RecvD3Q19(f_even, f_odd);
//*************************************************************************
if (pBC && kproc == 0) {
ScaLBL_D3Q19_Pressure_BC_z(f_even,f_odd,din,Nx,Ny,Nz);
}
if (pBC && kproc == nprocz-1){
ScaLBL_D3Q19_Pressure_BC_Z(f_even,f_odd,dout,Nx,Ny,Nz,Nx*Ny*(Nz-2));
}
//...................................................................................
ScaLBL_DeviceBarrier();
MPI_Barrier(comm);
// Timestep completed!
timestep++;
if (timestep%500 == 0){
//...........................................................................
// Copy the data for for the analysis timestep
//...........................................................................
// Copy the phase from the GPU -> CPU
//...........................................................................
ScaLBL_DeviceBarrier();
ScaLBL_D3Q19_Pressure(ID,f_even,f_odd,Pressure,Nx,Ny,Nz);
ScaLBL_D3Q19_Velocity(ID,f_even,f_odd,Velocity,Nx,Ny,Nz);
ScaLBL_CopyToHost(Averages.Press.data(),Pressure,N*sizeof(double));
ScaLBL_CopyToHost(Averages.Vel_x.data(),&Velocity[0],N*sizeof(double));
ScaLBL_CopyToHost(Averages.Vel_y.data(),&Velocity[N],N*sizeof(double));
ScaLBL_CopyToHost(Averages.Vel_z.data(),&Velocity[2*N],N*sizeof(double));
// Way more work than necessary -- this is just to get the solid interfacial area!!
Averages.Initialize();
Averages.UpdateMeshValues();
Averages.ComputeLocal();
Averages.Reduce();
vawx = -Averages.vaw_global(0);
vawy = -Averages.vaw_global(1);
vawz = -Averages.vaw_global(2);
// Compute local measures
err = Re; // previous Reynolds number
D32 = 6.0*(Dm.Volume-Averages.vol_w_global)/Averages.As_global;
mag_force = sqrt(Fx*Fx+Fy*Fy+Fz*Fz);
Fo = D32*D32*D32*mag_force/viscosity/viscosity;
// .... 1-D flow should be aligned with force ...
velocity = vawx*Fx/mag_force + vawy*Fy/mag_force + vawz*Fz/mag_force;
err1D = fabs(velocity-sqrt(vawx*vawx+vawy*vawy+vawz*vawz))/velocity;
//.......... Computation of the Reynolds number Re ..............
Re = D32*velocity/viscosity;
err = fabs(Re-err);
if (rank==0){
// ************* DIMENSIONLESS FORCHEIMER EQUATION *************************
// Dye, A.L., McClure, J.E., Gray, W.G. and C.T. Miller
// Description of Non-Darcy Flows in Porous Medium Systems
// Physical Review E 87 (3), 033012
// Fo := density*D32^3*(density*force) / (viscosity^2)
// Re := density*D32*velocity / viscosity
// Fo = a*Re + b*Re^2
// *************************************************************************
printf("%f ",D32);
printf("%.5g,%.5g,%.5g ",Fx,Fy,Fz);
printf("%.5g,%.5g,%.5g ",vawx,vawy,vawz);
printf("%.5g ",err1D);
printf("%5g ", Fo);
printf("%.5g ", Re);
printf("%.5g ", Re/Fo);
printf("%.5g\n", err);
}
}
}
// Write steady state variables to csv file
if (rank==0){
fprintf(NONDARCY,"%.5g %.5g %.5g %.5g %.5g %.5g %.5g %.5g %.5g\n",D32,Fx,Fy,Fz,vawx,vawy,vawz,Re,Fo);
fflush(NONDARCY);
}
}
//************************************************************************/
fclose(NONDARCY);
ScaLBL_DeviceBarrier();
MPI_Barrier(comm);
stoptime = MPI_Wtime();
if (rank==0) printf("-------------------------------------------------------------------\n");
// Compute the walltime per timestep
cputime = (stoptime - starttime)/timestep;
// Performance obtained from each node
double MLUPS = double(Nx*Ny*Nz)/cputime/1000000;
if (rank==0) printf("********************************************************\n");
if (rank==0) printf("CPU time = %f \n", cputime);
if (rank==0) printf("Lattice update rate (per core)= %f MLUPS \n", MLUPS);
MLUPS *= nprocs;
if (rank==0) printf("Lattice update rate (total)= %f MLUPS \n", MLUPS);
if (rank==0) printf("********************************************************\n");
NULL_USE(RESTART_INTERVAL);
}
// ****************************************************
comm.barrier();
Utilities::shutdown();
// ****************************************************
}
}