LBPM/tests/lbpm_segmented_decomp.cpp
2021-01-04 19:33:27 -05:00

370 lines
9.9 KiB
C++

/*
* Pre-processor to generate signed distance function from segmented data
* segmented data should be stored in a raw binary file as 1-byte integer (type char)
* will output distance functions for phases
*/
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <iostream>
#include <fstream>
#include <sstream>
#include "common/Array.h"
#include "common/Domain.h"
int main(int argc, char **argv)
{
// Initialize MPI
Utilities::startup( argc, argv );
Utilities::MPI comm( MPI_COMM_WORLD );
int rank = comm.getRank();
int nprocs = comm.getSize();
{
bool MULTINPUT=false;
int NWP,SOLID,rank_offset;
int NLABELS=atoi(argv[1]);
//SOLID=atoi(argv[1]);
//NWP=atoi(argv[2]);
if (rank==0){
//printf("Solid Label: %i \n",SOLID);
//printf("NWP Label: %i \n",NWP);
}
if (argc > 2){
MULTINPUT=true;
rank_offset = atoi(argv[3]);
}
else{
rank_offset=0;
}
//.......................................................................
// Reading the domain information file
//.......................................................................
int nprocx, nprocy, nprocz, nx, ny, nz, nspheres;
double Lx, Ly, Lz;
int Nx,Ny,Nz;
int i,j,k,n;
int BC=0;
char Filename[40];
int xStart,yStart,zStart;
// char fluidValue,solidValue;
std::vector<char> solidValues;
std::vector<char> nwpValues;
std::string line;
if (rank==0){
ifstream domain("Domain.in");
domain >> nprocx;
domain >> nprocy;
domain >> nprocz;
domain >> nx;
domain >> ny;
domain >> nz;
domain >> nspheres;
domain >> Lx;
domain >> Ly;
domain >> Lz;
ifstream image("Segmented.in");
image >> Filename; // Name of data file containing segmented data
image >> Nx; // size of the binary file
image >> Ny;
image >> Nz;
image >> xStart; // offset for the starting voxel
image >> yStart;
image >> zStart;
}
MPI_Barrier(comm);
// Computational domain
//.................................................
MPI_Bcast(&nx,1,MPI_INT,0,comm);
MPI_Bcast(&ny,1,MPI_INT,0,comm);
MPI_Bcast(&nz,1,MPI_INT,0,comm);
MPI_Bcast(&nprocx,1,MPI_INT,0,comm);
MPI_Bcast(&nprocy,1,MPI_INT,0,comm);
MPI_Bcast(&nprocz,1,MPI_INT,0,comm);
MPI_Bcast(&nspheres,1,MPI_INT,0,comm);
MPI_Bcast(&Lx,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Ly,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Lz,1,MPI_DOUBLE,0,comm);
//.................................................
MPI_Bcast(&Nx,1,MPI_INT,0,comm);
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
MPI_Bcast(&Nz,1,MPI_INT,0,comm);
MPI_Bcast(&xStart,1,MPI_INT,0,comm);
MPI_Bcast(&yStart,1,MPI_INT,0,comm);
MPI_Bcast(&zStart,1,MPI_INT,0,comm);
//.................................................
MPI_Barrier(comm);
// Check that the number of processors >= the number of ranks
if ( rank==0 ) {
printf("Number of MPI ranks required: %i \n", nprocx*nprocy*nprocz);
printf("Number of MPI ranks used: %i \n", nprocs);
printf("Full domain size: %i x %i x %i \n",nx*nprocx,ny*nprocy,nz*nprocz);
}
if ( nprocs < nprocx*nprocy*nprocz ){
ERROR("Insufficient number of processors");
}
char *SegData = NULL;
// Rank=0 reads the entire segmented data and distributes to worker processes
if (rank==0){
printf("Dimensions of segmented image: %i x %i x %i \n",Nx,Ny,Nz);
SegData = new char[Nx*Ny*Nz];
FILE *SEGDAT = fopen(Filename,"rb");
if (SEGDAT==NULL) ERROR("Error reading segmented data");
size_t ReadSeg;
ReadSeg=fread(SegData,1,Nx*Ny*Nz,SEGDAT);
if (ReadSeg != size_t(Nx*Ny*Nz)) printf("lbpm_segmented_decomp: Error reading segmented data (rank=%i)\n",rank);
fclose(SEGDAT);
printf("Read segmented data from %s \n",Filename);
}
MPI_Barrier(comm);
// Get the rank info
int N = (nx+2)*(ny+2)*(nz+2);
Domain Dm(nx,ny,nz,rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BC);
for (k=0;k<nz+2;k++){
for (j=0;j<ny+2;j++){
for (i=0;i<nx+2;i++){
n = k*(nx+2)*(ny+2)+j*(nx+2)+i;
Dm.id[n] = 1;
}
}
}
Dm.CommInit();
// number of sites to use for periodic boundary condition transition zone
int z_transition_size = (nprocz*nz - (Nz - zStart))/2;
if (z_transition_size < 0) z_transition_size=0;
// Set up the sub-domains
if (rank==0){
printf("Distributing subdomains across %i processors \n",nprocs);
printf("Process grid: %i x %i x %i \n",Dm.nprocx(),Dm.nprocy(),Dm.nprocz());
printf("Subdomain size: %i \n",N);
printf("Size of transition region: %i \n", z_transition_size);
char *tmp;
tmp = new char[N];
for (int kp=0; kp<nprocz; kp++){
for (int jp=0; jp<nprocy; jp++){
for (int ip=0; ip<nprocx; ip++){
// rank of the process that gets this subdomain
int rnk = kp*Dm.nprocx()*Dm.nprocy() + jp*Dm.nprocx() + ip;
// Pack and send the subdomain for rnk
for (k=0;k<nz+2;k++){
for (j=0;j<ny+2;j++){
for (i=0;i<nx+2;i++){
int x = xStart + ip*nx + i-1;
int y = yStart + jp*ny + j-1;
// int z = zStart + kp*nz + k-1;
int z = zStart + kp*nz + k-1 - z_transition_size;
if (x<xStart) x=xStart;
if (!(x<Nx)) x=Nx-1;
if (y<yStart) y=yStart;
if (!(y<Ny)) y=Ny-1;
if (z<zStart) z=zStart;
if (!(z<Nz)) z=Nz-1;
int nlocal = k*(nx+2)*(ny+2) + j*(nx+2) + i;
int nglobal = z*Nx*Ny+y*Nx+x;
tmp[nlocal] = SegData[nglobal];
}
}
}
if (rnk==0){
for (k=0;k<nz+2;k++){
for (j=0;j<ny+2;j++){
for (i=0;i<nx+2;i++){
int nlocal = k*(nx+2)*(ny+2) + j*(nx+2) + i;
Dm.id[nlocal] = tmp[nlocal];
}
}
}
}
else{
printf("Sending data to process %i \n", rnk);
MPI_Send(tmp,N,MPI_CHAR,rnk,15,comm);
}
}
}
}
}
else{
// Recieve the subdomain from rank = 0
printf("Ready to recieve data %i at process %i \n", N,rank);
MPI_Recv(Dm.id,N,MPI_CHAR,0,15,comm,MPI_STATUS_IGNORE);
}
MPI_Barrier(comm);
nx+=2; ny+=2; nz+=2;
N=nx*ny*nz;
if (rank==0) printf("All sub-domains recieved \n");
// Assign New Labels
int *LabelList;
LabelList=new int[2*NLABELS];
if (rank==0){
printf("Assigning new lablels \n");
if (rank==0){
printf("Component labels:\n");
ifstream iFILE("ComponentLabels.csv");
if (iFILE.good()){
int oldlabel, newlabel;
int label=0;
while (!iFILE.eof()){
iFILE>>oldlabel;
iFILE>>newlabel;
LabelList[2*label] = (oldlabel);
LabelList[2*label+1] = (newlabel);
label++;
}
}
else{
printf("Using default labels: Solid (0 --> -1), NWP (1 --> 1), WP (2 --> 2)\n");
// Set default values
NLABELS=3;
for (int label=0; label<NLABELS; label++){
LabelList[2*label] = (label);
LabelList[2*label+1] = (label);
}
}
}
for (int label=0; label<NLABELS; label++){
int oldlabel=LabelList[2*label];
int newlabel=LabelList[2*label+1];
printf("Original label=%i, New label=%i \n",oldlabel,newlabel);
}
}
MPI_Barrier(MPI_COMM_WORLD);
MPI_Bcast(LabelList,2*NLABELS,MPI_INT,0,MPI_COMM_WORLD);
char *newIDs;
newIDs= new char [nx*ny*nz];
for (k=0;k<nz;k++){
for (j=0;j<ny;j++){
for (i=0;i<nx;i++){
n = k*nx*ny+j*nx+i;
for (int label=0; label<NLABELS; label++){
int oldlabel=LabelList[2*label];
int newlabel=LabelList[2*label+1];
if (Dm.id[n]==char(oldlabel)) newIDs[n] = char(newlabel);
}
}
}
}
if (rank==0) printf("Domain set \n");
int count = 0;
int total = 0;
int countGlobal = 0;
int totalGlobal = 0;
for (k=1;k<nz-1;k++){
for (j=1;j<ny-1;j++){
for (i=1;i<nx-1;i++){
n=k*nx*ny+j*nx+i;
total++;
Dm.id[n] = newIDs[n];
if (Dm.id[n] == 0){
count++;
}
}
}
}
MPI_Allreduce(&count,&countGlobal,1,MPI_INT,MPI_SUM,comm);
MPI_Allreduce(&total,&totalGlobal,1,MPI_INT,MPI_SUM,comm);
float porosity = float(totalGlobal-countGlobal)/totalGlobal;
if (rank==0) printf("Porosity=%f\n",porosity);
if (rank==0){
int xstart = xStart; // Is this correct?
int ystart = yStart;
int zstart = zStart;
//totalGlobal=(Nx-xstart)*(Ny-ystart)*(Nz-zstart);
countGlobal = 0;
for (k=zstart; k<zstart+nprocz*(nz-2); k++){
for (j=ystart; j<ystart+nprocy*(ny-2); j++){
for (i=xstart; i<xstart+nprocx*(nx-2); i++){
n=k*Nx*Ny+j*Nx+i;
if (n < Nx*Ny*Nz){
if (SegData[n] == char(SOLID)){
countGlobal++;
}
}
}
}
}
float porosity = float(totalGlobal-countGlobal)/totalGlobal;
printf("Original Porosity=%f\n",porosity);
}
count = 0;
total = 0;
countGlobal = 0;
totalGlobal = 0;
for (k=1;k<nz-1;k++){
for (j=1;j<ny-1;j++){
for (i=1;i<nx-1;i++){
n=k*nx*ny+j*nx+i;
if (Dm.id[n] != 0) total++;
if (Dm.id[n] == 2) count++;
}
}
}
MPI_Allreduce(&count,&countGlobal,1,MPI_INT,MPI_SUM,comm);
MPI_Allreduce(&total,&totalGlobal,1,MPI_INT,MPI_SUM,comm);
float saturation = float(countGlobal)/totalGlobal;
if (rank==0) printf("wetting phase saturation=%f\n",saturation);
char LocalRankFilename[40];
sprintf(LocalRankFilename,"ID.%05i",rank+rank_offset);
FILE *ID = fopen(LocalRankFilename,"wb");
fwrite(Dm.id,1,N,ID);
// fwrite(Distance.get(),8,Distance.length(),ID);
fclose(ID);
if (!MULTINPUT){
if (rank==0) printf("Writing symmetric domain reflection\n");
MPI_Barrier(comm);
int symrank,sympz;
sympz = 2*nprocz - Dm.kproc() -1;
symrank = sympz*nprocx*nprocy + Dm.jproc()*nprocx + Dm.iproc();
// DoubleArray SymDist(nx,ny,nz);
char *symid;
symid = new char [N];
for (k=0;k<nz;k++){
for (j=0;j<ny;j++){
for (i=0;i<nx;i++){
n=k*nx*ny+j*nx+i;
int nsym=(nz-k-1)*nx*ny+j*nx+i;
symid[nsym] = Dm.id[n];
//SymDist(i,j,nz-k-1)=Distance(i,j,k);
}
}
}
sprintf(LocalRankFilename,"ID.%05i",symrank);
FILE *SYMID = fopen(LocalRankFilename,"wb");
// fwrite(SymDist.get(),8,SymDist.length(),SYMDIST);
fwrite(symid,1,N,SYMID);
fclose(SYMID);
}
}
comm.barrier();
Utilities::shutdown();
}