LBPM/tests/lbpm_uCT_maskfilter.cpp
2021-01-04 19:33:27 -05:00

454 lines
16 KiB
C++

// Sequential blob analysis
// Reads parallel simulation data and performs connectivity analysis
// and averaging on a blob-by-blob basis
// James E. McClure 2014
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <iostream>
#include <fstream>
#include <sstream>
#include <functional>
#include "common/Array.h"
#include "common/Domain.h"
#include "common/Communication.h"
#include "common/MPI_Helpers.h"
#include "IO/MeshDatabase.h"
#include "IO/Mesh.h"
#include "IO/Writer.h"
#include "IO/netcdf.h"
#include "analysis/analysis.h"
#include "analysis/eikonal.h"
#include "analysis/filters.h"
#include "analysis/uCT.h"
#include "analysis/TwoPhase.h"
#include "ProfilerApp.h"
int main(int argc, char **argv)
{
// Initialize MPI
Utilities::startup( argc, argv );
Utilities::MPI comm( MPI_COMM_WORLD );
int rank = comm.getRank();
int nprocs = comm.getSize();
Utilities::setErrorHandlers();
PROFILE_START("Main");
//std::vector<std::string> filenames;
if ( argc<2 ) {
if ( rank == 0 )
printf("At least one filename must be specified\n");
return 1;
}
std::string filename = std::string(argv[1]);
if ( rank == 0 )
printf("Input data file: %s\n",filename.c_str());
//.......................................................................
// Reading the domain information file
//.......................................................................
int nprocx, nprocy, nprocz, nx, ny, nz, nspheres;
double Lx, Ly, Lz;
read_domain( rank, nprocs, comm, nprocx, nprocy, nprocz, nx, ny, nz, nspheres, Lx, Ly, Lz );
int BC=0;
// Check that the number of processors >= the number of ranks
if ( rank==0 ) {
printf("Number of MPI ranks required: %i \n", nprocx*nprocy*nprocz);
printf("Number of MPI ranks used: %i \n", nprocs);
printf("Full domain size: %i x %i x %i \n",nx*nprocx,ny*nprocy,nz*nprocz);
}
if ( nprocs < nprocx*nprocy*nprocz ){
ERROR("Insufficient number of processors");
}
// Determine the maximum number of levels for the desired coarsen ratio
int ratio[3] = {4,4,4};
std::vector<int> Nx(1,nx), Ny(1,ny), Nz(1,nz);
while ( Nx.back()%ratio[0]==0 && Nx.back()>8 &&
Ny.back()%ratio[1]==0 && Ny.back()>8 &&
Nz.back()%ratio[2]==0 && Nz.back()>8 )
{
Nx.push_back( Nx.back()/ratio[0] );
Ny.push_back( Ny.back()/ratio[1] );
Nz.push_back( Nz.back()/ratio[2] );
}
int N_levels = Nx.size();
// Initialize the domain
std::vector<std::shared_ptr<Domain>> Dm(N_levels);
for (int i=0; i<N_levels; i++) {
Dm[i].reset( new Domain(Nx[i],Ny[i],Nz[i],rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BC) );
int N = (Nx[i]+2)*(Ny[i]+2)*(Nz[i]+2);
for (int n=0; n<N; n++)
Dm[i]->id[n] = 1;
Dm[i]->CommInit(comm);
}
// array containing a distance mask
Array<float> MASK(Nx[0]+2,Ny[0]+2,Nz[0]+2);
// Create the level data
std::vector<Array<char>> ID(N_levels);
std::vector<Array<float>> LOCVOL(N_levels);
std::vector<Array<float>> Dist(N_levels);
std::vector<Array<float>> MultiScaleSmooth(N_levels);
std::vector<Array<float>> Mean(N_levels);
std::vector<Array<float>> NonLocalMean(N_levels);
std::vector<std::shared_ptr<fillHalo<double>>> fillDouble(N_levels);
std::vector<std::shared_ptr<fillHalo<float>>> fillFloat(N_levels);
std::vector<std::shared_ptr<fillHalo<char>>> fillChar(N_levels);
for (int i=0; i<N_levels; i++) {
ID[i] = Array<char>(Nx[i]+2,Ny[i]+2,Nz[i]+2);
LOCVOL[i] = Array<float>(Nx[i]+2,Ny[i]+2,Nz[i]+2);
Dist[i] = Array<float>(Nx[i]+2,Ny[i]+2,Nz[i]+2);
MultiScaleSmooth[i] = Array<float>(Nx[i]+2,Ny[i]+2,Nz[i]+2);
Mean[i] = Array<float>(Nx[i]+2,Ny[i]+2,Nz[i]+2);
NonLocalMean[i] = Array<float>(Nx[i]+2,Ny[i]+2,Nz[i]+2);
ID[i].fill(0);
LOCVOL[i].fill(0);
Dist[i].fill(0);
MultiScaleSmooth[i].fill(0);
Mean[i].fill(0);
NonLocalMean[i].fill(0);
fillDouble[i].reset(new fillHalo<double>(Dm[i]->Comm,Dm[i]->rank_info,Nx[i],Ny[i],Nz[i],1,1,1,0,1) );
fillFloat[i].reset(new fillHalo<float>(Dm[i]->Comm,Dm[i]->rank_info,Nx[i],Ny[i],Nz[i],1,1,1,0,1) );
fillChar[i].reset(new fillHalo<char>(Dm[i]->Comm,Dm[i]->rank_info,Nx[i],Ny[i],Nz[i],1,1,1,0,1) );
}
// Read the subvolume of interest on each processor
PROFILE_START("ReadDistance");
int distid = netcdf::open("Distance-NWP.nc",netcdf::READ);
std::string distvarname("Distance");
netcdf::VariableType type = netcdf::getVarType( distid,distvarname);
std::vector<size_t> dim = netcdf::getVarDim( distid,distvarname);
if ( rank == 0 ) {
printf("Reading %s (%s)\n","Distance.nc",netcdf::VariableTypeName(type).c_str());
printf(" dims = %i x %i x %i \n",int(dim[0]),int(dim[1]),int(dim[2]));
}
{
RankInfoStruct info( rank, nprocx, nprocy, nprocz );
int x = info.ix*nx;
int y = info.jy*ny;
int z = info.kz*nz;
// Read the local data
Array<float> MASKVALUES = netcdf::getVar<float>( distid, distvarname, {x,y,z}, {nx,ny,nz}, {1,1,1});
//Array<float> MASKVALUES = distid.getVar(distvarname, {x,y,z}, {nx,ny,nz}, {1,1,1});
// Copy the data and fill the halos
MASK.fill(0);
fillFloat[0]->copy( MASKVALUES, MASK );
fillFloat[0]->fill( MASK );
}
netcdf::close( distid );
MPI_Barrier(comm);
PROFILE_STOP("ReadDistance");
if (rank==0) printf("Finished reading distance =\n");
// Read the subvolume of interest on each processor
PROFILE_START("ReadVolume");
int fid = netcdf::open(filename,netcdf::READ);
std::string varname("VOLUME");
type = netcdf::getVarType( fid, varname );
dim = netcdf::getVarDim( fid, varname );
if ( rank == 0 ) {
printf("Reading %s (%s)\n",varname.c_str(),netcdf::VariableTypeName(type).c_str());
printf(" dims = %i x %i x %i \n",int(dim[0]),int(dim[1]),int(dim[2]));
}
{
RankInfoStruct info( rank, nprocx, nprocy, nprocz );
int x = info.ix*nx;
int y = info.jy*ny;
int z = info.kz*nz;
//std::vector<size_t> start={x,y,z};
//std::vector<size_t> localsize={nx,ny,nz};
//std::vector<ptrdiff_t> stride={1,1,1};
// Read the local data
Array<short> VOLUME = netcdf::getVar<short>( fid, varname, {x,y,z}, {nx,ny,nz}, {1,1,1} );
// Array<short> VOLUME = netcdf::getVar<short>( fid, varname, start,localsize,stride );
// Copy the data and fill the halos
LOCVOL[0].fill(0);
fillFloat[0]->copy( VOLUME, LOCVOL[0] );
fillFloat[0]->fill( LOCVOL[0] );
}
netcdf::close( fid );
MPI_Barrier(comm);
PROFILE_STOP("ReadVolume");
if (rank==0) printf("Read complete\n");
// Filter the original data
filter_src( *Dm[0], LOCVOL[0] );
/* // Set up the mask to be distance to cylinder (crop outside cylinder)
float CylRad=900;
for (int k=0;k<Nz[0]+2;k++) {
for (int j=0;j<Ny[0]+2;j++) {
for (int i=0;i<Nx[0]+2;i++) {
int iproc = Dm[0]->iproc;
int jproc = Dm[0]->jproc;
int kproc = Dm[0]->kproc;
int x=iproc*Nx[0]+i-1;
int y=jproc*Ny[0]+j-1;
int z=kproc*Nz[0]+k-1;
int cx = 0.5*nprocx*Nx[0];
int cy = 0.5*nprocy*Ny[0];
int cz = 0.5*nprocz*Nz[0];
// distance from the center line
MASK(i,j,k) = CylRad - sqrt(float((z-cz)*(z-cz) + (y-cy)*(y-cy)) );
}
}
}
*/
// Compute the means for the high/low regions
// (should use automated mixture model to approximate histograms)
float THRESHOLD = 0.05*maxReduce( Dm[0]->Comm, std::max( LOCVOL[0].max(), fabs(LOCVOL[0].min()) ) );
float mean_plus=0;
float mean_minus=0;
int count_plus=0;
int count_minus=0;
for (int k=1;k<Nz[0]+1;k++) {
for (int j=1;j<Ny[0]+1;j++) {
for (int i=1;i<Nx[0]+1;i++) {
if (MASK(i,j,k) > 0.f ){
auto tmp = LOCVOL[0](i,j,k);
if ( tmp > THRESHOLD ) {
mean_plus += tmp;
count_plus++;
} else if ( tmp < -THRESHOLD ) {
mean_minus += tmp;
count_minus++;
}
}
}
}
}
mean_plus = sumReduce( Dm[0]->Comm, mean_plus ) / sumReduce( Dm[0]->Comm, count_plus );
mean_minus = sumReduce( Dm[0]->Comm, mean_minus ) / sumReduce( Dm[0]->Comm, count_minus );
if (rank==0) printf(" Region 1 mean (+): %f, Region 2 mean (-): %f \n",mean_plus, mean_minus);
// Scale the source data to +-1.0
for (size_t i=0; i<LOCVOL[0].length(); i++) {
if (MASK(i) < 0.f){
LOCVOL[0](i) = 1.0;
}
else if ( LOCVOL[0](i) >= 0 ) {
LOCVOL[0](i) /= mean_plus;
LOCVOL[0](i) = std::min( LOCVOL[0](i), 1.0f );
} else {
LOCVOL[0](i) /= -mean_minus;
LOCVOL[0](i) = std::max( LOCVOL[0](i), -1.0f );
}
}
// Fill the source data for the coarse meshes
PROFILE_START("CoarsenMesh");
for (int i=1; i<N_levels; i++) {
Array<float> filter(ratio[0],ratio[1],ratio[2]);
filter.fill(1.0f/filter.length());
Array<float> tmp(Nx[i-1],Ny[i-1],Nz[i-1]);
fillFloat[i-1]->copy( LOCVOL[i-1], tmp );
Array<float> coarse = tmp.coarsen( filter );
fillFloat[i]->copy( coarse, LOCVOL[i] );
fillFloat[i]->fill( LOCVOL[i] );
}
PROFILE_STOP("CoarsenMesh");
// Initialize the coarse level
PROFILE_START("Solve coarse mesh");
if (rank==0)
printf("Initialize coarse mesh\n");
solve( LOCVOL.back(), Mean.back(), ID.back(), Dist.back(), MultiScaleSmooth.back(),
NonLocalMean.back(), *fillFloat.back(), *Dm.back(), nprocx );
PROFILE_STOP("Solve coarse mesh");
// Refine the solution
PROFILE_START("Refine distance");
if (rank==0)
printf("Refine mesh\n");
for (int i=int(Nx.size())-2; i>=0; i--) {
if (rank==0)
printf(" Refining to level %i\n",int(i));
refine( Dist[i+1], LOCVOL[i], Mean[i], ID[i], Dist[i], MultiScaleSmooth[i],
NonLocalMean[i], *fillFloat[i], *Dm[i], nprocx, i );
}
PROFILE_STOP("Refine distance");
// Perform a final filter
PROFILE_START("Filtering final domains");
if (rank==0)
printf("Filtering final domains\n");
Array<float> filter_Mean, filter_Dist1, filter_Dist2;
filter_final( ID[0], Dist[0], *fillFloat[0], *Dm[0], filter_Mean, filter_Dist1, filter_Dist2 );
PROFILE_STOP("Filtering final domains");
//removeDisconnected( ID[0], *Dm[0] );
// Write the distance function to a netcdf file
const char* netcdf_filename = "Distance.nc";
{
RankInfoStruct info( rank, nprocx, nprocy, nprocz );
std::vector<int> dim = { Nx[0]*nprocx, Ny[0]*nprocy, Nz[0]*nprocz };
int fid = netcdf::open( netcdf_filename, netcdf::CREATE, MPI_COMM_WORLD );
auto dims = netcdf::defDim( fid, {"X", "Y", "Z"}, dim );
Array<float> data(Nx[0],Ny[0],Nz[0]);
fillFloat[0]->copy( Dist[0], data );
netcdf::write( fid, "Distance", dims, data, info );
netcdf::close( fid );
}
// Write the results
if (rank==0) printf("Writing output \n");
std::vector<IO::MeshDataStruct> meshData(N_levels);
for (size_t i=0; i<Nx.size(); i++) {
// Mesh
meshData[i].meshName = "Level " + std::to_string(i+1);
meshData[i].mesh = std::make_shared<IO::DomainMesh>( Dm[i]->rank_info,Nx[i],Ny[i],Nz[i],Lx,Ly,Lz );
// Source data
auto OrigData = std::make_shared<IO::Variable>();
OrigData->name = "Source Data";
OrigData->type = IO::VariableType::VolumeVariable;
OrigData->dim = 1;
OrigData->data.resize(Nx[i],Ny[i],Nz[i]);
meshData[i].vars.push_back(OrigData);
fillDouble[i]->copy( LOCVOL[i], OrigData->data );
// Non-Local Mean
auto NonLocMean = std::make_shared<IO::Variable>();
NonLocMean->name = "Non-Local Mean";
NonLocMean->type = IO::VariableType::VolumeVariable;
NonLocMean->dim = 1;
NonLocMean->data.resize(Nx[i],Ny[i],Nz[i]);
meshData[i].vars.push_back(NonLocMean);
fillDouble[i]->copy( NonLocalMean[i], NonLocMean->data );
// Segmented Data
auto SegData = std::make_shared<IO::Variable>();
SegData->name = "Segmented Data";
SegData->type = IO::VariableType::VolumeVariable;
SegData->dim = 1;
SegData->data.resize(Nx[i],Ny[i],Nz[i]);
meshData[i].vars.push_back(SegData);
fillDouble[i]->copy( ID[i], SegData->data );
// Signed Distance
auto DistData = std::make_shared<IO::Variable>();
DistData->name = "Signed Distance";
DistData->type = IO::VariableType::VolumeVariable;
DistData->dim = 1;
DistData->data.resize(Nx[i],Ny[i],Nz[i]);
meshData[i].vars.push_back(DistData);
fillDouble[i]->copy( Dist[i], DistData->data );
// Smoothed Data
auto SmoothData = std::make_shared<IO::Variable>();
SmoothData->name = "Smoothed Data";
SmoothData->type = IO::VariableType::VolumeVariable;
SmoothData->dim = 1;
SmoothData->data.resize(Nx[i],Ny[i],Nz[i]);
meshData[i].vars.push_back(SmoothData);
fillDouble[i]->copy( MultiScaleSmooth[i], SmoothData->data );
}
#if 0
std::shared_ptr<IO::Variable> filter_Mean_var( new IO::Variable() );
filter_Mean_var->name = "Mean";
filter_Mean_var->type = IO::VariableType::VolumeVariable;
filter_Mean_var->dim = 1;
filter_Mean_var->data.resize(Nx[0],Ny[0],Nz[0]);
meshData[0].vars.push_back(filter_Mean_var);
fillDouble[0]->copy( filter_Mean, filter_Mean_var->data );
std::shared_ptr<IO::Variable> filter_Dist1_var( new IO::Variable() );
filter_Dist1_var->name = "Dist1";
filter_Dist1_var->type = IO::VariableType::VolumeVariable;
filter_Dist1_var->dim = 1;
filter_Dist1_var->data.resize(Nx[0],Ny[0],Nz[0]);
meshData[0].vars.push_back(filter_Dist1_var);
fillDouble[0]->copy( filter_Dist1, filter_Dist1_var->data );
std::shared_ptr<IO::Variable> filter_Dist2_var( new IO::Variable() );
filter_Dist2_var->name = "Dist2";
filter_Dist2_var->type = IO::VariableType::VolumeVariable;
filter_Dist2_var->dim = 1;
filter_Dist2_var->data.resize(Nx[0],Ny[0],Nz[0]);
meshData[0].vars.push_back(filter_Dist2_var);
fillDouble[0]->copy( filter_Dist2, filter_Dist2_var->data );
#endif
// Write visulization data
IO::writeData( 0, meshData, comm );
if (rank==0) printf("Finished. \n");
Domain dm(Nx[0],Ny[0],Nz[0],rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BC);
TwoPhase Averages(dm);
// Set distance functions within the analysis framework
for (int k=0;k<dm.Nz;k++){
for (int j=0;j<dm.Ny;j++){
for (int i=0;i<dm.Nx;i++){
int n = k*nx*ny+j*nx+i;
Averages.SDs(i,j,k) = MASK(i,j,k);
Averages.SDn(i,j,k) = Dist[0](i,j,k);
Averages.Phase(i,j,k)=Averages.SDn(i,j,k);
Averages.Phase_tplus(i,j,k)=Averages.Phase(i,j,k);
Averages.Phase_tminus(i,j,k)=Averages.Phase(i,j,k);
Averages.Press(i,j,k)=0.0;
Averages.Vel_x(i,j,k)=0.0;
Averages.Vel_y(i,j,k)=0.0;
Averages.Vel_z(i,j,k)=0.0;
if (Averages.SDs(i,j,k) < 0.0) dm.id[n] = 0;
else if ( Averages.SDn(i,j,k) < 0.0) dm.id[n] = 1;
else dm.id[n] = 2;
}
}
}
if (rank==0) printf("Domain set \n");
int count=0;
Averages.UpdateSolid(); // unless the solid is deformable!
//....................................................................
// The following need to be called each time new averages are computed
Averages.Initialize();
Averages.UpdateMeshValues();
Averages.ComputeLocal();
Averages.Reduce();
Averages.PrintAll(count);
/*
// Write the local volume files
char LocalRankString[8];
char LocalRankFilename[40];
sprintf(LocalRankString,"%05d",rank);
sprintf(LocalRankFilename,"Seg.%s",LocalRankString);
FILE * SEG;
SEG=fopen(LocalRankFilename,"wb");
fwrite(LOCVOL.get(),4,N,SEG);
fclose(SEG);
*/
PROFILE_STOP("Main");
PROFILE_SAVE("lbpm_uCT_maskfilter",true);
comm.barrier();
Utilities::shutdown();
return 0;
}