3027 lines
98 KiB
C++
3027 lines
98 KiB
C++
/*
|
|
Copyright 2013--2018 James E. McClure, Virginia Polytechnic & State University
|
|
Copyright Equnior ASA
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#include <math.h>
|
|
|
|
#define STOKES
|
|
|
|
extern "C" void ScaLBL_Color_Init(char *ID, double *Den, double *Phi, double das, double dbs, int Nx, int Ny, int Nz)
|
|
{
|
|
int n,N;
|
|
|
|
N = Nx*Ny*Nz;
|
|
|
|
for (n=0; n<N; n++){
|
|
|
|
if ( ID[n] == 1){
|
|
Den[n] = 1.0;
|
|
Den[N+n] = 0.0;
|
|
Phi[n] = 1.0;
|
|
}
|
|
else if ( ID[n] == 2){
|
|
Den[n] = 0.0;
|
|
Den[N+n] = 1.0;
|
|
Phi[n] = -1.0;
|
|
}
|
|
else{
|
|
Den[n] = das;
|
|
Den[N+n] = dbs;
|
|
Phi[n] = (das-dbs)/(das+dbs);
|
|
}
|
|
}
|
|
}
|
|
extern "C" void ScaLBL_Color_InitDistancePacked(char *ID, double *Den, double *Phi, double *Distance,
|
|
double das, double dbs, double beta, double xp, int Nx, int Ny, int Nz)
|
|
{
|
|
int i,j,k,n,N;
|
|
double d;
|
|
|
|
N = Nx*Ny*Nz;
|
|
|
|
for (n=0; n<N; n++){
|
|
//.......Back out the 3-D indices for node n..............
|
|
k = n/(Nx*Ny);
|
|
j = (n-Nx*Ny*k)/Nx;
|
|
i = n-Nx*Ny*k-Nx*j;
|
|
|
|
if ( ID[n] == 1){
|
|
Den[2*n] = 1.0;
|
|
Den[2*n+1] = 0.0;
|
|
Phi[n] = 1.0;
|
|
}
|
|
if (i == 0 || j == 0 || k == 0 || i == Nx-1 || j == Ny-1 || k == Nz-1){
|
|
Den[2*n] = 0.0;
|
|
Den[2*n+1] = 0.0;
|
|
}
|
|
else if ( ID[n] == 1){
|
|
Den[2*n] = 1.0;
|
|
Den[2*n+1] = 0.0;
|
|
Phi[n] = 1.0;
|
|
}
|
|
else if ( ID[n] == 2){
|
|
Den[2*n] = 0.0;
|
|
Den[2*n+1] = 1.0;
|
|
Phi[n] = -1.0;
|
|
}
|
|
else{
|
|
Den[2*n] = das;
|
|
Den[2*n+1] = dbs;
|
|
Phi[n] = (das-dbs)/(das+dbs);
|
|
d = fabs(Distance[n]);
|
|
Phi[n] = (2.f*(exp(-2.f*beta*(d+xp)))/(1.f+exp(-2.f*beta*(d+xp))) - 1.f);
|
|
}
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_Color_InitDistance(char *ID, double *Den, double *Phi, double *Distance,
|
|
double das, double dbs, double beta, double xp, int Nx, int Ny, int Nz)
|
|
{
|
|
int n,N;
|
|
double d;
|
|
|
|
N = Nx*Ny*Nz;
|
|
|
|
for (n=0; n<N; n++){
|
|
|
|
if ( ID[n] == 1){
|
|
Den[n] = 1.0;
|
|
Den[N+n] = 0.0;
|
|
Phi[n] = 1.0;
|
|
}
|
|
else if ( ID[n] == 2){
|
|
Den[n] = 0.0;
|
|
Den[N+n] = 1.0;
|
|
Phi[n] = -1.0;
|
|
}
|
|
else{
|
|
Den[n] = das;
|
|
Den[N+n] = dbs;
|
|
Phi[n] = (das-dbs)/(das+dbs);
|
|
d = fabs(Distance[n]);
|
|
Phi[n] = (2.f*(exp(-2.f*beta*(d+xp)))/(1.f+exp(-2.f*beta*(d+xp))) - 1.f);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
//*************************************************************************
|
|
|
|
//*************************************************************************
|
|
extern "C" void ScaLBL_Color_BC(int *list, int *Map, double *Phi, double *Den, double vA, double vB, int count, int Np)
|
|
{
|
|
int idx,n,nm;
|
|
// Fill the outlet with component b
|
|
|
|
for (idx=0; idx<count; idx++){
|
|
n = list[idx];
|
|
Den[n] = vA;
|
|
Den[Np+n] = vB;
|
|
|
|
nm = Map[n];
|
|
Phi[nm] = (vA-vB)/(vA+vB);
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_Color_BC_z(int *list, int *Map, double *Phi, double *Den, double vA, double vB, int count, int Np)
|
|
{
|
|
int idx,n,nm;
|
|
// Fill the outlet with component b
|
|
|
|
for (idx=0; idx<count; idx++){
|
|
n = list[idx];
|
|
Den[n] = vA;
|
|
Den[Np+n] = vB;
|
|
//double valB = Den[Np+n]; // mass that reaches inlet is conserved
|
|
|
|
nm = Map[n];
|
|
Phi[nm] = (vA-vB)/(vA+vB);
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_Color_BC_Z(int *list, int *Map, double *Phi, double *Den, double vA, double vB, int count, int Np)
|
|
{
|
|
int idx,n,nm;
|
|
// Fill the outlet with component b
|
|
|
|
for (idx=0; idx<count; idx++){
|
|
n = list[idx];
|
|
Den[n] = vA;
|
|
Den[Np+n] = vB;
|
|
|
|
nm = Map[n];
|
|
Phi[nm] = (vA-vB)/(vA+vB);
|
|
}
|
|
}
|
|
//*************************************************************************
|
|
|
|
//*************************************************************************
|
|
extern "C" void ScaLBL_D3Q19_ColorGradient(char *ID, double *phi, double *ColorGrad, int Nx, int Ny, int Nz)
|
|
{
|
|
int n,N,i,j,k,nn;
|
|
// distributions
|
|
double f1,f2,f3,f4,f5,f6,f7,f8,f9;
|
|
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
|
double nx,ny,nz;
|
|
|
|
// non-conserved moments
|
|
// additional variables needed for computations
|
|
|
|
N = Nx*Ny*Nz;
|
|
|
|
for (n=0; n<N; n++){
|
|
|
|
//.......Back out the 3-D indices for node n..............
|
|
k = n/(Nx*Ny);
|
|
j = (n-Nx*Ny*k)/Nx;
|
|
i = n-Nx*Ny*k-Nx*j;
|
|
//........................................................................
|
|
//........Get 1-D index for this thread....................
|
|
// n = S*blockIdx.x*blockDim.x + s*blockDim.x + threadIdx.x;
|
|
//........................................................................
|
|
// COMPUTE THE COLOR GRADIENT
|
|
//........................................................................
|
|
//.................Read Phase Indicator Values............................
|
|
//........................................................................
|
|
nn = n-1; // neighbor index (get convention)
|
|
if (i-1<0) nn += Nx; // periodic BC along the x-boundary
|
|
f1 = phi[nn]; // get neighbor for phi - 1
|
|
//........................................................................
|
|
nn = n+1; // neighbor index (get convention)
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
f2 = phi[nn]; // get neighbor for phi - 2
|
|
//........................................................................
|
|
nn = n-Nx; // neighbor index (get convention)
|
|
if (j-1<0) nn += Nx*Ny; // Perioidic BC along the y-boundary
|
|
f3 = phi[nn]; // get neighbor for phi - 3
|
|
//........................................................................
|
|
nn = n+Nx; // neighbor index (get convention)
|
|
if (!(j+1<Ny)) nn -= Nx*Ny; // Perioidic BC along the y-boundary
|
|
f4 = phi[nn]; // get neighbor for phi - 4
|
|
//........................................................................
|
|
nn = n-Nx*Ny; // neighbor index (get convention)
|
|
if (k-1<0) nn += Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f5 = phi[nn]; // get neighbor for phi - 5
|
|
//........................................................................
|
|
nn = n+Nx*Ny; // neighbor index (get convention)
|
|
if (!(k+1<Nz)) nn -= Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f6 = phi[nn]; // get neighbor for phi - 6
|
|
//........................................................................
|
|
nn = n-Nx-1; // neighbor index (get convention)
|
|
if (i-1<0) nn += Nx; // periodic BC along the x-boundary
|
|
if (j-1<0) nn += Nx*Ny; // Perioidic BC along the y-boundary
|
|
f7 = phi[nn]; // get neighbor for phi - 7
|
|
//........................................................................
|
|
nn = n+Nx+1; // neighbor index (get convention)
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
if (!(j+1<Ny)) nn -= Nx*Ny; // Perioidic BC along the y-boundary
|
|
f8 = phi[nn]; // get neighbor for phi - 8
|
|
//........................................................................
|
|
nn = n+Nx-1; // neighbor index (get convention)
|
|
if (i-1<0) nn += Nx; // periodic BC along the x-boundary
|
|
if (!(j+1<Ny)) nn -= Nx*Ny; // Perioidic BC along the y-boundary
|
|
f9 = phi[nn]; // get neighbor for phi - 9
|
|
//........................................................................
|
|
nn = n-Nx+1; // neighbor index (get convention)
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
if (j-1<0) nn += Nx*Ny; // Perioidic BC along the y-boundary
|
|
f10 = phi[nn]; // get neighbor for phi - 10
|
|
//........................................................................
|
|
nn = n-Nx*Ny-1; // neighbor index (get convention)
|
|
if (i-1<0) nn += Nx; // periodic BC along the x-boundary
|
|
if (k-1<0) nn += Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f11 = phi[nn]; // get neighbor for phi - 11
|
|
//........................................................................
|
|
nn = n+Nx*Ny+1; // neighbor index (get convention)
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
if (!(k+1<Nz)) nn -= Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f12 = phi[nn]; // get neighbor for phi - 12
|
|
//........................................................................
|
|
nn = n+Nx*Ny-1; // neighbor index (get convention)
|
|
if (i-1<0) nn += Nx; // periodic BC along the x-boundary
|
|
if (!(k+1<Nz)) nn -= Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f13 = phi[nn]; // get neighbor for phi - 13
|
|
//........................................................................
|
|
nn = n-Nx*Ny+1; // neighbor index (get convention)
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
if (k-1<0) nn += Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f14 = phi[nn]; // get neighbor for phi - 14
|
|
//........................................................................
|
|
nn = n-Nx*Ny-Nx; // neighbor index (get convention)
|
|
if (j-1<0) nn += Nx*Ny; // Perioidic BC along the y-boundary
|
|
if (k-1<0) nn += Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f15 = phi[nn]; // get neighbor for phi - 15
|
|
//........................................................................
|
|
nn = n+Nx*Ny+Nx; // neighbor index (get convention)
|
|
if (!(j+1<Ny)) nn -= Nx*Ny; // Perioidic BC along the y-boundary
|
|
if (!(k+1<Nz)) nn -= Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f16 = phi[nn]; // get neighbor for phi - 16
|
|
//........................................................................
|
|
nn = n+Nx*Ny-Nx; // neighbor index (get convention)
|
|
if (j-1<0) nn += Nx*Ny; // Perioidic BC along the y-boundary
|
|
if (!(k+1<Nz)) nn -= Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f17 = phi[nn]; // get neighbor for phi - 17
|
|
//........................................................................
|
|
nn = n-Nx*Ny+Nx; // neighbor index (get convention)
|
|
if (!(j+1<Ny)) nn -= Nx*Ny; // Perioidic BC along the y-boundary
|
|
if (k-1<0) nn += Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f18 = phi[nn]; // get neighbor for phi - 18
|
|
//............Compute the Color Gradient...................................
|
|
nx = -(f1-f2+0.5*(f7-f8+f9-f10+f11-f12+f13-f14));
|
|
ny = -(f3-f4+0.5*(f7-f8-f9+f10+f15-f16+f17-f18));
|
|
nz = -(f5-f6+0.5*(f11-f12-f13+f14+f15-f16-f17+f18));
|
|
//...........Normalize the Color Gradient.................................
|
|
// C = sqrt(nx*nx+ny*ny+nz*nz);
|
|
// nx = nx/C;
|
|
// ny = ny/C;
|
|
// nz = nz/C;
|
|
//...Store the Color Gradient....................
|
|
ColorGrad[n] = nx;
|
|
ColorGrad[N+n] = ny;
|
|
ColorGrad[2*N+n] = nz;
|
|
//...............................................
|
|
}
|
|
}
|
|
//*************************************************************************
|
|
extern "C" void ColorCollide( char *ID, double *disteven, double *distodd, double *ColorGrad,
|
|
double *Velocity, int Nx, int Ny, int Nz, double rlx_setA, double rlx_setB,
|
|
double alpha, double beta, double Fx, double Fy, double Fz, bool pBC)
|
|
{
|
|
|
|
int n,N;
|
|
// distributions
|
|
double f0,f1,f2,f3,f4,f5,f6,f7,f8,f9;
|
|
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
|
|
|
// non-conserved moments
|
|
double m1,m2,m4,m6,m8,m9,m10,m11,m12,m13,m14,m15,m16,m17,m18;
|
|
// additional variables needed for computations
|
|
double rho,jx,jy,jz,C,nx,ny,nz;
|
|
|
|
N = Nx*Ny*Nz;
|
|
char id;
|
|
|
|
for (n=0; n<N; n++){
|
|
|
|
id = ID[n];
|
|
|
|
if (id > 0){
|
|
|
|
// Retrieve the color gradient
|
|
nx = ColorGrad[n];
|
|
ny = ColorGrad[N+n];
|
|
nz = ColorGrad[2*N+n];
|
|
//...........Normalize the Color Gradient.................................
|
|
C = sqrt(nx*nx+ny*ny+nz*nz);
|
|
if (C==0.0) C=1.0;
|
|
nx = nx/C;
|
|
ny = ny/C;
|
|
nz = nz/C;
|
|
//......No color gradient at z-boundary if pressure BC are set.............
|
|
// if (pBC && k==0) nx = ny = nz = 0.f;
|
|
// if (pBC && k==Nz-1) nx = ny = nz = 0.f;
|
|
//........................................................................
|
|
// READ THE DISTRIBUTIONS
|
|
// (read from opposite array due to previous swap operation)
|
|
//........................................................................
|
|
f2 = distodd[n];
|
|
f4 = distodd[N+n];
|
|
f6 = distodd[2*N+n];
|
|
f8 = distodd[3*N+n];
|
|
f10 = distodd[4*N+n];
|
|
f12 = distodd[5*N+n];
|
|
f14 = distodd[6*N+n];
|
|
f16 = distodd[7*N+n];
|
|
f18 = distodd[8*N+n];
|
|
//........................................................................
|
|
f0 = disteven[n];
|
|
f1 = disteven[N+n];
|
|
f3 = disteven[2*N+n];
|
|
f5 = disteven[3*N+n];
|
|
f7 = disteven[4*N+n];
|
|
f9 = disteven[5*N+n];
|
|
f11 = disteven[6*N+n];
|
|
f13 = disteven[7*N+n];
|
|
f15 = disteven[8*N+n];
|
|
f17 = disteven[9*N+n];
|
|
//........................................................................
|
|
// PERFORM RELAXATION PROCESS
|
|
//........................................................................
|
|
//....................compute the moments...............................................
|
|
rho = f0+f2+f1+f4+f3+f6+f5+f8+f7+f10+f9+f12+f11+f14+f13+f16+f15+f18+f17;
|
|
m1 = -30*f0-11*(f2+f1+f4+f3+f6+f5)+8*(f8+f7+f10+f9+f12+f11+f14+f13+f16+f15+f18 +f17);
|
|
m2 = 12*f0-4*(f2+f1 +f4+f3+f6 +f5)+f8+f7+f10+f9+f12+f11+f14+f13+f16+f15+f18+f17;
|
|
jx = f1-f2+f7-f8+f9-f10+f11-f12+f13-f14;
|
|
m4 = 4*(-f1+f2)+f7-f8+f9-f10+f11-f12+f13-f14;
|
|
jy = f3-f4+f7-f8-f9+f10+f15-f16+f17-f18;
|
|
m6 = -4*(f3-f4)+f7-f8-f9+f10+f15-f16+f17-f18;
|
|
jz = f5-f6+f11-f12-f13+f14+f15-f16-f17+f18;
|
|
m8 = -4*(f5-f6)+f11-f12-f13+f14+f15-f16-f17+f18;
|
|
m9 = 2*(f1+f2)-f3-f4-f5-f6+f7+f8+f9+f10+f11+f12+f13+f14-2*(f15+f16+f17+f18);
|
|
m10 = -4*(f1+f2)+2*(f4+f3+f6+f5)+f8+f7+f10+f9+f12+f11+f14+f13-2*(f16+f15+f18+f17);
|
|
m11 = f4+f3-f6-f5+f8+f7+f10+f9-f12-f11-f14-f13;
|
|
m12 = -2*(f4+f3-f6-f5)+f8+f7+f10+f9-f12-f11-f14-f13;
|
|
m13 = f8+f7-f10-f9;
|
|
m14 = f16+f15-f18-f17;
|
|
m15 = f12+f11-f14-f13;
|
|
m16 = f7-f8+f9-f10-f11+f12-f13+f14;
|
|
m17 = -f7+f8+f9-f10+f15-f16+f17-f18;
|
|
m18 = f11-f12-f13+f14-f15+f16+f17-f18;
|
|
//..........Toelke, Fruediger et. al. 2006...............
|
|
if (C == 0.0) nx = ny = nz = 1.0;
|
|
#ifdef STOKES
|
|
m1 = m1 + rlx_setA*(- 11*rho -alpha*C - m1);
|
|
m2 = m2 + rlx_setA*(3*rho - m2);
|
|
m4 = m4 + rlx_setB*((-0.6666666666666666*jx)- m4);
|
|
m6 = m6 + rlx_setB*((-0.6666666666666666*jy)- m6);
|
|
m8 = m8 + rlx_setB*((-0.6666666666666666*jz)- m8);
|
|
m9 = m9 + rlx_setA*( 0.5*alpha*C*(2*nx*nx-ny*ny-nz*nz) - m9);
|
|
m10 = m10 + rlx_setA*( - m10);
|
|
m11 = m11 + rlx_setA*( 0.5*alpha*C*(ny*ny-nz*nz)- m11);
|
|
m12 = m12 + rlx_setA*( - m12);
|
|
m13 = m13 + rlx_setA*( 0.5*alpha*C*nx*ny - m13);
|
|
m14 = m14 + rlx_setA*( 0.5*alpha*C*ny*nz - m14);
|
|
m15 = m15 + rlx_setA*( 0.5*alpha*C*nx*nz - m15);
|
|
m16 = m16 + rlx_setB*( - m16);
|
|
m17 = m17 + rlx_setB*( - m17);
|
|
m18 = m18 + rlx_setB*( - m18);
|
|
#else
|
|
m1 = m1 + rlx_setA*((19*(jx*jx+jy*jy+jz*jz)/rho - 11*rho) -alpha*C - m1);
|
|
m2 = m2 + rlx_setA*((3*rho - 5.5*(jx*jx+jy*jy+jz*jz)/rho)- m2);
|
|
m4 = m4 + rlx_setB*((-0.6666666666666666*jx)- m4);
|
|
m6 = m6 + rlx_setB*((-0.6666666666666666*jy)- m6);
|
|
m8 = m8 + rlx_setB*((-0.6666666666666666*jz)- m8);
|
|
m9 = m9 + rlx_setA*(((2*jx*jx-jy*jy-jz*jz)/rho) + 0.5*alpha*C*(2*nx*nx-ny*ny-nz*nz) - m9);
|
|
m10 = m10 + rlx_setA*( - m10);
|
|
m11 = m11 + rlx_setA*(((jy*jy-jz*jz)/rho) + 0.5*alpha*C*(ny*ny-nz*nz)- m11);
|
|
m12 = m12 + rlx_setA*( - m12);
|
|
m13 = m13 + rlx_setA*( (jx*jy/rho) + 0.5*alpha*C*nx*ny - m13);
|
|
m14 = m14 + rlx_setA*( (jy*jz/rho) + 0.5*alpha*C*ny*nz - m14);
|
|
m15 = m15 + rlx_setA*( (jx*jz/rho) + 0.5*alpha*C*nx*nz - m15);
|
|
m16 = m16 + rlx_setB*( - m16);
|
|
m17 = m17 + rlx_setB*( - m17);
|
|
m18 = m18 + rlx_setB*( - m18);
|
|
#endif
|
|
//.................inverse transformation......................................................
|
|
f0 = 0.05263157894736842*rho-0.012531328320802*m1+0.04761904761904762*m2;
|
|
f1 = 0.05263157894736842*rho-0.004594820384294068*m1-0.01587301587301587*m2
|
|
+0.1*(jx-m4)+0.0555555555555555555555555*(m9-m10);
|
|
f2 = 0.05263157894736842*rho-0.004594820384294068*m1-0.01587301587301587*m2
|
|
+0.1*(m4-jx)+0.0555555555555555555555555*(m9-m10);
|
|
f3 = 0.05263157894736842*rho-0.004594820384294068*m1-0.01587301587301587*m2
|
|
+0.1*(jy-m6)+0.02777777777777778*(m10-m9)+0.08333333333333333*(m11-m12);
|
|
f4 = 0.05263157894736842*rho-0.004594820384294068*m1-0.01587301587301587*m2
|
|
+0.1*(m6-jy)+0.02777777777777778*(m10-m9)+0.08333333333333333*(m11-m12);
|
|
f5 = 0.05263157894736842*rho-0.004594820384294068*m1-0.01587301587301587*m2
|
|
+0.1*(jz-m8)+0.02777777777777778*(m10-m9)+0.08333333333333333*(m12-m11);
|
|
f6 = 0.05263157894736842*rho-0.004594820384294068*m1-0.01587301587301587*m2
|
|
+0.1*(m8-jz)+0.02777777777777778*(m10-m9)+0.08333333333333333*(m12-m11);
|
|
f7 = 0.05263157894736842*rho+0.003341687552213868*m1+0.003968253968253968*m2+0.1*(jx+jy)+0.025*(m4+m6)
|
|
+0.02777777777777778*m9+0.01388888888888889*m10+0.08333333333333333*m11
|
|
+0.04166666666666666*m12+0.25*m13+0.125*(m16-m17);
|
|
f8 = 0.05263157894736842*rho+0.003341687552213868*m1+0.003968253968253968*m2-0.1*(jx+jy)-0.025*(m4+m6)
|
|
+0.02777777777777778*m9+0.01388888888888889*m10+0.08333333333333333*m11
|
|
+0.04166666666666666*m12+0.25*m13+0.125*(m17-m16);
|
|
f9 = 0.05263157894736842*rho+0.003341687552213868*m1+0.003968253968253968*m2+0.1*(jx-jy)+0.025*(m4-m6)
|
|
+0.02777777777777778*m9+0.01388888888888889*m10+0.08333333333333333*m11
|
|
+0.04166666666666666*m12-0.25*m13+0.125*(m16+m17);
|
|
f10 = 0.05263157894736842*rho+0.003341687552213868*m1+0.003968253968253968*m2+0.1*(jy-jx)+0.025*(m6-m4)
|
|
+0.02777777777777778*m9+0.01388888888888889*m10+0.08333333333333333*m11
|
|
+0.04166666666666666*m12-0.25*m13-0.125*(m16+m17);
|
|
f11 = 0.05263157894736842*rho+0.003341687552213868*m1
|
|
+0.003968253968253968*m2+0.1*(jx+jz)+0.025*(m4+m8)
|
|
+0.02777777777777778*m9+0.01388888888888889*m10-0.08333333333333333*m11
|
|
-0.04166666666666666*m12+0.25*m15+0.125*(m18-m16);
|
|
f12 = 0.05263157894736842*rho+0.003341687552213868*m1
|
|
+0.003968253968253968*m2-0.1*(jx+jz)-0.025*(m4+m8)
|
|
+0.02777777777777778*m9+0.01388888888888889*m10-0.08333333333333333*m11
|
|
-0.04166666666666666*m12+0.25*m15+0.125*(m16-m18);
|
|
f13 = 0.05263157894736842*rho+0.003341687552213868*m1
|
|
+0.003968253968253968*m2+0.1*(jx-jz)+0.025*(m4-m8)
|
|
+0.02777777777777778*m9+0.01388888888888889*m10-0.08333333333333333*m11
|
|
-0.04166666666666666*m12-0.25*m15-0.125*(m16+m18);
|
|
f14 = 0.05263157894736842*rho+0.003341687552213868*m1
|
|
+0.003968253968253968*m2+0.1*(jz-jx)+0.025*(m8-m4)
|
|
+0.02777777777777778*m9+0.01388888888888889*m10-0.08333333333333333*m11
|
|
-0.04166666666666666*m12-0.25*m15+0.125*(m16+m18);
|
|
f15 = 0.05263157894736842*rho+0.003341687552213868*m1
|
|
+0.003968253968253968*m2+0.1*(jy+jz)+0.025*(m6+m8)
|
|
-0.0555555555555555555555555*m9-0.02777777777777778*m10+0.25*m14+0.125*(m17-m18);
|
|
f16 = 0.05263157894736842*rho+0.003341687552213868*m1
|
|
+0.003968253968253968*m2-0.1*(jy+jz)-0.025*(m6+m8)
|
|
-0.0555555555555555555555555*m9-0.02777777777777778*m10+0.25*m14+0.125*(m18-m17);
|
|
f17 = 0.05263157894736842*rho+0.003341687552213868*m1
|
|
+0.003968253968253968*m2+0.1*(jy-jz)+0.025*(m6-m8)
|
|
-0.0555555555555555555555555*m9-0.02777777777777778*m10-0.25*m14+0.125*(m17+m18);
|
|
f18 = 0.05263157894736842*rho+0.003341687552213868*m1
|
|
+0.003968253968253968*m2+0.1*(jz-jy)+0.025*(m8-m6)
|
|
-0.0555555555555555555555555*m9-0.02777777777777778*m10-0.25*m14-0.125*(m17+m18);
|
|
//.......................................................................................................
|
|
// incorporate external force
|
|
f1 += 0.16666666*Fx;
|
|
f2 -= 0.16666666*Fx;
|
|
f3 += 0.16666666*Fy;
|
|
f4 -= 0.16666666*Fy;
|
|
f5 += 0.16666666*Fz;
|
|
f6 -= 0.16666666*Fz;
|
|
f7 += 0.08333333333*(Fx+Fy);
|
|
f8 -= 0.08333333333*(Fx+Fy);
|
|
f9 += 0.08333333333*(Fx-Fy);
|
|
f10 -= 0.08333333333*(Fx-Fy);
|
|
f11 += 0.08333333333*(Fx+Fz);
|
|
f12 -= 0.08333333333*(Fx+Fz);
|
|
f13 += 0.08333333333*(Fx-Fz);
|
|
f14 -= 0.08333333333*(Fx-Fz);
|
|
f15 += 0.08333333333*(Fy+Fz);
|
|
f16 -= 0.08333333333*(Fy+Fz);
|
|
f17 += 0.08333333333*(Fy-Fz);
|
|
f18 -= 0.08333333333*(Fy-Fz);
|
|
//*********** WRITE UPDATED VALUES TO MEMORY ******************
|
|
// Write the updated distributions
|
|
//....EVEN.....................................
|
|
disteven[n] = f0;
|
|
disteven[N+n] = f2;
|
|
disteven[2*N+n] = f4;
|
|
disteven[3*N+n] = f6;
|
|
disteven[4*N+n] = f8;
|
|
disteven[5*N+n] = f10;
|
|
disteven[6*N+n] = f12;
|
|
disteven[7*N+n] = f14;
|
|
disteven[8*N+n] = f16;
|
|
disteven[9*N+n] = f18;
|
|
//....ODD......................................
|
|
distodd[n] = f1;
|
|
distodd[N+n] = f3;
|
|
distodd[2*N+n] = f5;
|
|
distodd[3*N+n] = f7;
|
|
distodd[4*N+n] = f9;
|
|
distodd[5*N+n] = f11;
|
|
distodd[6*N+n] = f13;
|
|
distodd[7*N+n] = f15;
|
|
distodd[8*N+n] = f17;
|
|
|
|
//...Store the Velocity..........................
|
|
Velocity[n] = jx;
|
|
Velocity[N+n] = jy;
|
|
Velocity[2*N+n] = jz;
|
|
/* Velocity[3*n] = jx;
|
|
Velocity[3*n+1] = jy;
|
|
Velocity[3*n+2] = jz;
|
|
*/ //...Store the Color Gradient....................
|
|
// ColorGrad[3*n] = nx*C;
|
|
// ColorGrad[3*n+1] = ny*C;
|
|
// ColorGrad[3*n+2] = nz*C;
|
|
//...............................................
|
|
//***************************************************************
|
|
} // check if n is in the solid
|
|
} // loop over n
|
|
}
|
|
|
|
extern "C" void ScaLBL_D3Q19_ColorCollide( char *ID, double *disteven, double *distodd, double *phi, double *ColorGrad,
|
|
double *Velocity, int Nx, int Ny, int Nz, double rlx_setA, double rlx_setB,
|
|
double alpha, double beta, double Fx, double Fy, double Fz)
|
|
{
|
|
|
|
int i,j,k,n,nn,N;
|
|
// distributions
|
|
double f0,f1,f2,f3,f4,f5,f6,f7,f8,f9;
|
|
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
|
|
|
// non-conserved moments
|
|
double m1,m2,m4,m6,m8,m9,m10,m11,m12,m13,m14,m15,m16,m17,m18;
|
|
// additional variables needed for computations
|
|
double rho,jx,jy,jz,C,nx,ny,nz;
|
|
|
|
N = Nx*Ny*Nz;
|
|
char id;
|
|
|
|
for (n=0; n<N; n++){
|
|
|
|
id = ID[n];
|
|
|
|
if (id > 0){
|
|
|
|
//.......Back out the 3-D indices for node n..............
|
|
k = n/(Nx*Ny);
|
|
j = (n-Nx*Ny*k)/Nx;
|
|
i = n-Nx*Ny*k-Nx*j;
|
|
//........................................................................
|
|
//........Get 1-D index for this thread....................
|
|
// n = S*blockIdx.x*blockDim.x + s*blockDim.x + threadIdx.x;
|
|
//........................................................................
|
|
// COMPUTE THE COLOR GRADIENT
|
|
//........................................................................
|
|
//.................Read Phase Indicator Values............................
|
|
//........................................................................
|
|
nn = n-1; // neighbor index (get convention)
|
|
if (i-1<0) nn += Nx; // periodic BC along the x-boundary
|
|
f1 = phi[nn]; // get neighbor for phi - 1
|
|
//........................................................................
|
|
nn = n+1; // neighbor index (get convention)
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
f2 = phi[nn]; // get neighbor for phi - 2
|
|
//........................................................................
|
|
nn = n-Nx; // neighbor index (get convention)
|
|
if (j-1<0) nn += Nx*Ny; // Perioidic BC along the y-boundary
|
|
f3 = phi[nn]; // get neighbor for phi - 3
|
|
//........................................................................
|
|
nn = n+Nx; // neighbor index (get convention)
|
|
if (!(j+1<Ny)) nn -= Nx*Ny; // Perioidic BC along the y-boundary
|
|
f4 = phi[nn]; // get neighbor for phi - 4
|
|
//........................................................................
|
|
nn = n-Nx*Ny; // neighbor index (get convention)
|
|
if (k-1<0) nn += Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f5 = phi[nn]; // get neighbor for phi - 5
|
|
//........................................................................
|
|
nn = n+Nx*Ny; // neighbor index (get convention)
|
|
if (!(k+1<Nz)) nn -= Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f6 = phi[nn]; // get neighbor for phi - 6
|
|
//........................................................................
|
|
nn = n-Nx-1; // neighbor index (get convention)
|
|
if (i-1<0) nn += Nx; // periodic BC along the x-boundary
|
|
if (j-1<0) nn += Nx*Ny; // Perioidic BC along the y-boundary
|
|
f7 = phi[nn]; // get neighbor for phi - 7
|
|
//........................................................................
|
|
nn = n+Nx+1; // neighbor index (get convention)
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
if (!(j+1<Ny)) nn -= Nx*Ny; // Perioidic BC along the y-boundary
|
|
f8 = phi[nn]; // get neighbor for phi - 8
|
|
//........................................................................
|
|
nn = n+Nx-1; // neighbor index (get convention)
|
|
if (i-1<0) nn += Nx; // periodic BC along the x-boundary
|
|
if (!(j+1<Ny)) nn -= Nx*Ny; // Perioidic BC along the y-boundary
|
|
f9 = phi[nn]; // get neighbor for phi - 9
|
|
//........................................................................
|
|
nn = n-Nx+1; // neighbor index (get convention)
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
if (j-1<0) nn += Nx*Ny; // Perioidic BC along the y-boundary
|
|
f10 = phi[nn]; // get neighbor for phi - 10
|
|
//........................................................................
|
|
nn = n-Nx*Ny-1; // neighbor index (get convention)
|
|
if (i-1<0) nn += Nx; // periodic BC along the x-boundary
|
|
if (k-1<0) nn += Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f11 = phi[nn]; // get neighbor for phi - 11
|
|
//........................................................................
|
|
nn = n+Nx*Ny+1; // neighbor index (get convention)
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
if (!(k+1<Nz)) nn -= Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f12 = phi[nn]; // get neighbor for phi - 12
|
|
//........................................................................
|
|
nn = n+Nx*Ny-1; // neighbor index (get convention)
|
|
if (i-1<0) nn += Nx; // periodic BC along the x-boundary
|
|
if (!(k+1<Nz)) nn -= Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f13 = phi[nn]; // get neighbor for phi - 13
|
|
//........................................................................
|
|
nn = n-Nx*Ny+1; // neighbor index (get convention)
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
if (k-1<0) nn += Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f14 = phi[nn]; // get neighbor for phi - 14
|
|
//........................................................................
|
|
nn = n-Nx*Ny-Nx; // neighbor index (get convention)
|
|
if (j-1<0) nn += Nx*Ny; // Perioidic BC along the y-boundary
|
|
if (k-1<0) nn += Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f15 = phi[nn]; // get neighbor for phi - 15
|
|
//........................................................................
|
|
nn = n+Nx*Ny+Nx; // neighbor index (get convention)
|
|
if (!(j+1<Ny)) nn -= Nx*Ny; // Perioidic BC along the y-boundary
|
|
if (!(k+1<Nz)) nn -= Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f16 = phi[nn]; // get neighbor for phi - 16
|
|
//........................................................................
|
|
nn = n+Nx*Ny-Nx; // neighbor index (get convention)
|
|
if (j-1<0) nn += Nx*Ny; // Perioidic BC along the y-boundary
|
|
if (!(k+1<Nz)) nn -= Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f17 = phi[nn]; // get neighbor for phi - 17
|
|
//........................................................................
|
|
nn = n-Nx*Ny+Nx; // neighbor index (get convention)
|
|
if (!(j+1<Ny)) nn -= Nx*Ny; // Perioidic BC along the y-boundary
|
|
if (k-1<0) nn += Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f18 = phi[nn]; // get neighbor for phi - 18
|
|
//............Compute the Color Gradient...................................
|
|
nx = -(f1-f2+0.5*(f7-f8+f9-f10+f11-f12+f13-f14));
|
|
ny = -(f3-f4+0.5*(f7-f8-f9+f10+f15-f16+f17-f18));
|
|
nz = -(f5-f6+0.5*(f11-f12-f13+f14+f15-f16-f17+f18));
|
|
//...Store the Color Gradient....................
|
|
ColorGrad[n] = nx;
|
|
ColorGrad[N+n] = ny;
|
|
ColorGrad[2*N+n] = nz;
|
|
//...............................................
|
|
//...........Normalize the Color Gradient.................................
|
|
C = sqrt(nx*nx+ny*ny+nz*nz);
|
|
if (C==0.0) C=1.0;
|
|
nx = nx/C;
|
|
ny = ny/C;
|
|
nz = nz/C;
|
|
//......No color gradient at z-boundary if pressure BC are set.............
|
|
// if (pBC && k==0) nx = ny = nz = 0.f;
|
|
// if (pBC && k==Nz-1) nx = ny = nz = 0.f;
|
|
//........................................................................
|
|
// READ THE DISTRIBUTIONS
|
|
// (read from opposite array due to previous swap operation)
|
|
//........................................................................
|
|
f2 = distodd[n];
|
|
f4 = distodd[N+n];
|
|
f6 = distodd[2*N+n];
|
|
f0 = disteven[n];
|
|
f1 = disteven[N+n];
|
|
f3 = disteven[2*N+n];
|
|
f5 = disteven[3*N+n];
|
|
//........................................................................
|
|
//....................compute the moments...............................................
|
|
rho = f0+f2+f1+f4+f3+f6+f5;
|
|
m1 = -30*f0-11*(f2+f1+f4+f3+f6+f5);
|
|
m2 = 12*f0-4*(f2+f1 +f4+f3+f6 +f5);
|
|
jx = f1-f2;
|
|
m4 = 4*(-f1+f2);
|
|
jy = f3-f4;
|
|
m6 = -4*(f3-f4);
|
|
jz = f5-f6;
|
|
m8 = -4*(f5-f6);
|
|
m9 = 2*(f1+f2)-f3-f4-f5-f6;
|
|
m10 = -4*(f1+f2)+2*(f4+f3+f6+f5);
|
|
m11 = f4+f3-f6-f5;
|
|
m12 = -2*(f4+f3-f6-f5);
|
|
//........................................................................
|
|
f8 = distodd[3*N+n];
|
|
f10 = distodd[4*N+n];
|
|
f7 = disteven[4*N+n];
|
|
f9 = disteven[5*N+n];
|
|
//........................................................................
|
|
rho += f8+f7+f10+f9;
|
|
m1 += 8*(f8+f7+f10+f9);
|
|
m2 += f8+f7+f10+f9;
|
|
jx += f7-f8+f9-f10;
|
|
m4 += f7-f8+f9-f10;
|
|
jy += f7-f8-f9+f10;
|
|
m6 += f7-f8-f9+f10;
|
|
m9 += f7+f8+f9+f10;
|
|
m10 += f8+f7+f10+f9;
|
|
m11 += f8+f7+f10+f9;
|
|
m12 += f8+f7+f10+f9;
|
|
m13 = f8+f7-f10-f9;
|
|
m16 = f7-f8+f9-f10;
|
|
m17 = -f7+f8+f9-f10;
|
|
//........................................................................
|
|
f11 = disteven[6*N+n];
|
|
f13 = disteven[7*N+n];
|
|
f12 = distodd[5*N+n];
|
|
f14 = distodd[6*N+n];
|
|
//........................................................................
|
|
//........................................................................
|
|
f15 = disteven[8*N+n];
|
|
f17 = disteven[9*N+n];
|
|
f16 = distodd[7*N+n];
|
|
f18 = distodd[8*N+n];
|
|
//........................................................................
|
|
//....................compute the moments...............................................
|
|
rho += f12+f11+f14+f13+f16+f15+f18+f17;
|
|
m1 += 8*(f12+f11+f14+f13+f16+f15+f18+f17);
|
|
m2 += f12+f11+f14+f13+f16+f15+f18+f17;
|
|
jx += f11-f12+f13-f14;
|
|
m4 += f11-f12+f13-f14;
|
|
jy += f15-f16+f17-f18;
|
|
m6 += f15-f16+f17-f18;
|
|
jz += f11-f12-f13+f14+f15-f16-f17+f18;
|
|
m8 += f11-f12-f13+f14+f15-f16-f17+f18;
|
|
m9 += f11+f12+f13+f14-2*(f15+f16+f17+f18);
|
|
m10 += f12+f11+f14+f13-2*(f16+f15+f18+f17);
|
|
m11 += -f12-f11-f14-f13;
|
|
m12 += -f12-f11-f14-f13;
|
|
m14 = f16+f15-f18-f17;
|
|
m15 = f12+f11-f14-f13;
|
|
m16 += -f11+f12-f13+f14;
|
|
m17 += f15-f16+f17-f18;
|
|
m18 = f11-f12-f13+f14-f15+f16+f17-f18;
|
|
//........................................................................
|
|
|
|
/* f2 = distodd[n];
|
|
f4 = distodd[N+n];
|
|
f6 = distodd[2*N+n];
|
|
f8 = distodd[3*N+n];
|
|
//........................................................................
|
|
f0 = disteven[n];
|
|
f1 = disteven[N+n];
|
|
f3 = disteven[2*N+n];
|
|
f5 = disteven[3*N+n];
|
|
f7 = disteven[4*N+n];
|
|
//........................................................................
|
|
//........................................................................
|
|
//....................compute the moments...............................................
|
|
rho = f0+f2+f1+f4+f3+f6+f5+f8+f7;
|
|
m1 = -30*f0-11*(f2+f1+f4+f3+f6+f5)+8*(f8+f7);
|
|
m2 = 12*f0-4*(f2+f1 +f4+f3+f6 +f5)+f8+f7;
|
|
jx = f1-f2+f7-f8;
|
|
m4 = 4*(-f1+f2)+f7-f8;
|
|
jy = f3-f4+f7-f8;
|
|
m6 = -4*(f3-f4)+f7-f8;
|
|
jz = f5-f6;
|
|
m8 = -4*(f5-f6);
|
|
m9 = 2*(f1+f2)-f3-f4-f5-f6+f7+f8;
|
|
m10 = -4*(f1+f2)+2*(f4+f3+f6+f5)+f8+f7;
|
|
m11 = f4+f3-f6-f5+f8+f7;
|
|
m12 = -2*(f4+f3-f6-f5)+f8+f7;
|
|
m13 = f8+f7;
|
|
m16 = f7-f8;
|
|
m17 = -f7+f8;
|
|
//........................................................................
|
|
f9 = disteven[5*N+n];
|
|
f11 = disteven[6*N+n];
|
|
f13 = disteven[7*N+n];
|
|
f15 = disteven[8*N+n];
|
|
f17 = disteven[9*N+n];
|
|
f10 = distodd[4*N+n];
|
|
f12 = distodd[5*N+n];
|
|
f14 = distodd[6*N+n];
|
|
f16 = distodd[7*N+n];
|
|
f18 = distodd[8*N+n];
|
|
//........................................................................
|
|
rho += f10+f9+f12+f11+f14+f13+f16+f15+f18+f17;
|
|
m1 += 8*(f10+f9+f12+f11+f14+f13+f16+f15+f18 +f17);
|
|
m2 += f10+f9+f12+f11+f14+f13+f16+f15+f18+f17;
|
|
jx += f9-f10+f11-f12+f13-f14;
|
|
m4 += f9-f10+f11-f12+f13-f14;
|
|
jy += -f9+f10+f15-f16+f17-f18;
|
|
m6 += -f9+f10+f15-f16+f17-f18;
|
|
jz += f11-f12-f13+f14+f15-f16-f17+f18;
|
|
m8 += f11-f12-f13+f14+f15-f16-f17+f18;
|
|
m9 += f9+f10+f11+f12+f13+f14-2*(f15+f16+f17+f18);
|
|
m10 += f10+f9+f12+f11+f14+f13-2*(f16+f15+f18+f17);
|
|
m11 += f10+f9-f12-f11-f14-f13;
|
|
m12 += f10+f9-f12-f11-f14-f13;
|
|
m13 += -f10-f9;
|
|
m14 = f16+f15-f18-f17;
|
|
m15 = f12+f11-f14-f13;
|
|
m16 += f9-f10-f11+f12-f13+f14;
|
|
m17 += f9-f10+f15-f16+f17-f18;
|
|
m18 = f11-f12-f13+f14-f15+f16+f17-f18;
|
|
*/ //........................................................................
|
|
// PERFORM RELAXATION PROCESS
|
|
//........................................................................
|
|
//..........Toelke, Fruediger et. al. 2006...............
|
|
if (C == 0.0) nx = ny = nz = 0.0;
|
|
m1 = m1 + rlx_setA*((19*(jx*jx+jy*jy+jz*jz)/rho - 11*rho) -alpha*C - m1);
|
|
m2 = m2 + rlx_setA*((3*rho - 5.5*(jx*jx+jy*jy+jz*jz)/rho)- m2);
|
|
m4 = m4 + rlx_setB*((-0.6666666666666666*jx)- m4);
|
|
m6 = m6 + rlx_setB*((-0.6666666666666666*jy)- m6);
|
|
m8 = m8 + rlx_setB*((-0.6666666666666666*jz)- m8);
|
|
m9 = m9 + rlx_setA*(((2*jx*jx-jy*jy-jz*jz)/rho) + 0.5*alpha*C*(2*nx*nx-ny*ny-nz*nz) - m9);
|
|
m10 = m10 + rlx_setA*( - m10);
|
|
m11 = m11 + rlx_setA*(((jy*jy-jz*jz)/rho) + 0.5*alpha*C*(ny*ny-nz*nz)- m11);
|
|
m12 = m12 + rlx_setA*( - m12);
|
|
m13 = m13 + rlx_setA*( (jx*jy/rho) + 0.5*alpha*C*nx*ny - m13);
|
|
m14 = m14 + rlx_setA*( (jy*jz/rho) + 0.5*alpha*C*ny*nz - m14);
|
|
m15 = m15 + rlx_setA*( (jx*jz/rho) + 0.5*alpha*C*nx*nz - m15);
|
|
m16 = m16 + rlx_setB*( - m16);
|
|
m17 = m17 + rlx_setB*( - m17);
|
|
m18 = m18 + rlx_setB*( - m18);
|
|
//.................inverse transformation......................................................
|
|
f0 = 0.05263157894736842*rho-0.012531328320802*m1+0.04761904761904762*m2;
|
|
f1 = 0.05263157894736842*rho-0.004594820384294068*m1-0.01587301587301587*m2
|
|
+0.1*(jx-m4)+0.0555555555555555555555555*(m9-m10);
|
|
f2 = 0.05263157894736842*rho-0.004594820384294068*m1-0.01587301587301587*m2
|
|
+0.1*(m4-jx)+0.0555555555555555555555555*(m9-m10);
|
|
f3 = 0.05263157894736842*rho-0.004594820384294068*m1-0.01587301587301587*m2
|
|
+0.1*(jy-m6)+0.02777777777777778*(m10-m9)+0.08333333333333333*(m11-m12);
|
|
f4 = 0.05263157894736842*rho-0.004594820384294068*m1-0.01587301587301587*m2
|
|
+0.1*(m6-jy)+0.02777777777777778*(m10-m9)+0.08333333333333333*(m11-m12);
|
|
f5 = 0.05263157894736842*rho-0.004594820384294068*m1-0.01587301587301587*m2
|
|
+0.1*(jz-m8)+0.02777777777777778*(m10-m9)+0.08333333333333333*(m12-m11);
|
|
f6 = 0.05263157894736842*rho-0.004594820384294068*m1-0.01587301587301587*m2
|
|
+0.1*(m8-jz)+0.02777777777777778*(m10-m9)+0.08333333333333333*(m12-m11);
|
|
f7 = 0.05263157894736842*rho+0.003341687552213868*m1+0.003968253968253968*m2+0.1*(jx+jy)+0.025*(m4+m6)
|
|
+0.02777777777777778*m9+0.01388888888888889*m10+0.08333333333333333*m11
|
|
+0.04166666666666666*m12+0.25*m13+0.125*(m16-m17);
|
|
f8 = 0.05263157894736842*rho+0.003341687552213868*m1+0.003968253968253968*m2-0.1*(jx+jy)-0.025*(m4+m6)
|
|
+0.02777777777777778*m9+0.01388888888888889*m10+0.08333333333333333*m11
|
|
+0.04166666666666666*m12+0.25*m13+0.125*(m17-m16);
|
|
f9 = 0.05263157894736842*rho+0.003341687552213868*m1+0.003968253968253968*m2+0.1*(jx-jy)+0.025*(m4-m6)
|
|
+0.02777777777777778*m9+0.01388888888888889*m10+0.08333333333333333*m11
|
|
+0.04166666666666666*m12-0.25*m13+0.125*(m16+m17);
|
|
f10 = 0.05263157894736842*rho+0.003341687552213868*m1+0.003968253968253968*m2+0.1*(jy-jx)+0.025*(m6-m4)
|
|
+0.02777777777777778*m9+0.01388888888888889*m10+0.08333333333333333*m11
|
|
+0.04166666666666666*m12-0.25*m13-0.125*(m16+m17);
|
|
f11 = 0.05263157894736842*rho+0.003341687552213868*m1
|
|
+0.003968253968253968*m2+0.1*(jx+jz)+0.025*(m4+m8)
|
|
+0.02777777777777778*m9+0.01388888888888889*m10-0.08333333333333333*m11
|
|
-0.04166666666666666*m12+0.25*m15+0.125*(m18-m16);
|
|
f12 = 0.05263157894736842*rho+0.003341687552213868*m1
|
|
+0.003968253968253968*m2-0.1*(jx+jz)-0.025*(m4+m8)
|
|
+0.02777777777777778*m9+0.01388888888888889*m10-0.08333333333333333*m11
|
|
-0.04166666666666666*m12+0.25*m15+0.125*(m16-m18);
|
|
f13 = 0.05263157894736842*rho+0.003341687552213868*m1
|
|
+0.003968253968253968*m2+0.1*(jx-jz)+0.025*(m4-m8)
|
|
+0.02777777777777778*m9+0.01388888888888889*m10-0.08333333333333333*m11
|
|
-0.04166666666666666*m12-0.25*m15-0.125*(m16+m18);
|
|
f14 = 0.05263157894736842*rho+0.003341687552213868*m1
|
|
+0.003968253968253968*m2+0.1*(jz-jx)+0.025*(m8-m4)
|
|
+0.02777777777777778*m9+0.01388888888888889*m10-0.08333333333333333*m11
|
|
-0.04166666666666666*m12-0.25*m15+0.125*(m16+m18);
|
|
f15 = 0.05263157894736842*rho+0.003341687552213868*m1
|
|
+0.003968253968253968*m2+0.1*(jy+jz)+0.025*(m6+m8)
|
|
-0.0555555555555555555555555*m9-0.02777777777777778*m10+0.25*m14+0.125*(m17-m18);
|
|
f16 = 0.05263157894736842*rho+0.003341687552213868*m1
|
|
+0.003968253968253968*m2-0.1*(jy+jz)-0.025*(m6+m8)
|
|
-0.0555555555555555555555555*m9-0.02777777777777778*m10+0.25*m14+0.125*(m18-m17);
|
|
f17 = 0.05263157894736842*rho+0.003341687552213868*m1
|
|
+0.003968253968253968*m2+0.1*(jy-jz)+0.025*(m6-m8)
|
|
-0.0555555555555555555555555*m9-0.02777777777777778*m10-0.25*m14+0.125*(m17+m18);
|
|
f18 = 0.05263157894736842*rho+0.003341687552213868*m1
|
|
+0.003968253968253968*m2+0.1*(jz-jy)+0.025*(m8-m6)
|
|
-0.0555555555555555555555555*m9-0.02777777777777778*m10-0.25*m14-0.125*(m17+m18);
|
|
//.......................................................................................................
|
|
// incorporate external force
|
|
f1 += 0.16666666*Fx;
|
|
f2 -= 0.16666666*Fx;
|
|
f3 += 0.16666666*Fy;
|
|
f4 -= 0.16666666*Fy;
|
|
f5 += 0.16666666*Fz;
|
|
f6 -= 0.16666666*Fz;
|
|
f7 += 0.08333333333*(Fx+Fy);
|
|
f8 -= 0.08333333333*(Fx+Fy);
|
|
f9 += 0.08333333333*(Fx-Fy);
|
|
f10 -= 0.08333333333*(Fx-Fy);
|
|
f11 += 0.08333333333*(Fx+Fz);
|
|
f12 -= 0.08333333333*(Fx+Fz);
|
|
f13 += 0.08333333333*(Fx-Fz);
|
|
f14 -= 0.08333333333*(Fx-Fz);
|
|
f15 += 0.08333333333*(Fy+Fz);
|
|
f16 -= 0.08333333333*(Fy+Fz);
|
|
f17 += 0.08333333333*(Fy-Fz);
|
|
f18 -= 0.08333333333*(Fy-Fz);
|
|
//*********** WRITE UPDATED VALUES TO MEMORY ******************
|
|
// Write the updated distributions
|
|
//....EVEN.....................................
|
|
disteven[n] = f0;
|
|
disteven[N+n] = f2;
|
|
disteven[2*N+n] = f4;
|
|
disteven[3*N+n] = f6;
|
|
disteven[4*N+n] = f8;
|
|
disteven[5*N+n] = f10;
|
|
disteven[6*N+n] = f12;
|
|
disteven[7*N+n] = f14;
|
|
disteven[8*N+n] = f16;
|
|
disteven[9*N+n] = f18;
|
|
//....ODD......................................
|
|
distodd[n] = f1;
|
|
distodd[N+n] = f3;
|
|
distodd[2*N+n] = f5;
|
|
distodd[3*N+n] = f7;
|
|
distodd[4*N+n] = f9;
|
|
distodd[5*N+n] = f11;
|
|
distodd[6*N+n] = f13;
|
|
distodd[7*N+n] = f15;
|
|
distodd[8*N+n] = f17;
|
|
//...Store the Velocity..........................
|
|
Velocity[n] = jx;
|
|
Velocity[N+n] = jy;
|
|
Velocity[2*N+n] = jz;
|
|
//***************************************************************
|
|
} // check if n is in the solid
|
|
} // loop over n
|
|
}
|
|
|
|
extern "C" void ScaLBL_D3Q7_ColorCollideMass(char *ID, double *A_even, double *A_odd, double *B_even, double *B_odd,
|
|
double *Den, double *Phi, double *ColorGrad, double *Velocity, double beta, int N, bool pBC)
|
|
{
|
|
char id;
|
|
|
|
int idx,n,q,Cqx,Cqy,Cqz;
|
|
// int sendLoc;
|
|
|
|
double f0,f1,f2,f3,f4,f5,f6;
|
|
double na,nb,nab; // density values
|
|
double ux,uy,uz; // flow velocity
|
|
double nx,ny,nz,C; // color gradient components
|
|
double a1,a2,b1,b2;
|
|
double sp,delta;
|
|
//double feq[6]; // equilibrium distributions
|
|
// Set of Discrete velocities for the D3Q19 Model
|
|
//int D3Q7[3][3]={{1,0,0},{0,1,0},{0,0,1}};
|
|
|
|
for (n=0; n<N; n++){
|
|
id = ID[n];
|
|
if (id != 0 ){
|
|
|
|
//.....Load the Color gradient.........
|
|
nx = ColorGrad[n];
|
|
ny = ColorGrad[N+n];
|
|
nz = ColorGrad[2*N+n];
|
|
C = sqrt(nx*nx+ny*ny+nz*nz);
|
|
if (C==0.0) C=1.0;
|
|
nx = nx/C;
|
|
ny = ny/C;
|
|
nz = nz/C;
|
|
//....Load the flow velocity...........
|
|
ux = Velocity[n];
|
|
uy = Velocity[N+n];
|
|
uz = Velocity[2*N+n];
|
|
//........................................................................
|
|
// READ THE DISTRIBUTIONS
|
|
// (read from opposite array due to previous swap operation)
|
|
//........................................................................
|
|
f2 = A_odd[n];
|
|
f4 = A_odd[N+n];
|
|
f6 = A_odd[2*N+n];
|
|
f0 = A_even[n];
|
|
f1 = A_even[N+n];
|
|
f3 = A_even[2*N+n];
|
|
f5 = A_even[3*N+n];
|
|
na = f0+f1+f2+f3+f4+f5+f6;
|
|
//........................................................................
|
|
f2 = B_odd[n];
|
|
f4 = B_odd[N+n];
|
|
f6 = B_odd[2*N+n];
|
|
f0 = B_even[n];
|
|
f1 = B_even[N+n];
|
|
f3 = B_even[2*N+n];
|
|
f5 = B_even[3*N+n];
|
|
nb = f0+f1+f2+f3+f4+f5+f6;
|
|
nab = 1.0/(na+nb);
|
|
//........................................................................
|
|
//....Instantiate the density distributions
|
|
// Generate Equilibrium Distributions and stream
|
|
// Stationary value - distribution 0
|
|
A_even[n] = 0.3333333333333333*na;
|
|
B_even[n] = 0.3333333333333333*nb;
|
|
// Non-Stationary equilibrium distributions
|
|
//feq[0] = 0.1111111111111111*(1+4.5*ux);
|
|
//feq[1] = 0.1111111111111111*(1-4.5*ux);
|
|
//feq[2] = 0.1111111111111111*(1+4.5*uy);
|
|
//feq[3] = 0.1111111111111111*(1-4.5*uy);
|
|
//feq[4] = 0.1111111111111111*(1+4.5*uz);
|
|
//feq[5] = 0.1111111111111111*(1-4.5*uz);
|
|
|
|
//...............................................
|
|
// q = 0,2,4
|
|
// Cq = {1,0,0}, {0,1,0}, {0,0,1}
|
|
delta = beta*na*nb*nab*0.1111111111111111*nx;
|
|
if (!(na*nb*nab>0)) delta=0;
|
|
a1 = na*(0.1111111111111111*(1+4.5*ux))+delta;
|
|
b1 = nb*(0.1111111111111111*(1+4.5*ux))-delta;
|
|
a2 = na*(0.1111111111111111*(1-4.5*ux))-delta;
|
|
b2 = nb*(0.1111111111111111*(1-4.5*ux))+delta;
|
|
|
|
A_odd[n] = a1;
|
|
A_even[N+n] = a2;
|
|
B_odd[n] = b1;
|
|
B_even[N+n] = b2;
|
|
//...............................................
|
|
// q = 2
|
|
// Cq = {0,1,0}
|
|
delta = beta*na*nb*nab*0.1111111111111111*ny;
|
|
if (!(na*nb*nab>0)) delta=0;
|
|
a1 = na*(0.1111111111111111*(1+4.5*uy))+delta;
|
|
b1 = nb*(0.1111111111111111*(1+4.5*uy))-delta;
|
|
a2 = na*(0.1111111111111111*(1-4.5*uy))-delta;
|
|
b2 = nb*(0.1111111111111111*(1-4.5*uy))+delta;
|
|
|
|
A_odd[N+n] = a1;
|
|
A_even[2*N+n] = a2;
|
|
B_odd[N+n] = b1;
|
|
B_even[2*N+n] = b2;
|
|
//...............................................
|
|
// q = 4
|
|
// Cq = {0,0,1}
|
|
delta = beta*na*nb*nab*0.1111111111111111*nz;
|
|
if (!(na*nb*nab>0)) delta=0;
|
|
a1 = na*(0.1111111111111111*(1+4.5*uz))+delta;
|
|
b1 = nb*(0.1111111111111111*(1+4.5*uz))-delta;
|
|
a2 = na*(0.1111111111111111*(1-4.5*uz))-delta;
|
|
b2 = nb*(0.1111111111111111*(1-4.5*uz))+delta;
|
|
|
|
A_odd[2*N+n] = a1;
|
|
A_even[3*N+n] = a2;
|
|
B_odd[2*N+n] = b1;
|
|
B_even[3*N+n] = b2;
|
|
//...............................................
|
|
|
|
/* // Construction and streaming for the components
|
|
for (idx=0; idx<3; idx++){
|
|
//...............................................
|
|
// Distribution index
|
|
q = 2*idx;
|
|
// Associated discrete velocity
|
|
Cqx = D3Q7[idx][0];
|
|
Cqy = D3Q7[idx][1];
|
|
Cqz = D3Q7[idx][2];
|
|
// Generate the Equilibrium Distribution
|
|
a1 = na*feq[q];
|
|
b1 = nb*feq[q];
|
|
a2 = na*feq[q+1];
|
|
b2 = nb*feq[q+1];
|
|
// Recolor the distributions
|
|
if (C > 0.0){
|
|
sp = nx*double(Cqx)+ny*double(Cqy)+nz*double(Cqz);
|
|
//if (idx > 2) sp = 0.7071067811865475*sp;
|
|
//delta = sp*min( min(a1,a2), min(b1,b2) );
|
|
delta = na*nb/(na+nb)*0.1111111111111111*sp;
|
|
//if (a1>0 && b1>0){
|
|
a1 += beta*delta;
|
|
a2 -= beta*delta;
|
|
b1 -= beta*delta;
|
|
b2 += beta*delta;
|
|
}
|
|
// Save the re-colored distributions
|
|
A_odd[N*idx+n] = a1;
|
|
A_even[N*(idx+1)+n] = a2;
|
|
B_odd[N*idx+n] = b1;
|
|
B_even[N*(idx+1)+n] = b2;
|
|
//...............................................
|
|
}
|
|
*/
|
|
}
|
|
}
|
|
}
|
|
|
|
//*************************************************************************
|
|
extern "C" void DensityStreamD3Q7(char *ID, double *Den, double *Copy, double *Phi, double *ColorGrad, double *Velocity,
|
|
double beta, int Nx, int Ny, int Nz, bool pBC, int S)
|
|
{
|
|
char id;
|
|
|
|
int idx;
|
|
int in,jn,kn,n,nn,N;
|
|
int q,Cqx,Cqy,Cqz;
|
|
// int sendLoc;
|
|
|
|
double na,nb; // density values
|
|
double ux,uy,uz; // flow velocity
|
|
double nx,ny,nz,C; // color gradient components
|
|
double a1,a2,b1,b2;
|
|
double sp,delta;
|
|
double feq[6]; // equilibrium distributions
|
|
// Set of Discrete velocities for the D3Q19 Model
|
|
int D3Q7[3][3]={{1,0,0},{0,1,0},{0,0,1}};
|
|
N = Nx*Ny*Nz;
|
|
|
|
for (n=0; n<N; n++){
|
|
id = ID[n];
|
|
// Local Density Values
|
|
na = Copy[2*n];
|
|
nb = Copy[2*n+1];
|
|
if (id > 0 && na+nb > 0.0){
|
|
//.......Back out the 3-D indices for node n..............
|
|
int k = n/(Nx*Ny);
|
|
int j = (n-Nx*Ny*k)/Nx;
|
|
int i = n-Nx*Ny*k-Nx*j;
|
|
//.....Load the Color gradient.........
|
|
nx = ColorGrad[n];
|
|
ny = ColorGrad[N+n];
|
|
nz = ColorGrad[2*N+n];
|
|
C = sqrt(nx*nx+ny*ny+nz*nz);
|
|
nx = nx/C;
|
|
ny = ny/C;
|
|
nz = nz/C;
|
|
//....Load the flow velocity...........
|
|
ux = Velocity[n];
|
|
uy = Velocity[N+n];
|
|
uz = Velocity[2*N+n];
|
|
//....Instantiate the density distributions
|
|
// Generate Equilibrium Distributions and stream
|
|
// Stationary value - distribution 0
|
|
// Den[2*n] += 0.3333333333333333*na;
|
|
// Den[2*n+1] += 0.3333333333333333*nb;
|
|
Den[2*n] += 0.3333333333333333*na;
|
|
Den[2*n+1] += 0.3333333333333333*nb;
|
|
// Non-Stationary equilibrium distributions
|
|
feq[0] = 0.1111111111111111*(1+3*ux);
|
|
feq[1] = 0.1111111111111111*(1-3*ux);
|
|
feq[2] = 0.1111111111111111*(1+3*uy);
|
|
feq[3] = 0.1111111111111111*(1-3*uy);
|
|
feq[4] = 0.1111111111111111*(1+3*uz);
|
|
feq[5] = 0.1111111111111111*(1-3*uz);
|
|
// Construction and streaming for the components
|
|
for (idx=0; idx<3; idx++){
|
|
// Distribution index
|
|
q = 2*idx;
|
|
// Associated discrete velocity
|
|
Cqx = D3Q7[idx][0];
|
|
Cqy = D3Q7[idx][1];
|
|
Cqz = D3Q7[idx][2];
|
|
// Generate the Equilibrium Distribution
|
|
a1 = na*feq[q];
|
|
b1 = nb*feq[q];
|
|
a2 = na*feq[q+1];
|
|
b2 = nb*feq[q+1];
|
|
// Recolor the distributions
|
|
if (C > 0.0){
|
|
sp = nx*double(Cqx)+ny*double(Cqy)+nz*double(Cqz);
|
|
//if (idx > 2) sp = 0.7071067811865475*sp;
|
|
//delta = sp*min( min(a1,a2), min(b1,b2) );
|
|
delta = na*nb/(na+nb)*0.1111111111111111*sp;
|
|
//if (a1>0 && b1>0){
|
|
a1 += beta*delta;
|
|
a2 -= beta*delta;
|
|
b1 -= beta*delta;
|
|
b2 += beta*delta;
|
|
}
|
|
|
|
// .......Get the neighbor node..............
|
|
//nn = n + Stride[idx];
|
|
in = i+Cqx;
|
|
jn = j+Cqy;
|
|
kn = k+Cqz;
|
|
|
|
// Adjust for periodic BC, if necessary
|
|
// if (in<0) in+= Nx;
|
|
// if (jn<0) jn+= Ny;
|
|
// if (kn<0) kn+= Nz;
|
|
// if (!(in<Nx)) in-= Nx;
|
|
// if (!(jn<Ny)) jn-= Ny;
|
|
// if (!(kn<Nz)) kn-= Nz;
|
|
// Perform streaming or bounce-back as needed
|
|
id = ID[kn*Nx*Ny+jn*Nx+in];
|
|
if (id == 0){ //.....Bounce-back Rule...........
|
|
// Den[2*n] += a1;
|
|
// Den[2*n+1] += b1;
|
|
Den[2*n] += a1;
|
|
Den[2*n+1] += b1;
|
|
}
|
|
else{
|
|
//......Push the "distribution" to neighboring node...........
|
|
// Index of the neighbor in the local process
|
|
//nn = (kn-zmin[rank]+1)*Nxp*Nyp + (jn-ymin[rank]+1)*Nxp + (in-xmin[rank]+1);
|
|
nn = kn*Nx*Ny+jn*Nx+in;
|
|
// Push to neighboring node
|
|
// Den[2*nn] += a1;
|
|
// Den[2*nn+1] += b1;
|
|
Den[2*nn] += a1;
|
|
Den[2*nn+1] += b1;
|
|
}
|
|
|
|
// .......Get the neighbor node..............
|
|
q = 2*idx+1;
|
|
in = i-Cqx;
|
|
jn = j-Cqy;
|
|
kn = k-Cqz;
|
|
// Adjust for periodic BC, if necessary
|
|
// if (in<0) in+= Nx;
|
|
// if (jn<0) jn+= Ny;
|
|
// if (kn<0) kn+= Nz;
|
|
// if (!(in<Nx)) in-= Nx;
|
|
// if (!(jn<Ny)) jn-= Ny;
|
|
// if (!(kn<Nz)) kn-= Nz;
|
|
// Perform streaming or bounce-back as needed
|
|
id = ID[kn*Nx*Ny+jn*Nx+in];
|
|
if (id == 0){
|
|
//.....Bounce-back Rule...........
|
|
// Den[2*n] += a2;
|
|
// Den[2*n+1] += b2;
|
|
Den[2*n] += a2;
|
|
Den[2*n+1] += b2;
|
|
}
|
|
else{
|
|
//......Push the "distribution" to neighboring node...........
|
|
// Index of the neighbor in the local process
|
|
//nn = (kn-zmin[rank]+1)*Nxp*Nyp + (jn-ymin[rank]+1)*Nxp + (in-xmin[rank]+1);
|
|
nn = kn*Nx*Ny+jn*Nx+in;
|
|
// Push to neighboring node
|
|
// Den[2*nn] += a2;
|
|
// Den[2*nn+1] += b2;
|
|
Den[2*nn] += a2;
|
|
Den[2*nn+1] += b2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_ComputePhaseField(char *ID, double *Phi, double *Den, int N)
|
|
{
|
|
int n;
|
|
double Na,Nb;
|
|
//...................................................................
|
|
// Update Phi
|
|
for (n=0; n<N; n++){
|
|
|
|
if (ID[n] > 0 ){
|
|
// Get the density value (Streaming already performed)
|
|
Na = Den[n];
|
|
Nb = Den[N+n];
|
|
Phi[n] = (Na-Nb)/(Na+Nb);
|
|
}
|
|
}
|
|
//...................................................................
|
|
}
|
|
|
|
extern "C" void ScaLBL_SetSlice_z(double *Phi, double value, int Nx, int Ny, int Nz, int Slice){
|
|
int n;
|
|
for (n=Slice*Nx*Ny; n<(Slice+1)*Nx*Ny; n++){
|
|
Phi[n] = value;
|
|
}
|
|
}
|
|
|
|
|
|
//extern "C" void ScaLBL_D3Q19_AAeven_Color(double *dist, double *Aq, double *Bq, double *Den, double *Velocity,
|
|
// double *ColorGrad, double rhoA, double rhoB, double tauA, double tauB, double alpha, double beta,
|
|
// double Fx, double Fy, double Fz, int start, int finish, int Np){
|
|
extern "C" void ScaLBL_D3Q19_AAeven_Color(int *Map, double *dist, double *Aq, double *Bq, double *Den, double *Phi,
|
|
double *Vel, double rhoA, double rhoB, double tauA, double tauB, double alpha, double beta,
|
|
double Fx, double Fy, double Fz, int strideY, int strideZ, int start, int finish, int Np){
|
|
|
|
int ijk,nn,n;
|
|
double fq;
|
|
// conserved momemnts
|
|
double rho,jx,jy,jz;
|
|
// non-conserved moments
|
|
double m1,m2,m4,m6,m8,m9,m10,m11,m12,m13,m14,m15,m16,m17,m18;
|
|
double m3,m5,m7;
|
|
double nA,nB; // number density
|
|
double a1,b1,a2,b2,nAB,delta;
|
|
double C,nx,ny,nz; //color gradient magnitude and direction
|
|
double ux,uy,uz;
|
|
double phi,tau,rho0,rlx_setA,rlx_setB;
|
|
|
|
const double mrt_V1=0.05263157894736842;
|
|
const double mrt_V2=0.012531328320802;
|
|
const double mrt_V3=0.04761904761904762;
|
|
const double mrt_V4=0.004594820384294068;
|
|
const double mrt_V5=0.01587301587301587;
|
|
const double mrt_V6=0.0555555555555555555555555;
|
|
const double mrt_V7=0.02777777777777778;
|
|
const double mrt_V8=0.08333333333333333;
|
|
const double mrt_V9=0.003341687552213868;
|
|
const double mrt_V10=0.003968253968253968;
|
|
const double mrt_V11=0.01388888888888889;
|
|
const double mrt_V12=0.04166666666666666;
|
|
|
|
|
|
for (int n=start; n<finish; n++){
|
|
|
|
// read the component number densities
|
|
nA = Den[n];
|
|
nB = Den[Np + n];
|
|
|
|
// compute phase indicator field
|
|
phi=(nA-nB)/(nA+nB);
|
|
|
|
// local density
|
|
rho0=rhoA + 0.5*(1.0-phi)*(rhoB-rhoA);
|
|
// local relaxation time
|
|
tau=tauA + 0.5*(1.0-phi)*(tauB-tauA);
|
|
rlx_setA = 1.f/tau;
|
|
rlx_setB = 8.f*(2.f-rlx_setA)/(8.f-rlx_setA);
|
|
|
|
// Get the 1D index based on regular data layout
|
|
ijk = Map[n];
|
|
// COMPUTE THE COLOR GRADIENT
|
|
//........................................................................
|
|
//.................Read Phase Indicator Values............................
|
|
//........................................................................
|
|
nn = ijk-1; // neighbor index (get convention)
|
|
m1 = Phi[nn]; // get neighbor for phi - 1
|
|
//........................................................................
|
|
nn = ijk+1; // neighbor index (get convention)
|
|
m2 = Phi[nn]; // get neighbor for phi - 2
|
|
//........................................................................
|
|
nn = ijk-strideY; // neighbor index (get convention)
|
|
m3 = Phi[nn]; // get neighbor for phi - 3
|
|
//........................................................................
|
|
nn = ijk+strideY; // neighbor index (get convention)
|
|
m4 = Phi[nn]; // get neighbor for phi - 4
|
|
//........................................................................
|
|
nn = ijk-strideZ; // neighbor index (get convention)
|
|
m5 = Phi[nn]; // get neighbor for phi - 5
|
|
//........................................................................
|
|
nn = ijk+strideZ; // neighbor index (get convention)
|
|
m6 = Phi[nn]; // get neighbor for phi - 6
|
|
//........................................................................
|
|
nn = ijk-strideY-1; // neighbor index (get convention)
|
|
m7 = Phi[nn]; // get neighbor for phi - 7
|
|
//........................................................................
|
|
nn = ijk+strideY+1; // neighbor index (get convention)
|
|
m8 = Phi[nn]; // get neighbor for phi - 8
|
|
//........................................................................
|
|
nn = ijk+strideY-1; // neighbor index (get convention)
|
|
m9 = Phi[nn]; // get neighbor for phi - 9
|
|
//........................................................................
|
|
nn = ijk-strideY+1; // neighbor index (get convention)
|
|
m10 = Phi[nn]; // get neighbor for phi - 10
|
|
//........................................................................
|
|
nn = ijk-strideZ-1; // neighbor index (get convention)
|
|
m11 = Phi[nn]; // get neighbor for phi - 11
|
|
//........................................................................
|
|
nn = ijk+strideZ+1; // neighbor index (get convention)
|
|
m12 = Phi[nn]; // get neighbor for phi - 12
|
|
//........................................................................
|
|
nn = ijk+strideZ-1; // neighbor index (get convention)
|
|
m13 = Phi[nn]; // get neighbor for phi - 13
|
|
//........................................................................
|
|
nn = ijk-strideZ+1; // neighbor index (get convention)
|
|
m14 = Phi[nn]; // get neighbor for phi - 14
|
|
//........................................................................
|
|
nn = ijk-strideZ-strideY; // neighbor index (get convention)
|
|
m15 = Phi[nn]; // get neighbor for phi - 15
|
|
//........................................................................
|
|
nn = ijk+strideZ+strideY; // neighbor index (get convention)
|
|
m16 = Phi[nn]; // get neighbor for phi - 16
|
|
//........................................................................
|
|
nn = ijk+strideZ-strideY; // neighbor index (get convention)
|
|
m17 = Phi[nn]; // get neighbor for phi - 17
|
|
//........................................................................
|
|
nn = ijk-strideZ+strideY; // neighbor index (get convention)
|
|
m18 = Phi[nn]; // get neighbor for phi - 18
|
|
//............Compute the Color Gradient...................................
|
|
nx = -(m1-m2+0.5*(m7-m8+m9-m10+m11-m12+m13-m14));
|
|
ny = -(m3-m4+0.5*(m7-m8-m9+m10+m15-m16+m17-m18));
|
|
nz = -(m5-m6+0.5*(m11-m12-m13+m14+m15-m16-m17+m18));
|
|
|
|
//...........Normalize the Color Gradient.................................
|
|
C = sqrt(nx*nx+ny*ny+nz*nz);
|
|
double ColorMag = C;
|
|
if (C==0.0) ColorMag=1.0;
|
|
nx = nx/ColorMag;
|
|
ny = ny/ColorMag;
|
|
nz = nz/ColorMag;
|
|
|
|
// q=0
|
|
fq = dist[n];
|
|
rho = fq;
|
|
m1 = -30.0*fq;
|
|
m2 = 12.0*fq;
|
|
|
|
// q=1
|
|
fq = dist[2*Np+n];
|
|
rho += fq;
|
|
m1 -= 11.0*fq;
|
|
m2 -= 4.0*fq;
|
|
jx = fq;
|
|
m4 = -4.0*fq;
|
|
m9 = 2.0*fq;
|
|
m10 = -4.0*fq;
|
|
|
|
// f2 = dist[10*Np+n];
|
|
fq = dist[1*Np+n];
|
|
rho += fq;
|
|
m1 -= 11.0*(fq);
|
|
m2 -= 4.0*(fq);
|
|
jx -= fq;
|
|
m4 += 4.0*(fq);
|
|
m9 += 2.0*(fq);
|
|
m10 -= 4.0*(fq);
|
|
|
|
// q=3
|
|
fq = dist[4*Np+n];
|
|
rho += fq;
|
|
m1 -= 11.0*fq;
|
|
m2 -= 4.0*fq;
|
|
jy = fq;
|
|
m6 = -4.0*fq;
|
|
m9 -= fq;
|
|
m10 += 2.0*fq;
|
|
m11 = fq;
|
|
m12 = -2.0*fq;
|
|
|
|
// q = 4
|
|
fq = dist[3*Np+n];
|
|
rho+= fq;
|
|
m1 -= 11.0*fq;
|
|
m2 -= 4.0*fq;
|
|
jy -= fq;
|
|
m6 += 4.0*fq;
|
|
m9 -= fq;
|
|
m10 += 2.0*fq;
|
|
m11 += fq;
|
|
m12 -= 2.0*fq;
|
|
|
|
// q=5
|
|
fq = dist[6*Np+n];
|
|
rho += fq;
|
|
m1 -= 11.0*fq;
|
|
m2 -= 4.0*fq;
|
|
jz = fq;
|
|
m8 = -4.0*fq;
|
|
m9 -= fq;
|
|
m10 += 2.0*fq;
|
|
m11 -= fq;
|
|
m12 += 2.0*fq;
|
|
|
|
// q = 6
|
|
fq = dist[5*Np+n];
|
|
rho+= fq;
|
|
m1 -= 11.0*fq;
|
|
m2 -= 4.0*fq;
|
|
jz -= fq;
|
|
m8 += 4.0*fq;
|
|
m9 -= fq;
|
|
m10 += 2.0*fq;
|
|
m11 -= fq;
|
|
m12 += 2.0*fq;
|
|
|
|
// q=7
|
|
fq = dist[8*Np+n];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx += fq;
|
|
m4 += fq;
|
|
jy += fq;
|
|
m6 += fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 += fq;
|
|
m12 += fq;
|
|
m13 = fq;
|
|
m16 = fq;
|
|
m17 = -fq;
|
|
|
|
// q = 8
|
|
fq = dist[7*Np+n];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx -= fq;
|
|
m4 -= fq;
|
|
jy -= fq;
|
|
m6 -= fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 += fq;
|
|
m12 += fq;
|
|
m13 += fq;
|
|
m16 -= fq;
|
|
m17 += fq;
|
|
|
|
// q=9
|
|
fq = dist[10*Np+n];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx += fq;
|
|
m4 += fq;
|
|
jy -= fq;
|
|
m6 -= fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 += fq;
|
|
m12 += fq;
|
|
m13 -= fq;
|
|
m16 += fq;
|
|
m17 += fq;
|
|
|
|
// q = 10
|
|
fq = dist[9*Np+n];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx -= fq;
|
|
m4 -= fq;
|
|
jy += fq;
|
|
m6 += fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 += fq;
|
|
m12 += fq;
|
|
m13 -= fq;
|
|
m16 -= fq;
|
|
m17 -= fq;
|
|
|
|
// q=11
|
|
fq = dist[12*Np+n];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx += fq;
|
|
m4 += fq;
|
|
jz += fq;
|
|
m8 += fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 -= fq;
|
|
m12 -= fq;
|
|
m15 = fq;
|
|
m16 -= fq;
|
|
m18 = fq;
|
|
|
|
// q=12
|
|
fq = dist[11*Np+n];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx -= fq;
|
|
m4 -= fq;
|
|
jz -= fq;
|
|
m8 -= fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 -= fq;
|
|
m12 -= fq;
|
|
m15 += fq;
|
|
m16 += fq;
|
|
m18 -= fq;
|
|
|
|
// q=13
|
|
fq = dist[14*Np+n];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx += fq;
|
|
m4 += fq;
|
|
jz -= fq;
|
|
m8 -= fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 -= fq;
|
|
m12 -= fq;
|
|
m15 -= fq;
|
|
m16 -= fq;
|
|
m18 -= fq;
|
|
|
|
// q=14
|
|
fq = dist[13*Np+n];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx -= fq;
|
|
m4 -= fq;
|
|
jz += fq;
|
|
m8 += fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 -= fq;
|
|
m12 -= fq;
|
|
m15 -= fq;
|
|
m16 += fq;
|
|
m18 += fq;
|
|
|
|
// q=15
|
|
fq = dist[16*Np+n];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jy += fq;
|
|
m6 += fq;
|
|
jz += fq;
|
|
m8 += fq;
|
|
m9 -= 2.0*fq;
|
|
m10 -= 2.0*fq;
|
|
m14 = fq;
|
|
m17 += fq;
|
|
m18 -= fq;
|
|
|
|
// q=16
|
|
fq = dist[15*Np+n];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jy -= fq;
|
|
m6 -= fq;
|
|
jz -= fq;
|
|
m8 -= fq;
|
|
m9 -= 2.0*fq;
|
|
m10 -= 2.0*fq;
|
|
m14 += fq;
|
|
m17 -= fq;
|
|
m18 += fq;
|
|
|
|
// q=17
|
|
fq = dist[18*Np+n];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jy += fq;
|
|
m6 += fq;
|
|
jz -= fq;
|
|
m8 -= fq;
|
|
m9 -= 2.0*fq;
|
|
m10 -= 2.0*fq;
|
|
m14 -= fq;
|
|
m17 += fq;
|
|
m18 += fq;
|
|
|
|
// q=18
|
|
fq = dist[17*Np+n];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jy -= fq;
|
|
m6 -= fq;
|
|
jz += fq;
|
|
m8 += fq;
|
|
m9 -= 2.0*fq;
|
|
m10 -= 2.0*fq;
|
|
m14 -= fq;
|
|
m17 -= fq;
|
|
m18 -= fq;
|
|
|
|
//........................................................................
|
|
//..............carry out relaxation process..............................
|
|
//..........Toelke, Fruediger et. al. 2006................................
|
|
if (C == 0.0) nx = ny = nz = 0.0;
|
|
m1 = m1 + rlx_setA*((19*(jx*jx+jy*jy+jz*jz)/rho0 - 11*rho) -19*alpha*C - m1);
|
|
m2 = m2 + rlx_setA*((3*rho - 5.5*(jx*jx+jy*jy+jz*jz)/rho0)- m2);
|
|
m4 = m4 + rlx_setB*((-0.6666666666666666*jx)- m4);
|
|
m6 = m6 + rlx_setB*((-0.6666666666666666*jy)- m6);
|
|
m8 = m8 + rlx_setB*((-0.6666666666666666*jz)- m8);
|
|
m9 = m9 + rlx_setA*(((2*jx*jx-jy*jy-jz*jz)/rho0) + 0.5*alpha*C*(2*nx*nx-ny*ny-nz*nz) - m9);
|
|
m10 = m10 + rlx_setA*( - m10);
|
|
m11 = m11 + rlx_setA*(((jy*jy-jz*jz)/rho0) + 0.5*alpha*C*(ny*ny-nz*nz)- m11);
|
|
m12 = m12 + rlx_setA*( - m12);
|
|
m13 = m13 + rlx_setA*( (jx*jy/rho0) + 0.5*alpha*C*nx*ny - m13);
|
|
m14 = m14 + rlx_setA*( (jy*jz/rho0) + 0.5*alpha*C*ny*nz - m14);
|
|
m15 = m15 + rlx_setA*( (jx*jz/rho0) + 0.5*alpha*C*nx*nz - m15);
|
|
m16 = m16 + rlx_setB*( - m16);
|
|
m17 = m17 + rlx_setB*( - m17);
|
|
m18 = m18 + rlx_setB*( - m18);
|
|
|
|
//.......................................................................................................
|
|
//.................inverse transformation......................................................
|
|
|
|
// q=0
|
|
fq = mrt_V1*rho-mrt_V2*m1+mrt_V3*m2;
|
|
dist[n] = fq;
|
|
|
|
// q = 1
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(jx-m4)+mrt_V6*(m9-m10) + 0.16666666*Fx;
|
|
dist[1*Np+n] = fq;
|
|
|
|
// q=2
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(m4-jx)+mrt_V6*(m9-m10) - 0.16666666*Fx;
|
|
dist[2*Np+n] = fq;
|
|
|
|
// q = 3
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(jy-m6)+mrt_V7*(m10-m9)+mrt_V8*(m11-m12) + 0.16666666*Fy;
|
|
dist[3*Np+n] = fq;
|
|
|
|
// q = 4
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(m6-jy)+mrt_V7*(m10-m9)+mrt_V8*(m11-m12) - 0.16666666*Fy;
|
|
dist[4*Np+n] = fq;
|
|
|
|
// q = 5
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(jz-m8)+mrt_V7*(m10-m9)+mrt_V8*(m12-m11) + 0.16666666*Fz;
|
|
dist[5*Np+n] = fq;
|
|
|
|
// q = 6
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(m8-jz)+mrt_V7*(m10-m9)+mrt_V8*(m12-m11) - 0.16666666*Fz;
|
|
dist[6*Np+n] = fq;
|
|
|
|
// q = 7
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jx+jy)+0.025*(m4+m6)+
|
|
mrt_V7*m9+mrt_V11*m10+mrt_V8*m11+mrt_V12*m12+0.25*m13+0.125*(m16-m17) + 0.08333333333*(Fx+Fy);
|
|
dist[7*Np+n] = fq;
|
|
|
|
|
|
// q = 8
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2-0.1*(jx+jy)-0.025*(m4+m6) +mrt_V7*m9+mrt_V11*m10+mrt_V8*m11
|
|
+mrt_V12*m12+0.25*m13+0.125*(m17-m16) - 0.08333333333*(Fx+Fy);
|
|
dist[8*Np+n] = fq;
|
|
|
|
// q = 9
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jx-jy)+0.025*(m4-m6)+
|
|
mrt_V7*m9+mrt_V11*m10+mrt_V8*m11+mrt_V12*m12-0.25*m13+0.125*(m16+m17) + 0.08333333333*(Fx-Fy);
|
|
dist[9*Np+n] = fq;
|
|
|
|
// q = 10
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jy-jx)+0.025*(m6-m4)+
|
|
mrt_V7*m9+mrt_V11*m10+mrt_V8*m11+mrt_V12*m12-0.25*m13-0.125*(m16+m17)- 0.08333333333*(Fx-Fy);
|
|
dist[10*Np+n] = fq;
|
|
|
|
|
|
// q = 11
|
|
fq = mrt_V1*rho+mrt_V9*m1
|
|
+mrt_V10*m2+0.1*(jx+jz)+0.025*(m4+m8)
|
|
+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11
|
|
-mrt_V12*m12+0.25*m15+0.125*(m18-m16) + 0.08333333333*(Fx+Fz);
|
|
dist[11*Np+n] = fq;
|
|
|
|
// q = 12
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2-0.1*(jx+jz)-0.025*(m4+m8)+
|
|
mrt_V7*m9+mrt_V11*m10-mrt_V8*m11-mrt_V12*m12+0.25*m15+0.125*(m16-m18)-0.08333333333*(Fx+Fz);
|
|
dist[12*Np+n] = fq;
|
|
|
|
// q = 13
|
|
fq = mrt_V1*rho+mrt_V9*m1
|
|
+mrt_V10*m2+0.1*(jx-jz)+0.025*(m4-m8)
|
|
+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11
|
|
-mrt_V12*m12-0.25*m15-0.125*(m16+m18) + 0.08333333333*(Fx-Fz);
|
|
dist[13*Np+n] = fq;
|
|
|
|
// q= 14
|
|
fq = mrt_V1*rho+mrt_V9*m1
|
|
+mrt_V10*m2+0.1*(jz-jx)+0.025*(m8-m4)
|
|
+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11
|
|
-mrt_V12*m12-0.25*m15+0.125*(m16+m18) - 0.08333333333*(Fx-Fz);
|
|
|
|
dist[14*Np+n] = fq;
|
|
|
|
// q = 15
|
|
fq = mrt_V1*rho+mrt_V9*m1
|
|
+mrt_V10*m2+0.1*(jy+jz)+0.025*(m6+m8)
|
|
-mrt_V6*m9-mrt_V7*m10+0.25*m14+0.125*(m17-m18) + 0.08333333333*(Fy+Fz);
|
|
dist[15*Np+n] = fq;
|
|
|
|
// q = 16
|
|
fq = mrt_V1*rho+mrt_V9*m1
|
|
+mrt_V10*m2-0.1*(jy+jz)-0.025*(m6+m8)
|
|
-mrt_V6*m9-mrt_V7*m10+0.25*m14+0.125*(m18-m17)- 0.08333333333*(Fy+Fz);
|
|
dist[16*Np+n] = fq;
|
|
|
|
|
|
// q = 17
|
|
fq = mrt_V1*rho+mrt_V9*m1
|
|
+mrt_V10*m2+0.1*(jy-jz)+0.025*(m6-m8)
|
|
-mrt_V6*m9-mrt_V7*m10-0.25*m14+0.125*(m17+m18) + 0.08333333333*(Fy-Fz);
|
|
dist[17*Np+n] = fq;
|
|
|
|
// q = 18
|
|
fq = mrt_V1*rho+mrt_V9*m1
|
|
+mrt_V10*m2+0.1*(jz-jy)+0.025*(m8-m6)
|
|
-mrt_V6*m9-mrt_V7*m10-0.25*m14-0.125*(m17+m18) - 0.08333333333*(Fy-Fz);
|
|
dist[18*Np+n] = fq;
|
|
|
|
//........................................................................
|
|
|
|
// write the velocity
|
|
ux = jx / rho0;
|
|
uy = jy / rho0;
|
|
uz = jz / rho0;
|
|
Vel[n] = ux;
|
|
Vel[Np+n] = uy;
|
|
Vel[2*Np+n] = uz;
|
|
|
|
// Instantiate mass transport distributions
|
|
// Stationary value - distribution 0
|
|
|
|
nAB = 1.0/(nA+nB);
|
|
Aq[n] = 0.3333333333333333*nA;
|
|
Bq[n] = 0.3333333333333333*nB;
|
|
|
|
//...............................................
|
|
// q = 0,2,4
|
|
// Cq = {1,0,0}, {0,1,0}, {0,0,1}
|
|
delta = beta*nA*nB*nAB*0.1111111111111111*nx;
|
|
if (!(nA*nB*nAB>0)) delta=0;
|
|
a1 = nA*(0.1111111111111111*(1+4.5*ux))+delta;
|
|
b1 = nB*(0.1111111111111111*(1+4.5*ux))-delta;
|
|
a2 = nA*(0.1111111111111111*(1-4.5*ux))-delta;
|
|
b2 = nB*(0.1111111111111111*(1-4.5*ux))+delta;
|
|
|
|
Aq[1*Np+n] = a1;
|
|
Bq[1*Np+n] = b1;
|
|
Aq[2*Np+n] = a2;
|
|
Bq[2*Np+n] = b2;
|
|
|
|
//...............................................
|
|
// q = 2
|
|
// Cq = {0,1,0}
|
|
delta = beta*nA*nB*nAB*0.1111111111111111*ny;
|
|
if (!(nA*nB*nAB>0)) delta=0;
|
|
a1 = nA*(0.1111111111111111*(1+4.5*uy))+delta;
|
|
b1 = nB*(0.1111111111111111*(1+4.5*uy))-delta;
|
|
a2 = nA*(0.1111111111111111*(1-4.5*uy))-delta;
|
|
b2 = nB*(0.1111111111111111*(1-4.5*uy))+delta;
|
|
|
|
Aq[3*Np+n] = a1;
|
|
Bq[3*Np+n] = b1;
|
|
Aq[4*Np+n] = a2;
|
|
Bq[4*Np+n] = b2;
|
|
//...............................................
|
|
// q = 4
|
|
// Cq = {0,0,1}
|
|
delta = beta*nA*nB*nAB*0.1111111111111111*nz;
|
|
if (!(nA*nB*nAB>0)) delta=0;
|
|
a1 = nA*(0.1111111111111111*(1+4.5*uz))+delta;
|
|
b1 = nB*(0.1111111111111111*(1+4.5*uz))-delta;
|
|
a2 = nA*(0.1111111111111111*(1-4.5*uz))-delta;
|
|
b2 = nB*(0.1111111111111111*(1-4.5*uz))+delta;
|
|
|
|
Aq[5*Np+n] = a1;
|
|
Bq[5*Np+n] = b1;
|
|
Aq[6*Np+n] = a2;
|
|
Bq[6*Np+n] = b2;
|
|
//...............................................
|
|
|
|
}
|
|
|
|
}
|
|
|
|
//extern "C" void ScaLBL_D3Q19_AAodd_Color(int *neighborList, double *dist, double *Aq, double *Bq, double *Den, double *Velocity,
|
|
// double *ColorGrad, double rhoA, double rhoB, double tauA, double tauB, double alpha, double beta,
|
|
// double Fx, double Fy, double Fz, int start, int finish, int Np){
|
|
extern "C" void ScaLBL_D3Q19_AAodd_Color(int *neighborList, int *Map, double *dist, double *Aq, double *Bq, double *Den,
|
|
double *Phi, double *Vel, double rhoA, double rhoB, double tauA, double tauB, double alpha, double beta,
|
|
double Fx, double Fy, double Fz, int strideY, int strideZ, int start, int finish, int Np){
|
|
|
|
int n,nn,ijk,nread;
|
|
int nr1,nr2,nr3,nr4,nr5,nr6;
|
|
int nr7,nr8,nr9,nr10;
|
|
int nr11,nr12,nr13,nr14;
|
|
//int nr15,nr16,nr17,nr18;
|
|
double fq;
|
|
// conserved momemnts
|
|
double rho,jx,jy,jz;
|
|
// non-conserved moments
|
|
double m1,m2,m4,m6,m8,m9,m10,m11,m12,m13,m14,m15,m16,m17,m18;
|
|
double m3,m5,m7;
|
|
double nA,nB; // number density
|
|
double a1,b1,a2,b2,nAB,delta;
|
|
double C,nx,ny,nz; //color gradient magnitude and direction
|
|
double ux,uy,uz;
|
|
double phi,tau,rho0,rlx_setA,rlx_setB;
|
|
|
|
const double mrt_V1=0.05263157894736842;
|
|
const double mrt_V2=0.012531328320802;
|
|
const double mrt_V3=0.04761904761904762;
|
|
const double mrt_V4=0.004594820384294068;
|
|
const double mrt_V5=0.01587301587301587;
|
|
const double mrt_V6=0.0555555555555555555555555;
|
|
const double mrt_V7=0.02777777777777778;
|
|
const double mrt_V8=0.08333333333333333;
|
|
const double mrt_V9=0.003341687552213868;
|
|
const double mrt_V10=0.003968253968253968;
|
|
const double mrt_V11=0.01388888888888889;
|
|
const double mrt_V12=0.04166666666666666;
|
|
|
|
for (int n=start; n<finish; n++){
|
|
|
|
// read the component number densities
|
|
nA = Den[n];
|
|
nB = Den[Np + n];
|
|
|
|
// compute phase indicator field
|
|
phi=(nA-nB)/(nA+nB);
|
|
|
|
// local density
|
|
rho0=rhoA + 0.5*(1.0-phi)*(rhoB-rhoA);
|
|
// local relaxation time
|
|
tau=tauA + 0.5*(1.0-phi)*(tauB-tauA);
|
|
rlx_setA = 1.f/tau;
|
|
rlx_setB = 8.f*(2.f-rlx_setA)/(8.f-rlx_setA);
|
|
|
|
// Get the 1D index based on regular data layout
|
|
ijk = Map[n];
|
|
// COMPUTE THE COLOR GRADIENT
|
|
//........................................................................
|
|
//.................Read Phase Indicator Values............................
|
|
//........................................................................
|
|
nn = ijk-1; // neighbor index (get convention)
|
|
m1 = Phi[nn]; // get neighbor for phi - 1
|
|
//........................................................................
|
|
nn = ijk+1; // neighbor index (get convention)
|
|
m2 = Phi[nn]; // get neighbor for phi - 2
|
|
//........................................................................
|
|
nn = ijk-strideY; // neighbor index (get convention)
|
|
m3 = Phi[nn]; // get neighbor for phi - 3
|
|
//........................................................................
|
|
nn = ijk+strideY; // neighbor index (get convention)
|
|
m4 = Phi[nn]; // get neighbor for phi - 4
|
|
//........................................................................
|
|
nn = ijk-strideZ; // neighbor index (get convention)
|
|
m5 = Phi[nn]; // get neighbor for phi - 5
|
|
//........................................................................
|
|
nn = ijk+strideZ; // neighbor index (get convention)
|
|
m6 = Phi[nn]; // get neighbor for phi - 6
|
|
//........................................................................
|
|
nn = ijk-strideY-1; // neighbor index (get convention)
|
|
m7 = Phi[nn]; // get neighbor for phi - 7
|
|
//........................................................................
|
|
nn = ijk+strideY+1; // neighbor index (get convention)
|
|
m8 = Phi[nn]; // get neighbor for phi - 8
|
|
//........................................................................
|
|
nn = ijk+strideY-1; // neighbor index (get convention)
|
|
m9 = Phi[nn]; // get neighbor for phi - 9
|
|
//........................................................................
|
|
nn = ijk-strideY+1; // neighbor index (get convention)
|
|
m10 = Phi[nn]; // get neighbor for phi - 10
|
|
//........................................................................
|
|
nn = ijk-strideZ-1; // neighbor index (get convention)
|
|
m11 = Phi[nn]; // get neighbor for phi - 11
|
|
//........................................................................
|
|
nn = ijk+strideZ+1; // neighbor index (get convention)
|
|
m12 = Phi[nn]; // get neighbor for phi - 12
|
|
//........................................................................
|
|
nn = ijk+strideZ-1; // neighbor index (get convention)
|
|
m13 = Phi[nn]; // get neighbor for phi - 13
|
|
//........................................................................
|
|
nn = ijk-strideZ+1; // neighbor index (get convention)
|
|
m14 = Phi[nn]; // get neighbor for phi - 14
|
|
//........................................................................
|
|
nn = ijk-strideZ-strideY; // neighbor index (get convention)
|
|
m15 = Phi[nn]; // get neighbor for phi - 15
|
|
//........................................................................
|
|
nn = ijk+strideZ+strideY; // neighbor index (get convention)
|
|
m16 = Phi[nn]; // get neighbor for phi - 16
|
|
//........................................................................
|
|
nn = ijk+strideZ-strideY; // neighbor index (get convention)
|
|
m17 = Phi[nn]; // get neighbor for phi - 17
|
|
//........................................................................
|
|
nn = ijk-strideZ+strideY; // neighbor index (get convention)
|
|
m18 = Phi[nn]; // get neighbor for phi - 18
|
|
//............Compute the Color Gradient...................................
|
|
nx = -(m1-m2+0.5*(m7-m8+m9-m10+m11-m12+m13-m14));
|
|
ny = -(m3-m4+0.5*(m7-m8-m9+m10+m15-m16+m17-m18));
|
|
nz = -(m5-m6+0.5*(m11-m12-m13+m14+m15-m16-m17+m18));
|
|
|
|
//...........Normalize the Color Gradient.................................
|
|
C = sqrt(nx*nx+ny*ny+nz*nz);
|
|
double ColorMag = C;
|
|
if (C==0.0) ColorMag=1.0;
|
|
nx = nx/ColorMag;
|
|
ny = ny/ColorMag;
|
|
nz = nz/ColorMag;
|
|
|
|
// q=0
|
|
fq = dist[n];
|
|
rho = fq;
|
|
m1 = -30.0*fq;
|
|
m2 = 12.0*fq;
|
|
|
|
// q=1
|
|
//nread = neighborList[n]; // neighbor 2
|
|
//fq = dist[nread]; // reading the f1 data into register fq
|
|
nr1 = neighborList[n];
|
|
fq = dist[nr1]; // reading the f1 data into register fq
|
|
rho += fq;
|
|
m1 -= 11.0*fq;
|
|
m2 -= 4.0*fq;
|
|
jx = fq;
|
|
m4 = -4.0*fq;
|
|
m9 = 2.0*fq;
|
|
m10 = -4.0*fq;
|
|
|
|
// f2 = dist[10*Np+n];
|
|
//nread = neighborList[n+Np]; // neighbor 1 ( < 10Np => even part of dist)
|
|
//fq = dist[nread]; // reading the f2 data into register fq
|
|
nr2 = neighborList[n+Np]; // neighbor 1 ( < 10Np => even part of dist)
|
|
fq = dist[nr2]; // reading the f2 data into register fq
|
|
rho += fq;
|
|
m1 -= 11.0*(fq);
|
|
m2 -= 4.0*(fq);
|
|
jx -= fq;
|
|
m4 += 4.0*(fq);
|
|
m9 += 2.0*(fq);
|
|
m10 -= 4.0*(fq);
|
|
|
|
// q=3
|
|
//nread = neighborList[n+2*Np]; // neighbor 4
|
|
//fq = dist[nread];
|
|
nr3 = neighborList[n+2*Np]; // neighbor 4
|
|
fq = dist[nr3];
|
|
rho += fq;
|
|
m1 -= 11.0*fq;
|
|
m2 -= 4.0*fq;
|
|
jy = fq;
|
|
m6 = -4.0*fq;
|
|
m9 -= fq;
|
|
m10 += 2.0*fq;
|
|
m11 = fq;
|
|
m12 = -2.0*fq;
|
|
|
|
// q = 4
|
|
//nread = neighborList[n+3*Np]; // neighbor 3
|
|
//fq = dist[nread];
|
|
nr4 = neighborList[n+3*Np]; // neighbor 3
|
|
fq = dist[nr4];
|
|
rho+= fq;
|
|
m1 -= 11.0*fq;
|
|
m2 -= 4.0*fq;
|
|
jy -= fq;
|
|
m6 += 4.0*fq;
|
|
m9 -= fq;
|
|
m10 += 2.0*fq;
|
|
m11 += fq;
|
|
m12 -= 2.0*fq;
|
|
|
|
// q=5
|
|
//nread = neighborList[n+4*Np];
|
|
//fq = dist[nread];
|
|
nr5 = neighborList[n+4*Np];
|
|
fq = dist[nr5];
|
|
rho += fq;
|
|
m1 -= 11.0*fq;
|
|
m2 -= 4.0*fq;
|
|
jz = fq;
|
|
m8 = -4.0*fq;
|
|
m9 -= fq;
|
|
m10 += 2.0*fq;
|
|
m11 -= fq;
|
|
m12 += 2.0*fq;
|
|
|
|
|
|
// q = 6
|
|
//nread = neighborList[n+5*Np];
|
|
//fq = dist[nread];
|
|
nr6 = neighborList[n+5*Np];
|
|
fq = dist[nr6];
|
|
rho+= fq;
|
|
m1 -= 11.0*fq;
|
|
m2 -= 4.0*fq;
|
|
jz -= fq;
|
|
m8 += 4.0*fq;
|
|
m9 -= fq;
|
|
m10 += 2.0*fq;
|
|
m11 -= fq;
|
|
m12 += 2.0*fq;
|
|
|
|
// q=7
|
|
//nread = neighborList[n+6*Np];
|
|
//fq = dist[nread];
|
|
nr7 = neighborList[n+6*Np];
|
|
fq = dist[nr7];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx += fq;
|
|
m4 += fq;
|
|
jy += fq;
|
|
m6 += fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 += fq;
|
|
m12 += fq;
|
|
m13 = fq;
|
|
m16 = fq;
|
|
m17 = -fq;
|
|
|
|
// q = 8
|
|
//nread = neighborList[n+7*Np];
|
|
//fq = dist[nread];
|
|
nr8 = neighborList[n+7*Np];
|
|
fq = dist[nr8];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx -= fq;
|
|
m4 -= fq;
|
|
jy -= fq;
|
|
m6 -= fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 += fq;
|
|
m12 += fq;
|
|
m13 += fq;
|
|
m16 -= fq;
|
|
m17 += fq;
|
|
|
|
// q=9
|
|
//nread = neighborList[n+8*Np];
|
|
//fq = dist[nread];
|
|
nr9 = neighborList[n+8*Np];
|
|
fq = dist[nr9];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx += fq;
|
|
m4 += fq;
|
|
jy -= fq;
|
|
m6 -= fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 += fq;
|
|
m12 += fq;
|
|
m13 -= fq;
|
|
m16 += fq;
|
|
m17 += fq;
|
|
|
|
// q = 10
|
|
//nread = neighborList[n+9*Np];
|
|
//fq = dist[nread];
|
|
nr10 = neighborList[n+9*Np];
|
|
fq = dist[nr10];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx -= fq;
|
|
m4 -= fq;
|
|
jy += fq;
|
|
m6 += fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 += fq;
|
|
m12 += fq;
|
|
m13 -= fq;
|
|
m16 -= fq;
|
|
m17 -= fq;
|
|
|
|
// q=11
|
|
//nread = neighborList[n+10*Np];
|
|
//fq = dist[nread];
|
|
nr11 = neighborList[n+10*Np];
|
|
fq = dist[nr11];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx += fq;
|
|
m4 += fq;
|
|
jz += fq;
|
|
m8 += fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 -= fq;
|
|
m12 -= fq;
|
|
m15 = fq;
|
|
m16 -= fq;
|
|
m18 = fq;
|
|
|
|
// q=12
|
|
//nread = neighborList[n+11*Np];
|
|
//fq = dist[nread];
|
|
nr12 = neighborList[n+11*Np];
|
|
fq = dist[nr12];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx -= fq;
|
|
m4 -= fq;
|
|
jz -= fq;
|
|
m8 -= fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 -= fq;
|
|
m12 -= fq;
|
|
m15 += fq;
|
|
m16 += fq;
|
|
m18 -= fq;
|
|
|
|
// q=13
|
|
//nread = neighborList[n+12*Np];
|
|
//fq = dist[nread];
|
|
nr13 = neighborList[n+12*Np];
|
|
fq = dist[nr13];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx += fq;
|
|
m4 += fq;
|
|
jz -= fq;
|
|
m8 -= fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 -= fq;
|
|
m12 -= fq;
|
|
m15 -= fq;
|
|
m16 -= fq;
|
|
m18 -= fq;
|
|
|
|
// q=14
|
|
//nread = neighborList[n+13*Np];
|
|
//fq = dist[nread];
|
|
nr14 = neighborList[n+13*Np];
|
|
fq = dist[nr14];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx -= fq;
|
|
m4 -= fq;
|
|
jz += fq;
|
|
m8 += fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 -= fq;
|
|
m12 -= fq;
|
|
m15 -= fq;
|
|
m16 += fq;
|
|
m18 += fq;
|
|
|
|
// q=15
|
|
nread = neighborList[n+14*Np];
|
|
fq = dist[nread];
|
|
//fq = dist[17*Np+n];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jy += fq;
|
|
m6 += fq;
|
|
jz += fq;
|
|
m8 += fq;
|
|
m9 -= 2.0*fq;
|
|
m10 -= 2.0*fq;
|
|
m14 = fq;
|
|
m17 += fq;
|
|
m18 -= fq;
|
|
|
|
// q=16
|
|
nread = neighborList[n+15*Np];
|
|
fq = dist[nread];
|
|
//fq = dist[8*Np+n];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jy -= fq;
|
|
m6 -= fq;
|
|
jz -= fq;
|
|
m8 -= fq;
|
|
m9 -= 2.0*fq;
|
|
m10 -= 2.0*fq;
|
|
m14 += fq;
|
|
m17 -= fq;
|
|
m18 += fq;
|
|
|
|
// q=17
|
|
//fq = dist[18*Np+n];
|
|
nread = neighborList[n+16*Np];
|
|
fq = dist[nread];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jy += fq;
|
|
m6 += fq;
|
|
jz -= fq;
|
|
m8 -= fq;
|
|
m9 -= 2.0*fq;
|
|
m10 -= 2.0*fq;
|
|
m14 -= fq;
|
|
m17 += fq;
|
|
m18 += fq;
|
|
|
|
// q=18
|
|
nread = neighborList[n+17*Np];
|
|
fq = dist[nread];
|
|
//fq = dist[9*Np+n];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jy -= fq;
|
|
m6 -= fq;
|
|
jz += fq;
|
|
m8 += fq;
|
|
m9 -= 2.0*fq;
|
|
m10 -= 2.0*fq;
|
|
m14 -= fq;
|
|
m17 -= fq;
|
|
m18 -= fq;
|
|
|
|
//........................................................................
|
|
//..............carry out relaxation process..............................
|
|
//..........Toelke, Fruediger et. al. 2006................................
|
|
if (C == 0.0) nx = ny = nz = 0.0;
|
|
m1 = m1 + rlx_setA*((19*(jx*jx+jy*jy+jz*jz)/rho0 - 11*rho) -19*alpha*C - m1);
|
|
m2 = m2 + rlx_setA*((3*rho - 5.5*(jx*jx+jy*jy+jz*jz)/rho0)- m2);
|
|
m4 = m4 + rlx_setB*((-0.6666666666666666*jx)- m4);
|
|
m6 = m6 + rlx_setB*((-0.6666666666666666*jy)- m6);
|
|
m8 = m8 + rlx_setB*((-0.6666666666666666*jz)- m8);
|
|
m9 = m9 + rlx_setA*(((2*jx*jx-jy*jy-jz*jz)/rho0) + 0.5*alpha*C*(2*nx*nx-ny*ny-nz*nz) - m9);
|
|
m10 = m10 + rlx_setA*( - m10);
|
|
m11 = m11 + rlx_setA*(((jy*jy-jz*jz)/rho0) + 0.5*alpha*C*(ny*ny-nz*nz)- m11);
|
|
m12 = m12 + rlx_setA*( - m12);
|
|
m13 = m13 + rlx_setA*( (jx*jy/rho0) + 0.5*alpha*C*nx*ny - m13);
|
|
m14 = m14 + rlx_setA*( (jy*jz/rho0) + 0.5*alpha*C*ny*nz - m14);
|
|
m15 = m15 + rlx_setA*( (jx*jz/rho0) + 0.5*alpha*C*nx*nz - m15);
|
|
m16 = m16 + rlx_setB*( - m16);
|
|
m17 = m17 + rlx_setB*( - m17);
|
|
m18 = m18 + rlx_setB*( - m18);
|
|
//.................inverse transformation......................................................
|
|
|
|
// q=0
|
|
fq = mrt_V1*rho-mrt_V2*m1+mrt_V3*m2;
|
|
dist[n] = fq;
|
|
|
|
// q = 1
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(jx-m4)+mrt_V6*(m9-m10)+0.16666666*Fx;
|
|
//nread = neighborList[n+Np];
|
|
dist[nr2] = fq;
|
|
|
|
// q=2
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(m4-jx)+mrt_V6*(m9-m10) - 0.16666666*Fx;
|
|
//nread = neighborList[n];
|
|
dist[nr1] = fq;
|
|
|
|
// q = 3
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(jy-m6)+mrt_V7*(m10-m9)+mrt_V8*(m11-m12) + 0.16666666*Fy;
|
|
//nread = neighborList[n+3*Np];
|
|
dist[nr4] = fq;
|
|
|
|
// q = 4
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(m6-jy)+mrt_V7*(m10-m9)+mrt_V8*(m11-m12) - 0.16666666*Fy;
|
|
//nread = neighborList[n+2*Np];
|
|
dist[nr3] = fq;
|
|
|
|
// q = 5
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(jz-m8)+mrt_V7*(m10-m9)+mrt_V8*(m12-m11) + 0.16666666*Fz;
|
|
//nread = neighborList[n+5*Np];
|
|
dist[nr6] = fq;
|
|
|
|
// q = 6
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(m8-jz)+mrt_V7*(m10-m9)+mrt_V8*(m12-m11) - 0.16666666*Fz;
|
|
//nread = neighborList[n+4*Np];
|
|
dist[nr5] = fq;
|
|
|
|
// q = 7
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jx+jy)+0.025*(m4+m6)+
|
|
mrt_V7*m9+mrt_V11*m10+mrt_V8*m11+mrt_V12*m12+0.25*m13+0.125*(m16-m17) + 0.08333333333*(Fx+Fy);
|
|
//nread = neighborList[n+7*Np];
|
|
dist[nr8] = fq;
|
|
|
|
// q = 8
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2-0.1*(jx+jy)-0.025*(m4+m6) +mrt_V7*m9+mrt_V11*m10+mrt_V8*m11
|
|
+mrt_V12*m12+0.25*m13+0.125*(m17-m16) - 0.08333333333*(Fx+Fy);
|
|
//nread = neighborList[n+6*Np];
|
|
dist[nr7] = fq;
|
|
|
|
// q = 9
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jx-jy)+0.025*(m4-m6)+
|
|
mrt_V7*m9+mrt_V11*m10+mrt_V8*m11+mrt_V12*m12-0.25*m13+0.125*(m16+m17) + 0.08333333333*(Fx-Fy);
|
|
//nread = neighborList[n+9*Np];
|
|
dist[nr10] = fq;
|
|
|
|
// q = 10
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jy-jx)+0.025*(m6-m4)+
|
|
mrt_V7*m9+mrt_V11*m10+mrt_V8*m11+mrt_V12*m12-0.25*m13-0.125*(m16+m17)- 0.08333333333*(Fx-Fy);
|
|
//nread = neighborList[n+8*Np];
|
|
dist[nr9] = fq;
|
|
|
|
// q = 11
|
|
fq = mrt_V1*rho+mrt_V9*m1
|
|
+mrt_V10*m2+0.1*(jx+jz)+0.025*(m4+m8)
|
|
+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11
|
|
-mrt_V12*m12+0.25*m15+0.125*(m18-m16) + 0.08333333333*(Fx+Fz);
|
|
//nread = neighborList[n+11*Np];
|
|
dist[nr12] = fq;
|
|
|
|
// q = 12
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2-0.1*(jx+jz)-0.025*(m4+m8)+
|
|
mrt_V7*m9+mrt_V11*m10-mrt_V8*m11-mrt_V12*m12+0.25*m15+0.125*(m16-m18) - 0.08333333333*(Fx+Fz);
|
|
//nread = neighborList[n+10*Np];
|
|
dist[nr11]= fq;
|
|
|
|
// q = 13
|
|
fq = mrt_V1*rho+mrt_V9*m1
|
|
+mrt_V10*m2+0.1*(jx-jz)+0.025*(m4-m8)
|
|
+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11
|
|
-mrt_V12*m12-0.25*m15-0.125*(m16+m18) + 0.08333333333*(Fx-Fz);
|
|
//nread = neighborList[n+13*Np];
|
|
dist[nr14] = fq;
|
|
|
|
// q= 14
|
|
fq = mrt_V1*rho+mrt_V9*m1
|
|
+mrt_V10*m2+0.1*(jz-jx)+0.025*(m8-m4)
|
|
+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11
|
|
-mrt_V12*m12-0.25*m15+0.125*(m16+m18) - 0.08333333333*(Fx-Fz);
|
|
//nread = neighborList[n+12*Np];
|
|
dist[nr13] = fq;
|
|
|
|
|
|
// q = 15
|
|
fq = mrt_V1*rho+mrt_V9*m1
|
|
+mrt_V10*m2+0.1*(jy+jz)+0.025*(m6+m8)
|
|
-mrt_V6*m9-mrt_V7*m10+0.25*m14+0.125*(m17-m18) + 0.08333333333*(Fy+Fz);
|
|
nread = neighborList[n+15*Np];
|
|
dist[nread] = fq;
|
|
|
|
// q = 16
|
|
fq = mrt_V1*rho+mrt_V9*m1
|
|
+mrt_V10*m2-0.1*(jy+jz)-0.025*(m6+m8)
|
|
-mrt_V6*m9-mrt_V7*m10+0.25*m14+0.125*(m18-m17)- 0.08333333333*(Fy+Fz);
|
|
nread = neighborList[n+14*Np];
|
|
dist[nread] = fq;
|
|
|
|
|
|
// q = 17
|
|
fq = mrt_V1*rho+mrt_V9*m1
|
|
+mrt_V10*m2+0.1*(jy-jz)+0.025*(m6-m8)
|
|
-mrt_V6*m9-mrt_V7*m10-0.25*m14+0.125*(m17+m18) + 0.08333333333*(Fy-Fz);
|
|
nread = neighborList[n+17*Np];
|
|
dist[nread] = fq;
|
|
|
|
// q = 18
|
|
fq = mrt_V1*rho+mrt_V9*m1
|
|
+mrt_V10*m2+0.1*(jz-jy)+0.025*(m8-m6)
|
|
-mrt_V6*m9-mrt_V7*m10-0.25*m14-0.125*(m17+m18) - 0.08333333333*(Fy-Fz);
|
|
nread = neighborList[n+16*Np];
|
|
dist[nread] = fq;
|
|
|
|
// write the velocity
|
|
ux = jx / rho0;
|
|
uy = jy / rho0;
|
|
uz = jz / rho0;
|
|
Vel[n] = ux;
|
|
Vel[Np+n] = uy;
|
|
Vel[2*Np+n] = uz;
|
|
|
|
// Instantiate mass transport distributions
|
|
// Stationary value - distribution 0
|
|
nAB = 1.0/(nA+nB);
|
|
Aq[n] = 0.3333333333333333*nA;
|
|
Bq[n] = 0.3333333333333333*nB;
|
|
|
|
//...............................................
|
|
// q = 0,2,4
|
|
// Cq = {1,0,0}, {0,1,0}, {0,0,1}
|
|
delta = beta*nA*nB*nAB*0.1111111111111111*nx;
|
|
if (!(nA*nB*nAB>0)) delta=0;
|
|
a1 = nA*(0.1111111111111111*(1+4.5*ux))+delta;
|
|
b1 = nB*(0.1111111111111111*(1+4.5*ux))-delta;
|
|
a2 = nA*(0.1111111111111111*(1-4.5*ux))-delta;
|
|
b2 = nB*(0.1111111111111111*(1-4.5*ux))+delta;
|
|
|
|
// q = 1
|
|
//nread = neighborList[n+Np];
|
|
Aq[nr2] = a1;
|
|
Bq[nr2] = b1;
|
|
// q=2
|
|
//nread = neighborList[n];
|
|
Aq[nr1] = a2;
|
|
Bq[nr1] = b2;
|
|
|
|
//...............................................
|
|
// Cq = {0,1,0}
|
|
delta = beta*nA*nB*nAB*0.1111111111111111*ny;
|
|
if (!(nA*nB*nAB>0)) delta=0;
|
|
a1 = nA*(0.1111111111111111*(1+4.5*uy))+delta;
|
|
b1 = nB*(0.1111111111111111*(1+4.5*uy))-delta;
|
|
a2 = nA*(0.1111111111111111*(1-4.5*uy))-delta;
|
|
b2 = nB*(0.1111111111111111*(1-4.5*uy))+delta;
|
|
|
|
// q = 3
|
|
//nread = neighborList[n+3*Np];
|
|
Aq[nr4] = a1;
|
|
Bq[nr4] = b1;
|
|
// q = 4
|
|
//nread = neighborList[n+2*Np];
|
|
Aq[nr3] = a2;
|
|
Bq[nr3] = b2;
|
|
|
|
//...............................................
|
|
// q = 4
|
|
// Cq = {0,0,1}
|
|
delta = beta*nA*nB*nAB*0.1111111111111111*nz;
|
|
if (!(nA*nB*nAB>0)) delta=0;
|
|
a1 = nA*(0.1111111111111111*(1+4.5*uz))+delta;
|
|
b1 = nB*(0.1111111111111111*(1+4.5*uz))-delta;
|
|
a2 = nA*(0.1111111111111111*(1-4.5*uz))-delta;
|
|
b2 = nB*(0.1111111111111111*(1-4.5*uz))+delta;
|
|
|
|
// q = 5
|
|
//nread = neighborList[n+5*Np];
|
|
Aq[nr6] = a1;
|
|
Bq[nr6] = b1;
|
|
// q = 6
|
|
//nread = neighborList[n+4*Np];
|
|
Aq[nr5] = a2;
|
|
Bq[nr5] = b2;
|
|
//...............................................
|
|
}
|
|
}
|
|
|
|
|
|
extern "C" void ScaLBL_D3Q7_AAodd_Color(int *neighborList, int *Map, double *Aq, double *Bq, double *Den,
|
|
double *Phi, double *ColorGrad, double *Vel, double rhoA, double rhoB, double beta, int start, int finish, int Np){
|
|
|
|
int nr1,nr2,nr3,nr4,nr5,nr6;
|
|
double nA,nB; // number density
|
|
double a1,b1,a2,b2,nAB,delta;
|
|
double C,nx,ny,nz; //color gradient magnitude and direction
|
|
double ux,uy,uz;
|
|
double phi;
|
|
// Instantiate mass transport distributions
|
|
// Stationary value - distribution 0
|
|
for (int n=start; n<finish; n++){
|
|
/* neighbors */
|
|
nr1 = neighborList[n+0*Np];
|
|
nr2 = neighborList[n+1*Np];
|
|
nr3 = neighborList[n+2*Np];
|
|
nr4 = neighborList[n+3*Np];
|
|
nr5 = neighborList[n+4*Np];
|
|
nr6 = neighborList[n+5*Np];
|
|
|
|
/* load velocity */
|
|
ux = Vel[n];
|
|
uy = Vel[Np+n];
|
|
uz = Vel[2*Np+n];
|
|
|
|
/* load color gradient */
|
|
nx = ColorGrad[n];
|
|
ny = ColorGrad[Np+n];
|
|
nz = ColorGrad[2*Np+n];
|
|
C = sqrt(nx*nx+ny*ny+nz*nz);
|
|
double ColorMag = C;
|
|
if (C==0.0) ColorMag=1.0;
|
|
nx = nx/ColorMag;
|
|
ny = ny/ColorMag;
|
|
nz = nz/ColorMag;
|
|
|
|
// read the component number densities
|
|
nA = Den[n];
|
|
nB = Den[Np + n];
|
|
|
|
// compute phase indicator field
|
|
phi=(nA-nB)/(nA+nB);
|
|
nAB = 1.0/(nA+nB);
|
|
Aq[n] = 0.3333333333333333*nA;
|
|
Bq[n] = 0.3333333333333333*nB;
|
|
|
|
//...............................................
|
|
// q = 0,2,4
|
|
// Cq = {1,0,0}, {0,1,0}, {0,0,1}
|
|
delta = beta*nA*nB*nAB*0.1111111111111111*nx;
|
|
if (!(nA*nB*nAB>0)) delta=0;
|
|
a1 = nA*(0.1111111111111111*(1+4.5*ux))+delta;
|
|
b1 = nB*(0.1111111111111111*(1+4.5*ux))-delta;
|
|
a2 = nA*(0.1111111111111111*(1-4.5*ux))-delta;
|
|
b2 = nB*(0.1111111111111111*(1-4.5*ux))+delta;
|
|
|
|
// q = 1
|
|
//nread = neighborList[n+Np];
|
|
Aq[nr2] = a1;
|
|
Bq[nr2] = b1;
|
|
// q=2
|
|
//nread = neighborList[n];
|
|
Aq[nr1] = a2;
|
|
Bq[nr1] = b2;
|
|
|
|
//...............................................
|
|
// Cq = {0,1,0}
|
|
delta = beta*nA*nB*nAB*0.1111111111111111*ny;
|
|
if (!(nA*nB*nAB>0)) delta=0;
|
|
a1 = nA*(0.1111111111111111*(1+4.5*uy))+delta;
|
|
b1 = nB*(0.1111111111111111*(1+4.5*uy))-delta;
|
|
a2 = nA*(0.1111111111111111*(1-4.5*uy))-delta;
|
|
b2 = nB*(0.1111111111111111*(1-4.5*uy))+delta;
|
|
|
|
// q = 3
|
|
//nread = neighborList[n+3*Np];
|
|
Aq[nr4] = a1;
|
|
Bq[nr4] = b1;
|
|
// q = 4
|
|
//nread = neighborList[n+2*Np];
|
|
Aq[nr3] = a2;
|
|
Bq[nr3] = b2;
|
|
|
|
//...............................................
|
|
// q = 4
|
|
// Cq = {0,0,1}
|
|
delta = beta*nA*nB*nAB*0.1111111111111111*nz;
|
|
if (!(nA*nB*nAB>0)) delta=0;
|
|
a1 = nA*(0.1111111111111111*(1+4.5*uz))+delta;
|
|
b1 = nB*(0.1111111111111111*(1+4.5*uz))-delta;
|
|
a2 = nA*(0.1111111111111111*(1-4.5*uz))-delta;
|
|
b2 = nB*(0.1111111111111111*(1-4.5*uz))+delta;
|
|
|
|
// q = 5
|
|
//nread = neighborList[n+5*Np];
|
|
Aq[nr6] = a1;
|
|
Bq[nr6] = b1;
|
|
// q = 6
|
|
//nread = neighborList[n+4*Np];
|
|
Aq[nr5] = a2;
|
|
Bq[nr5] = b2;
|
|
//...............................................
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_D3Q7_AAeven_Color(int *Map, double *Aq, double *Bq, double *Den,
|
|
double *Phi, double *ColorGrad, double *Vel, double rhoA, double rhoB, double beta, int start, int finish, int Np){
|
|
|
|
double nA,nB; // number density
|
|
double a1,b1,a2,b2,nAB,delta;
|
|
double C,nx,ny,nz; //color gradient magnitude and direction
|
|
double ux,uy,uz;
|
|
double phi;
|
|
// Instantiate mass transport distributions
|
|
// Stationary value - distribution 0
|
|
for (int n=start; n<finish; n++){
|
|
/* load velocity */
|
|
ux = Vel[n];
|
|
uy = Vel[Np+n];
|
|
uz = Vel[2*Np+n];
|
|
|
|
/* load color gradient */
|
|
nx = ColorGrad[n];
|
|
ny = ColorGrad[Np+n];
|
|
nz = ColorGrad[2*Np+n];
|
|
C = sqrt(nx*nx+ny*ny+nz*nz);
|
|
double ColorMag = C;
|
|
if (C==0.0) ColorMag=1.0;
|
|
nx = nx/ColorMag;
|
|
ny = ny/ColorMag;
|
|
nz = nz/ColorMag;
|
|
|
|
// read the component number densities
|
|
nA = Den[n];
|
|
nB = Den[Np + n];
|
|
|
|
nAB = 1.0/(nA+nB);
|
|
Aq[n] = 0.3333333333333333*nA;
|
|
Bq[n] = 0.3333333333333333*nB;
|
|
|
|
//...............................................
|
|
// q = 0,2,4
|
|
// Cq = {1,0,0}, {0,1,0}, {0,0,1}
|
|
delta = beta*nA*nB*nAB*0.1111111111111111*nx;
|
|
if (!(nA*nB*nAB>0)) delta=0;
|
|
a1 = nA*(0.1111111111111111*(1+4.5*ux))+delta;
|
|
b1 = nB*(0.1111111111111111*(1+4.5*ux))-delta;
|
|
a2 = nA*(0.1111111111111111*(1-4.5*ux))-delta;
|
|
b2 = nB*(0.1111111111111111*(1-4.5*ux))+delta;
|
|
|
|
Aq[1*Np+n] = a1;
|
|
Bq[1*Np+n] = b1;
|
|
Aq[2*Np+n] = a2;
|
|
Bq[2*Np+n] = b2;
|
|
|
|
//...............................................
|
|
// q = 2
|
|
// Cq = {0,1,0}
|
|
delta = beta*nA*nB*nAB*0.1111111111111111*ny;
|
|
if (!(nA*nB*nAB>0)) delta=0;
|
|
a1 = nA*(0.1111111111111111*(1+4.5*uy))+delta;
|
|
b1 = nB*(0.1111111111111111*(1+4.5*uy))-delta;
|
|
a2 = nA*(0.1111111111111111*(1-4.5*uy))-delta;
|
|
b2 = nB*(0.1111111111111111*(1-4.5*uy))+delta;
|
|
|
|
Aq[3*Np+n] = a1;
|
|
Bq[3*Np+n] = b1;
|
|
Aq[4*Np+n] = a2;
|
|
Bq[4*Np+n] = b2;
|
|
//...............................................
|
|
// q = 4
|
|
// Cq = {0,0,1}
|
|
delta = beta*nA*nB*nAB*0.1111111111111111*nz;
|
|
if (!(nA*nB*nAB>0)) delta=0;
|
|
a1 = nA*(0.1111111111111111*(1+4.5*uz))+delta;
|
|
b1 = nB*(0.1111111111111111*(1+4.5*uz))-delta;
|
|
a2 = nA*(0.1111111111111111*(1-4.5*uz))-delta;
|
|
b2 = nB*(0.1111111111111111*(1-4.5*uz))+delta;
|
|
|
|
Aq[5*Np+n] = a1;
|
|
Bq[5*Np+n] = b1;
|
|
Aq[6*Np+n] = a2;
|
|
Bq[6*Np+n] = b2;
|
|
//...............................................
|
|
|
|
}
|
|
}
|
|
|
|
|
|
extern "C" void ScaLBL_D3Q7_AAodd_PhaseField(int *neighborList, int *Map, double *Aq, double *Bq,
|
|
double *Den, double *Phi, int start, int finish, int Np){
|
|
|
|
int idx,nread;
|
|
double fq,nA,nB;
|
|
|
|
for (int n=start; n<finish; n++){
|
|
|
|
//..........Compute the number density for component A............
|
|
// q=0
|
|
fq = Aq[n];
|
|
nA = fq;
|
|
|
|
// q=1
|
|
nread = neighborList[n];
|
|
fq = Aq[nread];
|
|
nA += fq;
|
|
|
|
// q=2
|
|
nread = neighborList[n+Np];
|
|
fq = Aq[nread];
|
|
nA += fq;
|
|
|
|
// q=3
|
|
nread = neighborList[n+2*Np];
|
|
fq = Aq[nread];
|
|
nA += fq;
|
|
|
|
// q = 4
|
|
nread = neighborList[n+3*Np];
|
|
fq = Aq[nread];
|
|
nA += fq;
|
|
|
|
// q=5
|
|
nread = neighborList[n+4*Np];
|
|
fq = Aq[nread];
|
|
nA += fq;
|
|
|
|
// q = 6
|
|
nread = neighborList[n+5*Np];
|
|
fq = Aq[nread];
|
|
nA += fq;
|
|
|
|
//..........Compute the number density for component B............
|
|
// q=0
|
|
fq = Bq[n];
|
|
nB = fq;
|
|
|
|
// q=1
|
|
nread = neighborList[n];
|
|
fq = Bq[nread];
|
|
nB += fq;
|
|
|
|
// q=2
|
|
nread = neighborList[n+Np];
|
|
fq = Bq[nread];
|
|
nB += fq;
|
|
|
|
// q=3
|
|
nread = neighborList[n+2*Np];
|
|
fq = Bq[nread];
|
|
nB += fq;
|
|
|
|
// q = 4
|
|
nread = neighborList[n+3*Np];
|
|
fq = Bq[nread];
|
|
nB += fq;
|
|
|
|
// q=5
|
|
nread = neighborList[n+4*Np];
|
|
fq = Bq[nread];
|
|
nB += fq;
|
|
|
|
// q = 6
|
|
nread = neighborList[n+5*Np];
|
|
fq = Bq[nread];
|
|
nB += fq;
|
|
|
|
// save the number densities
|
|
Den[n] = nA;
|
|
Den[Np+n] = nB;
|
|
|
|
// save the phase indicator field
|
|
idx = Map[n];
|
|
Phi[idx] = (nA-nB)/(nA+nB);
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_D3Q7_AAeven_PhaseField(int *Map, double *Aq, double *Bq, double *Den, double *Phi,
|
|
int start, int finish, int Np){
|
|
int idx,nread;
|
|
double fq,nA,nB;
|
|
for (int n=start; n<finish; n++){
|
|
|
|
// compute number density for component A
|
|
// q=0
|
|
fq = Aq[n];
|
|
nA = fq;
|
|
|
|
// q=1
|
|
fq = Aq[2*Np+n];
|
|
nA += fq;
|
|
|
|
// f2 = Aq[10*Np+n];
|
|
fq = Aq[1*Np+n];
|
|
nA += fq;
|
|
|
|
// q=3
|
|
fq = Aq[4*Np+n];
|
|
nA += fq;
|
|
|
|
// q = 4
|
|
fq = Aq[3*Np+n];
|
|
nA += fq;
|
|
|
|
// q=5
|
|
fq = Aq[6*Np+n];
|
|
nA += fq;
|
|
|
|
// q = 6
|
|
fq = Aq[5*Np+n];
|
|
nA += fq;
|
|
|
|
// compute number density for component B
|
|
// q=0
|
|
fq = Bq[n];
|
|
nB = fq;
|
|
|
|
// q=1
|
|
fq = Bq[2*Np+n];
|
|
nB += fq;
|
|
|
|
// f2 = Bq[10*Np+n];
|
|
fq = Bq[1*Np+n];
|
|
nB += fq;
|
|
|
|
// q=3
|
|
fq = Bq[4*Np+n];
|
|
nB += fq;
|
|
|
|
// q = 4
|
|
fq = Bq[3*Np+n];
|
|
nB += fq;
|
|
|
|
// q=5
|
|
fq = Bq[6*Np+n];
|
|
nB += fq;
|
|
|
|
// q = 6
|
|
fq = Bq[5*Np+n];
|
|
nB += fq;
|
|
|
|
// save the number densities
|
|
Den[n] = nA;
|
|
Den[Np+n] = nB;
|
|
|
|
// save the phase indicator field
|
|
idx = Map[n];
|
|
Phi[idx] = (nA-nB)/(nA+nB);
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_D3Q19_Gradient(int *Map, double *phi, double *ColorGrad, int start, int finish, int Np, int Nx, int Ny, int Nz){
|
|
int idx,n,N,i,j,k,nn;
|
|
// distributions
|
|
double f1,f2,f3,f4,f5,f6,f7,f8,f9;
|
|
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
|
double nx,ny,nz;
|
|
|
|
for (idx=0; idx<Np; idx++){
|
|
|
|
// Get the 1D index based on regular data layout
|
|
n = Map[idx];
|
|
|
|
//.......Back out the 3D indices for node n..............
|
|
k = n/(Nx*Ny);
|
|
j = (n-Nx*Ny*k)/Nx;
|
|
i = n-Nx*Ny*k-Nx*j;
|
|
//........................................................................
|
|
//........Get 1-D index for this thread....................
|
|
// n = S*blockIdx.x*blockDim.x + s*blockDim.x + threadIdx.x;
|
|
//........................................................................
|
|
// COMPUTE THE COLOR GRADIENT
|
|
//........................................................................
|
|
//.................Read Phase Indicator Values............................
|
|
//........................................................................
|
|
nn = n-1; // neighbor index (get convention)
|
|
if (i-1<0) nn += Nx; // periodic BC along the x-boundary
|
|
f1 = phi[nn]; // get neighbor for phi - 1
|
|
//........................................................................
|
|
nn = n+1; // neighbor index (get convention)
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
f2 = phi[nn]; // get neighbor for phi - 2
|
|
//........................................................................
|
|
nn = n-Nx; // neighbor index (get convention)
|
|
if (j-1<0) nn += Nx*Ny; // Perioidic BC along the y-boundary
|
|
f3 = phi[nn]; // get neighbor for phi - 3
|
|
//........................................................................
|
|
nn = n+Nx; // neighbor index (get convention)
|
|
if (!(j+1<Ny)) nn -= Nx*Ny; // Perioidic BC along the y-boundary
|
|
f4 = phi[nn]; // get neighbor for phi - 4
|
|
//........................................................................
|
|
nn = n-Nx*Ny; // neighbor index (get convention)
|
|
if (k-1<0) nn += Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f5 = phi[nn]; // get neighbor for phi - 5
|
|
//........................................................................
|
|
nn = n+Nx*Ny; // neighbor index (get convention)
|
|
if (!(k+1<Nz)) nn -= Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f6 = phi[nn]; // get neighbor for phi - 6
|
|
//........................................................................
|
|
nn = n-Nx-1; // neighbor index (get convention)
|
|
if (i-1<0) nn += Nx; // periodic BC along the x-boundary
|
|
if (j-1<0) nn += Nx*Ny; // Perioidic BC along the y-boundary
|
|
f7 = phi[nn]; // get neighbor for phi - 7
|
|
//........................................................................
|
|
nn = n+Nx+1; // neighbor index (get convention)
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
if (!(j+1<Ny)) nn -= Nx*Ny; // Perioidic BC along the y-boundary
|
|
f8 = phi[nn]; // get neighbor for phi - 8
|
|
//........................................................................
|
|
nn = n+Nx-1; // neighbor index (get convention)
|
|
if (i-1<0) nn += Nx; // periodic BC along the x-boundary
|
|
if (!(j+1<Ny)) nn -= Nx*Ny; // Perioidic BC along the y-boundary
|
|
f9 = phi[nn]; // get neighbor for phi - 9
|
|
//........................................................................
|
|
nn = n-Nx+1; // neighbor index (get convention)
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
if (j-1<0) nn += Nx*Ny; // Perioidic BC along the y-boundary
|
|
f10 = phi[nn]; // get neighbor for phi - 10
|
|
//........................................................................
|
|
nn = n-Nx*Ny-1; // neighbor index (get convention)
|
|
if (i-1<0) nn += Nx; // periodic BC along the x-boundary
|
|
if (k-1<0) nn += Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f11 = phi[nn]; // get neighbor for phi - 11
|
|
//........................................................................
|
|
nn = n+Nx*Ny+1; // neighbor index (get convention)
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
if (!(k+1<Nz)) nn -= Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f12 = phi[nn]; // get neighbor for phi - 12
|
|
//........................................................................
|
|
nn = n+Nx*Ny-1; // neighbor index (get convention)
|
|
if (i-1<0) nn += Nx; // periodic BC along the x-boundary
|
|
if (!(k+1<Nz)) nn -= Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f13 = phi[nn]; // get neighbor for phi - 13
|
|
//........................................................................
|
|
nn = n-Nx*Ny+1; // neighbor index (get convention)
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
if (k-1<0) nn += Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f14 = phi[nn]; // get neighbor for phi - 14
|
|
//........................................................................
|
|
nn = n-Nx*Ny-Nx; // neighbor index (get convention)
|
|
if (j-1<0) nn += Nx*Ny; // Perioidic BC along the y-boundary
|
|
if (k-1<0) nn += Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f15 = phi[nn]; // get neighbor for phi - 15
|
|
//........................................................................
|
|
nn = n+Nx*Ny+Nx; // neighbor index (get convention)
|
|
if (!(j+1<Ny)) nn -= Nx*Ny; // Perioidic BC along the y-boundary
|
|
if (!(k+1<Nz)) nn -= Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f16 = phi[nn]; // get neighbor for phi - 16
|
|
//........................................................................
|
|
nn = n+Nx*Ny-Nx; // neighbor index (get convention)
|
|
if (j-1<0) nn += Nx*Ny; // Perioidic BC along the y-boundary
|
|
if (!(k+1<Nz)) nn -= Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f17 = phi[nn]; // get neighbor for phi - 17
|
|
//........................................................................
|
|
nn = n-Nx*Ny+Nx; // neighbor index (get convention)
|
|
if (!(j+1<Ny)) nn -= Nx*Ny; // Perioidic BC along the y-boundary
|
|
if (k-1<0) nn += Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f18 = phi[nn]; // get neighbor for phi - 18
|
|
//............Compute the Color Gradient...................................
|
|
nx = -(f1-f2+0.5*(f7-f8+f9-f10+f11-f12+f13-f14));
|
|
ny = -(f3-f4+0.5*(f7-f8-f9+f10+f15-f16+f17-f18));
|
|
nz = -(f5-f6+0.5*(f11-f12-f13+f14+f15-f16-f17+f18));
|
|
//...............................................
|
|
//...Store the Color Gradient....................
|
|
ColorGrad[idx] = nx;
|
|
ColorGrad[Np+idx] = ny;
|
|
ColorGrad[2*Np+idx] = nz;
|
|
//...............................................
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_PhaseField_Init(int *Map, double *Phi, double *Den, double *Aq, double *Bq, int start, int finish, int Np){
|
|
int idx,n;
|
|
double phi,nA,nB;
|
|
|
|
for (idx=start; idx<finish; idx++){
|
|
|
|
n = Map[idx];
|
|
phi = Phi[n];
|
|
if (phi > 1.f){
|
|
nA = 1.0; nB = 0.f;
|
|
}
|
|
else if (phi < -1.f){
|
|
nB = 1.0; nA = 0.f;
|
|
}
|
|
else{
|
|
nA=0.5*(phi+1.f);
|
|
nB=0.5*(1.f-phi);
|
|
}
|
|
Den[idx] = nA;
|
|
Den[Np+idx] = nB;
|
|
|
|
Aq[idx]=0.3333333333333333*nA;
|
|
Aq[Np+idx]=0.1111111111111111*nA;
|
|
Aq[2*Np+idx]=0.1111111111111111*nA;
|
|
Aq[3*Np+idx]=0.1111111111111111*nA;
|
|
Aq[4*Np+idx]=0.1111111111111111*nA;
|
|
Aq[5*Np+idx]=0.1111111111111111*nA;
|
|
Aq[6*Np+idx]=0.1111111111111111*nA;
|
|
|
|
Bq[idx]=0.3333333333333333*nB;
|
|
Bq[Np+idx]=0.1111111111111111*nB;
|
|
Bq[2*Np+idx]=0.1111111111111111*nB;
|
|
Bq[3*Np+idx]=0.1111111111111111*nB;
|
|
Bq[4*Np+idx]=0.1111111111111111*nB;
|
|
Bq[5*Np+idx]=0.1111111111111111*nB;
|
|
Bq[6*Np+idx]=0.1111111111111111*nB;
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_CopySlice_z(double *Phi, int Nx, int Ny, int Nz, int Source, int Dest){
|
|
int n; double value;
|
|
for (n=0; n<Nx*Ny; n++){
|
|
value = Phi[Source*Nx*Ny+n];
|
|
Phi[Dest*Nx*Ny+n] = value;
|
|
}
|
|
}
|
|
|