Files
LBPM/models/DFHModel.cpp
Thomas Ramstad 23189f5577 Clang format (#55)
Run clang-format on modules of code
2021-11-08 22:58:37 +01:00

690 lines
26 KiB
C++

/*
color lattice boltzmann model
*/
#include "models/DFHModel.h"
ScaLBL_DFHModel::ScaLBL_DFHModel(int RANK, int NP, const Utilities::MPI &COMM)
: rank(RANK), nprocs(NP), Restart(0), timestep(0), timestepMax(0), tauA(0),
tauB(0), rhoA(0), rhoB(0), alpha(0), beta(0), Fx(0), Fy(0), Fz(0),
flux(0), din(0), dout(0), inletA(0), inletB(0), outletA(0), outletB(0),
Nx(0), Ny(0), Nz(0), N(0), Np(0), nprocx(0), nprocy(0), nprocz(0),
BoundaryCondition(0), Lx(0), Ly(0), Lz(0), comm(COMM) {}
ScaLBL_DFHModel::~ScaLBL_DFHModel() {}
/*void ScaLBL_DFHModel::WriteCheckpoint(const char *FILENAME, const double *cPhi, const double *cfq, int Np)
{
int q,n;
double value;
ofstream File(FILENAME,ios::binary);
for (n=0; n<Np; n++){
// Write the two density values
value = cPhi[n];
File.write((char*) &value, sizeof(value));
// Write the even distributions
for (q=0; q<19; q++){
value = cfq[q*Np+n];
File.write((char*) &value, sizeof(value));
}
}
File.close();
}
void ScaLBL_DFHModel::ReadCheckpoint(char *FILENAME, double *cPhi, double *cfq, int Np)
{
int q=0, n=0;
double value=0;
ifstream File(FILENAME,ios::binary);
for (n=0; n<Np; n++){
File.read((char*) &value, sizeof(value));
cPhi[n] = value;
// Read the distributions
for (q=0; q<19; q++){
File.read((char*) &value, sizeof(value));
cfq[q*Np+n] = value;
}
}
File.close();
}
*/
void ScaLBL_DFHModel::ReadParams(string filename) {
// read the input database
db = std::make_shared<Database>(filename);
domain_db = db->getDatabase("Domain");
color_db = db->getDatabase("Color");
analysis_db = db->getDatabase("Analysis");
// Color Model parameters
timestepMax = color_db->getWithDefault<int>("timestepMax", 100);
tauA = color_db->getWithDefault<double>("tauA", 1.0);
tauB = color_db->getWithDefault<double>("tauB", 1.0);
rhoA = color_db->getWithDefault<double>("rhoA", 1.0);
rhoB = color_db->getWithDefault<double>("rhoB", 1.0);
alpha = color_db->getWithDefault<double>("alpha", 0.001);
beta = color_db->getWithDefault<double>("beta", 0.95);
Restart = color_db->getWithDefault<bool>("Restart", true);
din = color_db->getWithDefault<double>("din", 1.0);
dout = color_db->getWithDefault<double>("dout", 1.0);
flux = color_db->getWithDefault<double>("flux", 0.0);
if (color_db->keyExists("F")) {
Fx = color_db->getVector<double>("F")[0];
Fy = color_db->getVector<double>("F")[1];
Fz = color_db->getVector<double>("F")[2];
}
inletA = 1.f;
inletB = 0.f;
outletA = 0.f;
outletB = 1.f;
BoundaryCondition = domain_db->getScalar<int>("BC");
if (color_db->keyExists("BC")) {
BoundaryCondition = color_db->getScalar<int>("BC");
} else if (domain_db->keyExists("BC")) {
BoundaryCondition = domain_db->getScalar<int>("BC");
}
// Read domain parameters
auto L = domain_db->getVector<double>("L");
auto size = domain_db->getVector<int>("n");
auto nproc = domain_db->getVector<int>("nproc");
Nx = size[0];
Ny = size[1];
Nz = size[2];
Lx = L[0];
Ly = L[1];
Lz = L[2];
nprocx = nproc[0];
nprocy = nproc[1];
nprocz = nproc[2];
if (BoundaryCondition == 4)
flux =
din *
rhoA; // mass flux must adjust for density (see formulation for details)
}
void ScaLBL_DFHModel::SetDomain() {
Dm = std::shared_ptr<Domain>(
new Domain(domain_db, comm)); // full domain for analysis
Mask = std::shared_ptr<Domain>(
new Domain(domain_db, comm)); // mask domain removes immobile phases
Nx += 2;
Ny += 2;
Nz += 2;
N = Nx * Ny * Nz;
id = new char[N];
for (int i = 0; i < Nx * Ny * Nz; i++)
Dm->id[i] = 1; // initialize this way
Averages =
std::shared_ptr<TwoPhase>(new TwoPhase(Dm)); // TwoPhase analysis object
comm.barrier();
Dm->CommInit();
comm.barrier();
rank = Dm->rank();
}
void ScaLBL_DFHModel::ReadInput() {
//.......................................................................
if (rank == 0)
printf("Read input media... \n");
//.......................................................................
Mask->ReadIDs();
for (int i = 0; i < Nx * Ny * Nz; i++)
id[i] = Mask->id[i]; // save what was read
sprintf(LocalRankString, "%05d", rank);
sprintf(LocalRankFilename, "%s%s", "ID.", LocalRankString);
sprintf(LocalRestartFile, "%s%s", "Restart.", LocalRankString);
// .......... READ THE INPUT FILE .......................................
//...........................................................................
if (rank == 0)
cout << "Reading in signed distance function..." << endl;
//.......................................................................
sprintf(LocalRankString, "%05d", rank);
sprintf(LocalRankFilename, "%s%s", "SignDist.", LocalRankString);
ReadBinaryFile(LocalRankFilename, Averages->SDs.data(), N);
comm.barrier();
if (rank == 0)
cout << "Domain set." << endl;
}
void ScaLBL_DFHModel::AssignComponentLabels(double *phase) {
size_t NLABELS = 0;
char VALUE = 0;
double AFFINITY = 0.f;
auto LabelList = color_db->getVector<char>("ComponentLabels");
auto AffinityList = color_db->getVector<double>("ComponentAffinity");
NLABELS = LabelList.size();
if (NLABELS != AffinityList.size()) {
ERROR("Error: ComponentLabels and ComponentAffinity must be the same "
"length! \n");
}
if (rank == 0) {
printf("Components labels: %lu \n", NLABELS);
for (unsigned int idx = 0; idx < NLABELS; idx++) {
VALUE = LabelList[idx];
AFFINITY = AffinityList[idx];
printf(" label=%i, affinity=%f\n", int(VALUE), AFFINITY);
}
}
// Assign the labels
for (int k = 0; k < Nz; k++) {
for (int j = 0; j < Ny; j++) {
for (int i = 0; i < Nx; i++) {
int n = k * Nx * Ny + j * Nx + i;
VALUE = id[n];
// Assign the affinity from the paired list
for (unsigned int idx = 0; idx < NLABELS; idx++) {
//printf("rank=%i, idx=%i, value=%i, %i, \n",rank(),idx, VALUE,LabelList[idx]);
if (VALUE == LabelList[idx]) {
AFFINITY = AffinityList[idx];
idx = NLABELS;
Mask->id[n] =
0; // set mask to zero since this is an immobile component
}
}
phase[n] = AFFINITY;
}
}
}
// Set Dm to match Mask
for (int i = 0; i < Nx * Ny * Nz; i++)
Dm->id[i] = Mask->id[i];
}
void ScaLBL_DFHModel::Create() {
/*
* This function creates the variables needed to run a LBM
*/
//.........................................................
// don't perform computations at the eight corners
//id[0] = id[Nx-1] = id[(Ny-1)*Nx] = id[(Ny-1)*Nx + Nx-1] = 0;
//id[(Nz-1)*Nx*Ny] = id[(Nz-1)*Nx*Ny+Nx-1] = id[(Nz-1)*Nx*Ny+(Ny-1)*Nx] = id[(Nz-1)*Nx*Ny+(Ny-1)*Nx + Nx-1] = 0;
//.........................................................
// Initialize communication structures in averaging domain
for (int i = 0; i < Nx * Ny * Nz; i++)
Dm->id[i] = Mask->id[i];
Mask->CommInit();
Np = Mask->PoreCount();
//...........................................................................
if (rank == 0)
printf("Create ScaLBL_Communicator \n");
// Create a communicator for the device (will use optimized layout)
// ScaLBL_Communicator ScaLBL_Comm(Mask); // original
ScaLBL_Comm =
std::shared_ptr<ScaLBL_Communicator>(new ScaLBL_Communicator(Mask));
int Npad = (Np / 16 + 2) * 16;
if (rank == 0)
printf("Set up memory efficient layout, %i | %i | %i \n", Np, Npad, N);
Map.resize(Nx, Ny, Nz);
Map.fill(-2);
auto neighborList = new int[18 * Npad];
Np = ScaLBL_Comm->MemoryOptimizedLayoutAA(Map, neighborList,
Mask->id.data(), Np, 1);
ScaLBL_Comm->Barrier();
//...........................................................................
// MAIN VARIABLES ALLOCATED HERE
//...........................................................................
// LBM variables
if (rank == 0)
printf("Allocating distributions \n");
//......................device distributions.................................
dist_mem_size = Np * sizeof(double);
neighborSize = 18 * (Np * sizeof(int));
//...........................................................................
ScaLBL_AllocateDeviceMemory((void **)&NeighborList, neighborSize);
ScaLBL_AllocateDeviceMemory((void **)&dvcMap, sizeof(int) * Np);
ScaLBL_AllocateDeviceMemory((void **)&fq, 19 * dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **)&Aq, 7 * dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **)&Bq, 7 * dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **)&Den, 2 * dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **)&Phi, sizeof(double) * Np);
ScaLBL_AllocateDeviceMemory((void **)&Pressure, sizeof(double) * Np);
ScaLBL_AllocateDeviceMemory((void **)&Velocity, 3 * sizeof(double) * Np);
ScaLBL_AllocateDeviceMemory((void **)&Gradient, 3 * sizeof(double) * Np);
ScaLBL_AllocateDeviceMemory((void **)&SolidPotential,
3 * sizeof(double) * Np);
//...........................................................................
// Update GPU data structures
if (rank == 0)
printf("Setting up device map and neighbor list \n");
// copy the neighbor list
ScaLBL_CopyToDevice(NeighborList, neighborList, neighborSize);
int *TmpMap;
TmpMap = new int[Np];
for (int k = 1; k < Nz - 1; k++) {
for (int j = 1; j < Ny - 1; j++) {
for (int i = 1; i < Nx - 1; i++) {
int idx = Map(i, j, k);
if (!(idx < 0))
TmpMap[idx] = k * Nx * Ny + j * Nx + i;
}
}
}
ScaLBL_CopyToDevice(dvcMap, TmpMap, sizeof(int) * Np);
ScaLBL_DeviceBarrier();
delete[] TmpMap;
}
/********************************************************
* AssignComponentLabels *
********************************************************/
void ScaLBL_DFHModel::AssignSolidPotential() {
if (rank == 0)
printf("Computing solid interaction potential (Shan-Chen type) \n");
double *PhaseLabel;
PhaseLabel = new double[Nx * Ny * Nz];
AssignComponentLabels(PhaseLabel);
double *Tmp;
Tmp = new double[3 * Np];
//Averages->UpdateMeshValues(); // this computes the gradient of distance field (among other things)
// Create the distance stencil
// Compute solid forces based on mean field approximation
double *Dst;
Dst = new double[3 * 3 * 3];
for (int kk = 0; kk < 3; kk++) {
for (int jj = 0; jj < 3; jj++) {
for (int ii = 0; ii < 3; ii++) {
int index = kk * 9 + jj * 3 + ii;
Dst[index] = sqrt(double(ii - 1) * double(ii - 1) +
double(jj - 1) * double(jj - 1) +
double(kk - 1) * double(kk - 1));
}
}
}
double w_face = 1.0; //1.f/18.f;
double w_edge = 0.5; //1.f/36.f;
double w_corner = 0.f;
//local
Dst[13] = 0.f;
//faces
Dst[4] = w_face;
Dst[10] = w_face;
Dst[12] = w_face;
Dst[14] = w_face;
Dst[16] = w_face;
Dst[22] = w_face;
// corners
Dst[0] = w_corner;
Dst[2] = w_corner;
Dst[6] = w_corner;
Dst[8] = w_corner;
Dst[18] = w_corner;
Dst[20] = w_corner;
Dst[24] = w_corner;
Dst[26] = w_corner;
// edges
Dst[1] = w_edge;
Dst[3] = w_edge;
Dst[5] = w_edge;
Dst[7] = w_edge;
Dst[9] = w_edge;
Dst[11] = w_edge;
Dst[15] = w_edge;
Dst[17] = w_edge;
Dst[19] = w_edge;
Dst[21] = w_edge;
Dst[23] = w_edge;
Dst[25] = w_edge;
for (int k = 1; k < Nz - 1; k++) {
for (int j = 1; j < Ny - 1; j++) {
for (int i = 1; i < Nx - 1; i++) {
int idx = Map(i, j, k);
if (!(idx < 0)) {
double phi_x = 0.f;
double phi_y = 0.f;
double phi_z = 0.f;
for (int kk = 0; kk < 3; kk++) {
for (int jj = 0; jj < 3; jj++) {
for (int ii = 0; ii < 3; ii++) {
int index = kk * 9 + jj * 3 + ii;
double weight = Dst[index];
int idi = i + ii - 1;
int idj = j + jj - 1;
int idk = k + kk - 1;
if (idi < 0)
idi = 0;
if (idj < 0)
idj = 0;
if (idk < 0)
idk = 0;
if (!(idi < Nx))
idi = Nx - 1;
if (!(idj < Ny))
idj = Ny - 1;
if (!(idk < Nz))
idk = Nz - 1;
int nn = idk * Nx * Ny + idj * Nx + idi;
if (!(Mask->id[nn] > 0)) {
double vec_x = double(ii - 1);
double vec_y = double(jj - 1);
double vec_z = double(kk - 1);
double GWNS = PhaseLabel[nn];
phi_x += GWNS * weight * vec_x;
phi_y += GWNS * weight * vec_y;
phi_z += GWNS * weight * vec_z;
/*
double GAMMA=-2.f;
if (distval > 2.f) ALPHA=0.f; // symmetric cutoff distance
phi_x += ALPHA*exp(GAMMA*distval)*vec_x/distval;
phi_y += ALPHA*exp(GAMMA*distval)*vec_y/distval;
phi_z += ALPHA*exp(GAMMA*distval)*vec_z/distval;
*/
}
}
}
}
Tmp[idx] = phi_x;
Tmp[idx + Np] = phi_y;
Tmp[idx + 2 * Np] = phi_z;
/* double d = Averages->SDs(n);
double dx = Averages->SDs_x(n);
double dy = Averages->SDs_y(n);
double dz = Averages->SDs_z(n);
double value=cns*exp(-bns*fabs(d))-cws*exp(-bns*fabs(d));
Tmp[idx] = value*dx;
Tmp[idx+Np] = value*dy;
Tmp[idx+2*Np] = value*dz;
*/
}
}
}
}
ScaLBL_CopyToDevice(SolidPotential, Tmp, 3 * sizeof(double) * Np);
ScaLBL_DeviceBarrier();
delete[] Tmp;
delete[] Dst;
/*
DoubleArray Psx(Nx,Ny,Nz);
DoubleArray Psy(Nx,Ny,Nz);
DoubleArray Psz(Nx,Ny,Nz);
DoubleArray Psnorm(Nx,Ny,Nz);
ScaLBL_Comm->RegularLayout(Map,&SolidPotential[0],Psx);
ScaLBL_Comm->RegularLayout(Map,&SolidPotential[Np],Psy);
ScaLBL_Comm->RegularLayout(Map,&SolidPotential[2*Np],Psz);
for (int n=0; n<N; n++) Psnorm(n) = Psx(n)*Psx(n)+Psy(n)*Psy(n)+Psz(n)*Psz(n);
FILE *PFILE;
sprintf(LocalRankFilename,"Potential.%05i.raw",rank);
PFILE = fopen(LocalRankFilename,"wb");
fwrite(Psnorm.data(),8,N,PFILE);
fclose(PFILE);
*/
}
void ScaLBL_DFHModel::Initialize() {
/*
* This function initializes model
*/
AssignSolidPotential();
int rank = Dm->rank();
double count_wet = 0.f;
double count_wet_global;
double *PhaseLabel;
PhaseLabel = new double[Nx * Ny * Nz];
for (int k = 1; k < Nz - 1; k++) {
for (int j = 1; j < Ny - 1; j++) {
for (int i = 1; i < Nx - 1; i++) {
int idx = Map(i, j, k);
int n = k * Nx * Ny + j * Nx + i;
if (!(idx < 0)) {
if (Mask->id[n] == 1)
PhaseLabel[idx] = 1.0;
else {
PhaseLabel[idx] = -1.0;
count_wet += 1.f;
}
}
}
}
}
count_wet_global = Dm->Comm.sumReduce(count_wet);
if (rank == 0)
printf("Wetting phase volume fraction =%f \n",
count_wet_global / double(Nx * Ny * Nz * nprocs));
// initialize phi based on PhaseLabel (include solid component labels)
ScaLBL_CopyToDevice(Phi, PhaseLabel, Np * sizeof(double));
//...........................................................................
if (rank == 0)
printf("Initializing distributions \n");
ScaLBL_D3Q19_Init(fq, Np);
if (Restart == true) {
if (rank == 0) {
printf("Reading restart file! \n");
ifstream restart("Restart.txt");
if (restart.is_open()) {
restart >> timestep;
printf("Restarting from timestep =%i \n", timestep);
} else {
printf("WARNING:No Restart.txt file, setting timestep=0 \n");
timestep = 0;
}
}
//MPI_Bcast(&timestep,1,MPI_INT,0,comm);
// Read in the restart file to CPU buffers
double *cPhi = new double[Np];
double *cDist = new double[19 * Np];
ifstream File(LocalRestartFile, ios::binary);
double value;
for (int n = 0; n < Np; n++) {
File.read((char *)&value, sizeof(value));
cPhi[n] = value;
// Read the distributions
for (int q = 0; q < 19; q++) {
File.read((char *)&value, sizeof(value));
cDist[q * Np + n] = value;
}
}
File.close();
// Copy the restart data to the GPU
ScaLBL_CopyToDevice(fq, cDist, 19 * Np * sizeof(double));
ScaLBL_CopyToDevice(Phi, cPhi, Np * sizeof(double));
ScaLBL_DeviceBarrier();
delete[] cPhi;
delete[] cDist;
comm.barrier();
}
if (rank == 0)
printf("Initializing phase field \n");
ScaLBL_DFH_Init(Phi, Den, Aq, Bq, 0, ScaLBL_Comm->LastExterior(), Np);
ScaLBL_DFH_Init(Phi, Den, Aq, Bq, ScaLBL_Comm->FirstInterior(),
ScaLBL_Comm->LastInterior(), Np);
}
void ScaLBL_DFHModel::Run() {
int nprocs = nprocx * nprocy * nprocz;
const RankInfoStruct rank_info(rank, nprocx, nprocy, nprocz);
if (rank == 0)
printf("********************************************************\n");
if (rank == 0)
printf("No. of timesteps: %i \n", timestepMax);
ScaLBL_DeviceBarrier();
comm.barrier();
//************ MAIN ITERATION LOOP ***************************************/
auto t1 = std::chrono::system_clock::now();
bool Regular = true;
PROFILE_START("Loop");
runAnalysis analysis(analysis_db, rank_info, ScaLBL_Comm, Dm, Np, Regular,
Map);
while (timestep < timestepMax) {
//if ( rank==0 ) { printf("Running timestep %i (%i MB)\n",timestep+1,(int)(Utilities::getMemoryUsage()/1048576)); }
PROFILE_START("Update");
// *************ODD TIMESTEP*************
timestep++;
// Compute the Phase indicator field
// Read for Aq, Bq happens in this routine (requires communication)
ScaLBL_Comm->BiSendD3Q7AA(Aq, Bq); //READ FROM NORMAL
ScaLBL_D3Q7_AAodd_DFH(NeighborList, Aq, Bq, Den, Phi,
ScaLBL_Comm->FirstInterior(),
ScaLBL_Comm->LastInterior(), Np);
ScaLBL_Comm->BiRecvD3Q7AA(Aq, Bq); //WRITE INTO OPPOSITE
ScaLBL_D3Q7_AAodd_DFH(NeighborList, Aq, Bq, Den, Phi, 0,
ScaLBL_Comm->LastExterior(), Np);
// compute the gradient
ScaLBL_D3Q19_Gradient_DFH(NeighborList, Phi, Gradient,
ScaLBL_Comm->FirstInterior(),
ScaLBL_Comm->LastInterior(), Np);
ScaLBL_Comm->SendHalo(Phi);
ScaLBL_D3Q19_Gradient_DFH(NeighborList, Phi, Gradient, 0,
ScaLBL_Comm->LastExterior(), Np);
ScaLBL_Comm->RecvGrad(Phi, Gradient);
// Perform the collision operation
ScaLBL_Comm->SendD3Q19AA(fq); //READ FROM NORMAL
ScaLBL_D3Q19_AAodd_DFH(NeighborList, fq, Aq, Bq, Den, Phi, Gradient,
SolidPotential, rhoA, rhoB, tauA, tauB, alpha,
beta, Fx, Fy, Fz, ScaLBL_Comm->FirstInterior(),
ScaLBL_Comm->LastInterior(), Np);
ScaLBL_Comm->RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
// Set BCs
if (BoundaryCondition > 0) {
ScaLBL_Comm->Color_BC_z(dvcMap, Phi, Den, inletA, inletB);
ScaLBL_Comm->Color_BC_Z(dvcMap, Phi, Den, outletA, outletB);
}
if (BoundaryCondition == 3) {
ScaLBL_Comm->D3Q19_Pressure_BC_z(NeighborList, fq, din, timestep);
ScaLBL_Comm->D3Q19_Pressure_BC_Z(NeighborList, fq, dout, timestep);
}
if (BoundaryCondition == 4) {
din =
ScaLBL_Comm->D3Q19_Flux_BC_z(NeighborList, fq, flux, timestep);
ScaLBL_Comm->D3Q19_Pressure_BC_Z(NeighborList, fq, dout, timestep);
}
ScaLBL_D3Q19_AAodd_DFH(NeighborList, fq, Aq, Bq, Den, Phi, Gradient,
SolidPotential, rhoA, rhoB, tauA, tauB, alpha,
beta, Fx, Fy, Fz, 0, ScaLBL_Comm->LastExterior(),
Np);
ScaLBL_DeviceBarrier();
comm.barrier();
// *************EVEN TIMESTEP*************
timestep++;
// Compute the Phase indicator field
ScaLBL_Comm->BiSendD3Q7AA(Aq, Bq); //READ FROM NORMAL
ScaLBL_D3Q7_AAeven_DFH(Aq, Bq, Den, Phi, ScaLBL_Comm->FirstInterior(),
ScaLBL_Comm->LastInterior(), Np);
ScaLBL_Comm->BiRecvD3Q7AA(Aq, Bq); //WRITE INTO OPPOSITE
ScaLBL_D3Q7_AAeven_DFH(Aq, Bq, Den, Phi, 0, ScaLBL_Comm->LastExterior(),
Np);
// compute the gradient
ScaLBL_D3Q19_Gradient_DFH(NeighborList, Phi, Gradient,
ScaLBL_Comm->FirstInterior(),
ScaLBL_Comm->LastInterior(), Np);
ScaLBL_Comm->SendHalo(Phi);
ScaLBL_D3Q19_Gradient_DFH(NeighborList, Phi, Gradient, 0,
ScaLBL_Comm->LastExterior(), Np);
ScaLBL_Comm->RecvGrad(Phi, Gradient);
// Perform the collision operation
ScaLBL_Comm->SendD3Q19AA(fq); //READ FORM NORMAL
ScaLBL_D3Q19_AAeven_DFH(NeighborList, fq, Aq, Bq, Den, Phi, Gradient,
SolidPotential, rhoA, rhoB, tauA, tauB, alpha,
beta, Fx, Fy, Fz, ScaLBL_Comm->FirstInterior(),
ScaLBL_Comm->LastInterior(), Np);
ScaLBL_Comm->RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
// Set boundary conditions
if (BoundaryCondition > 0) {
ScaLBL_Comm->Color_BC_z(dvcMap, Phi, Den, inletA, inletB);
ScaLBL_Comm->Color_BC_Z(dvcMap, Phi, Den, outletA, outletB);
}
if (BoundaryCondition == 3) {
ScaLBL_Comm->D3Q19_Pressure_BC_z(NeighborList, fq, din, timestep);
ScaLBL_Comm->D3Q19_Pressure_BC_Z(NeighborList, fq, dout, timestep);
} else if (BoundaryCondition == 4) {
din =
ScaLBL_Comm->D3Q19_Flux_BC_z(NeighborList, fq, flux, timestep);
ScaLBL_Comm->D3Q19_Pressure_BC_Z(NeighborList, fq, dout, timestep);
}
ScaLBL_D3Q19_AAeven_DFH(NeighborList, fq, Aq, Bq, Den, Phi, Gradient,
SolidPotential, rhoA, rhoB, tauA, tauB, alpha,
beta, Fx, Fy, Fz, 0,
ScaLBL_Comm->LastExterior(), Np);
ScaLBL_DeviceBarrier();
comm.barrier();
//************************************************************************
comm.barrier();
PROFILE_STOP("Update");
// Run the analysis
analysis.run(timestep, analysis_db, *Averages, Phi, Pressure, Velocity,
fq, Den);
}
analysis.finish();
PROFILE_STOP("Loop");
PROFILE_SAVE("lbpm_color_simulator", 1);
//************************************************************************
ScaLBL_DeviceBarrier();
comm.barrier();
if (rank == 0)
printf("---------------------------------------------------------------"
"----\n");
// Compute the walltime per timestep
auto t2 = std::chrono::system_clock::now();
double cputime = std::chrono::duration<double>(t2 - t1).count() / timestep;
// Performance obtained from each node
double MLUPS = double(Np) / cputime / 1000000;
if (rank == 0)
printf("********************************************************\n");
if (rank == 0)
printf("CPU time = %f \n", cputime);
if (rank == 0)
printf("Lattice update rate (per core)= %f MLUPS \n", MLUPS);
MLUPS *= nprocs;
if (rank == 0)
printf("Lattice update rate (total)= %f MLUPS \n", MLUPS);
if (rank == 0)
printf("********************************************************\n");
// ************************************************************************
}
void ScaLBL_DFHModel::WriteDebug() {
// Copy back final phase indicator field and convert to regular layout
DoubleArray PhaseField(Nx, Ny, Nz);
ScaLBL_Comm->RegularLayout(Map, Phi, PhaseField);
FILE *OUTFILE;
sprintf(LocalRankFilename, "Phase.%05i.raw", rank);
OUTFILE = fopen(LocalRankFilename, "wb");
fwrite(PhaseField.data(), 8, N, OUTFILE);
fclose(OUTFILE);
ScaLBL_Comm->RegularLayout(Map, &Den[0], PhaseField);
FILE *AFILE;
sprintf(LocalRankFilename, "A.%05i.raw", rank);
AFILE = fopen(LocalRankFilename, "wb");
fwrite(PhaseField.data(), 8, N, AFILE);
fclose(AFILE);
ScaLBL_Comm->RegularLayout(Map, &Den[Np], PhaseField);
FILE *BFILE;
sprintf(LocalRankFilename, "B.%05i.raw", rank);
BFILE = fopen(LocalRankFilename, "wb");
fwrite(PhaseField.data(), 8, N, BFILE);
fclose(BFILE);
}