Files
LBPM/tests/lbpm_dfh_simulator.cpp
2018-05-19 07:49:32 -04:00

676 lines
31 KiB
C++

#include <stdio.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <iostream>
#include <exception>
#include <stdexcept>
#include <fstream>
#include "common/Communication.h"
#include "analysis/TwoPhase.h"
#include "analysis/runAnalysis.h"
#include "common/MPI_Helpers.h"
#include "ProfilerApp.h"
#include "threadpool/thread_pool.h"
/*
* Simulator for two-phase flow in porous media
* James E. McClure 2013-2018
*/
using namespace std;
//*************************************************************************
// Implementation of Two-Phase Immiscible LBM
//*************************************************************************
int main(int argc, char **argv)
{
// Initialize MPI
int provided_thread_support = -1;
MPI_Init_thread(&argc,&argv,MPI_THREAD_MULTIPLE,&provided_thread_support);
MPI_Comm comm;
MPI_Comm_dup(MPI_COMM_WORLD,&comm);
int rank = comm_rank(comm);
int nprocs = comm_size(comm);
{ // Limit scope so variables that contain communicators will free before MPI_Finialize
if ( argc < 2 ) {
std::cerr << "Invalid number of arguments, no input file specified\n";
return -1;
}
auto filename = argv[1];
auto db = std::make_shared<Database>( filename );
auto domain_db = db->getDatabase( "Domain" );
auto color_db = db->getDatabase( "Color" );
auto analysis_db = db->getDatabase( "Analysis" );
if (rank == 0){
printf("********************************************************\n");
printf("Running Color LBM \n");
printf("********************************************************\n");
}
// Initialize compute device
// int device=ScaLBL_SetDevice(rank);
ScaLBL_DeviceBarrier();
MPI_Barrier(comm);
PROFILE_ENABLE(1);
//PROFILE_ENABLE_TRACE();
//PROFILE_ENABLE_MEMORY();
PROFILE_SYNCHRONIZE();
PROFILE_START("Main");
Utilities::setErrorHandlers();
// Variables that specify the computational domain
string FILENAME;
// Color Model parameters
int timestepMax = color_db->getScalar<int>( "timestepMax" );
double tauA = color_db->getScalar<double>( "tauA" );
double tauB = color_db->getScalar<double>( "tauB" );
double rhoA = color_db->getScalar<double>( "rhoA" );
double rhoB = color_db->getScalar<double>( "rhoB" );
double Fx = color_db->getVector<double>( "F" )[0];
double Fy = color_db->getVector<double>( "F" )[1];
double Fz = color_db->getVector<double>( "F" )[2];
double alpha = color_db->getScalar<double>( "alpha" );
double beta = color_db->getScalar<double>( "beta" );
bool Restart = color_db->getScalar<bool>( "Restart" );
double din = color_db->getScalar<double>( "din" );
double dout = color_db->getScalar<double>( "dout" );;
double inletA=1.f;
double inletB=0.f;
double outletA=0.f;
double outletB=1.f;
double flux = 10.f;
// Read domain values
auto L = domain_db->getVector<double>( "L" );
auto size = domain_db->getVector<int>( "n" );
auto nproc = domain_db->getVector<int>( "nproc" );
int BoundaryCondition = domain_db->getScalar<int>( "BC" );
int Nx = size[0];
int Ny = size[1];
int Nz = size[2];
double Lx = L[0];
double Ly = L[1];
double Lz = L[2];
int nprocx = nproc[0];
int nprocy = nproc[1];
int nprocz = nproc[2];
int timestep = 6;
if (BoundaryCondition==4) flux = din*rhoA; // mass flux must adjust for density (see formulation for details
// Get the rank info
const RankInfoStruct rank_info(rank,nprocx,nprocy,nprocz);
MPI_Barrier(comm);
if (nprocs != nprocx*nprocy*nprocz){
printf("nprocx = %i \n",nprocx);
printf("nprocy = %i \n",nprocy);
printf("nprocz = %i \n",nprocz);
INSIST(nprocs == nprocx*nprocy*nprocz,"Fatal error in processor count!");
}
if (rank==0){
printf("********************************************************\n");
printf("tau (non-wetting) = %f \n", tauA);
printf("tau (wetting) = %f \n", tauB);
printf("density (non-wetting) = %f \n", rhoA);
printf("density (wetting) = %f \n", rhoB);
printf("alpha = %f \n", alpha);
printf("beta = %f \n", beta);
printf("gamma_{wn} = %f \n", 5.796*alpha);
printf("Force(x) = %f \n", Fx);
printf("Force(y) = %f \n", Fy);
printf("Force(z) = %f \n", Fz);
printf("Sub-domain size = %i x %i x %i\n",Nx,Ny,Nz);
printf("Parallel domain size = %i x %i x %i\n",nprocx,nprocy,nprocz);
if (BoundaryCondition==0) printf("Periodic boundary conditions will applied \n");
if (BoundaryCondition==1) printf("Pressure boundary conditions will be applied \n");
if (BoundaryCondition==2) printf("Velocity boundary conditions will be applied \n");
if (BoundaryCondition==3) printf("Dynamic pressure boundary conditions will be applied \n");
if (BoundaryCondition==4) printf("Average flux boundary conditions will be applied \n");
if (!Restart) printf("Initial conditions assigned from phase ID file \n");
if (Restart) printf("Initial conditions assigned from restart file \n");
printf("********************************************************\n");
}
// Initialized domain and averaging framework for Two-Phase Flow
bool pBC;
if (BoundaryCondition==1 || BoundaryCondition==3 || BoundaryCondition == 4)
pBC=true;
else
pBC=false;
std::shared_ptr<Domain> Dm (new Domain(domain_db));
for (int i=0; i<Dm->Nx*Dm->Ny*Dm->Nz; i++) Dm->id[i] = 1;
Dm->CommInit();
std::shared_ptr<TwoPhase> Averages( new TwoPhase(Dm) );
// Mask that excludes the solid phase
std::shared_ptr<Domain> Mask (new Domain(domain_db));
MPI_Barrier(comm);
Nx+=2; Ny+=2; Nz += 2;
int N = Nx*Ny*Nz;
//.......................................................................
if (rank == 0) printf("Read input media... \n");
//.......................................................................
//.......................................................................
// Filenames used
char LocalRankString[8];
char LocalRankFilename[40];
char LocalRestartFile[40];
sprintf(LocalRankString,"%05d",rank);
sprintf(LocalRankFilename,"%s%s","ID.",LocalRankString);
sprintf(LocalRestartFile,"%s%s","Restart.",LocalRankString);
// printf("Local File Name = %s \n",LocalRankFilename);
// .......... READ THE INPUT FILE .......................................
// char value;
char *id;
id = new char[N];
double sum, sum_local;
double iVol_global = 1.0/(1.0*(Nx-2)*(Ny-2)*(Nz-2)*nprocs);
if (BoundaryCondition > 0) iVol_global = 1.0/(1.0*(Nx-2)*nprocx*(Ny-2)*nprocy*((Nz-2)*nprocz-6));
//...........................................................................
if (rank == 0) cout << "Reading in domain from signed distance function..." << endl;
//.......................................................................
// Read the signed distance
sprintf(LocalRankString,"%05d",rank);
sprintf(LocalRankFilename,"%s%s","SignDist.",LocalRankString);
ReadBinaryFile(LocalRankFilename, Averages->SDs.data(), N);
MPI_Barrier(comm);
if (rank == 0) cout << "Domain set." << endl;
//.......................................................................
// Assign the phase ID field based on the signed distance
//.......................................................................
for (int k=0;k<Nz;k++){
for (int j=0;j<Ny;j++){
for (int i=0;i<Nx;i++){
int n = k*Nx*Ny+j*Nx+i;
id[n] = 0;
}
}
}
sum=0.f;
for ( int k=0;k<Nz;k++){
for ( int j=0;j<Ny;j++){
for ( int i=0;i<Nx;i++){
int n = k*Nx*Ny+j*Nx+i;
if (Averages->SDs(n) > 0.0){
id[n] = 2;
}
// compute the porosity (actual interface location used)
if (Averages->SDs(n) > 0.0){
sum++;
}
}
}
}
if (rank==0) printf("Initialize from segmented data: solid=0, NWP=1, WP=2 \n");
sprintf(LocalRankFilename,"ID.%05i",rank);
size_t readID;
FILE *IDFILE = fopen(LocalRankFilename,"rb");
if (IDFILE==NULL) ERROR("lbpm_color_simulator: Error opening file: ID.xxxxx");
readID=fread(id,1,N,IDFILE);
if (readID != size_t(N)) printf("lbpm_color_simulator: Error reading ID (rank=%i) \n",rank);
fclose(IDFILE);
// Read id from restart
if (Restart == true){
if (rank==0){
printf("Reading restart file! \n");
ifstream restart("Restart.txt");
if (restart.is_open()){
restart >> timestep;
printf("Restarting from timestep =%i \n",timestep);
}
else{
printf("WARNING:No Restart.txt file, setting timestep=0 \n");
timestep=0;
}
}
MPI_Bcast(&timestep,1,MPI_INT,0,comm);
FILE *RESTART = fopen(LocalRestartFile,"rb");
if (IDFILE==NULL) ERROR("lbpm_color_simulator: Error opening file: Restart.xxxxx");
readID=fread(id,1,N,RESTART);
if (readID != size_t(N)) printf("lbpm_color_simulator: Error reading Restart (rank=%i) \n",rank);
fclose(RESTART);
/*
// Read in the restart file to CPU buffers
double *cDen = new double[2*Np];
double *cfq = new double[19*Np];
ReadCheckpoint(LocalRestartFile, cDen, cfq, Np);
// Copy the restart data to the GPU
ScaLBL_CopyToDevice(fq,cfq,19*Np*sizeof(double));
ScaLBL_CopyToDevice(Den,cDen,2*Np*sizeof(double));
ScaLBL_DeviceBarrier();
delete [] cDen;
delete [] cfq;
*/
MPI_Barrier(comm);
}
//.......................................................................
// Compute the media porosity, assign phase labels and solid composition
//.......................................................................
sum_local=0.0;
int Np=0; // number of local pore nodes
//.......................................................................
for (int k=1;k<Nz-1;k++){
for (int j=1;j<Ny-1;j++){
for (int i=1;i<Nx-1;i++){
int n = k*Nx*Ny+j*Nx+i;
if (id[n] > 0){
sum_local+=1.0;
Np++;
}
}
}
}
MPI_Allreduce(&sum_local,&sum,1,MPI_DOUBLE,MPI_SUM,comm);
double porosity = sum*iVol_global;
if (rank==0) printf("Media porosity = %f \n",porosity);
//.........................................................
// If external boundary conditions are applied remove solid
if (BoundaryCondition > 0 && Dm->kproc() == 0){
for (int k=0; k<3; k++){
for (int j=0;j<Ny;j++){
for (int i=0;i<Nx;i++){
int n = k*Nx*Ny+j*Nx+i;
//id[n] = 1;
Averages->SDs(n) = max(Averages->SDs(n),1.0*(2.5-k));
}
}
}
}
if (BoundaryCondition > 0 && Dm->kproc() == nprocz-1){
for (int k=Nz-3; k<Nz; k++){
for (int j=0;j<Ny;j++){
for (int i=0;i<Nx;i++){
int n = k*Nx*Ny+j*Nx+i;
//id[n] = 2;
Averages->SDs(n) = max(Averages->SDs(n),1.0*(k-Nz+2.5));
}
}
}
}
//.........................................................
// don't perform computations at the eight corners
id[0] = id[Nx-1] = id[(Ny-1)*Nx] = id[(Ny-1)*Nx + Nx-1] = 0;
id[(Nz-1)*Nx*Ny] = id[(Nz-1)*Nx*Ny+Nx-1] = id[(Nz-1)*Nx*Ny+(Ny-1)*Nx] = id[(Nz-1)*Nx*Ny+(Ny-1)*Nx + Nx-1] = 0;
//.........................................................
// Initialize communication structures in averaging domain
for (int i=0; i<Mask->Nx*Mask->Ny*Mask->Nz; i++) Mask->id[i] = id[i];
Mask->CommInit(comm);
double *PhaseLabel;
PhaseLabel = new double[N];
Mask->AssignComponentLabels(PhaseLabel);
//...........................................................................
if (rank==0) printf ("Create ScaLBL_Communicator \n");
// Create a communicator for the device (will use optimized layout)
//ScaLBL_Communicator ScaLBL_Comm(Mask);
ScaLBL_Comm = std::shared_ptr<ScaLBL_Communicator>(new ScaLBL_Communicator(Mask));
//Create a second communicator based on the regular data layout
ScaLBL_Communicator ScaLBL_Comm_Regular(Mask);
int Npad=(Np/16 + 2)*16;
if (rank==0) printf ("Set up memory efficient layout \n");
IntArray Map(Nx,Ny,Nz);
auto neighborList= new int[18*Npad];
Np = ScaLBL_Comm.MemoryOptimizedLayoutAA(Map,neighborList,Mask->id,Np);
MPI_Barrier(comm);
//...........................................................................
// MAIN VARIABLES ALLOCATED HERE
//...........................................................................
// LBM variables
if (rank==0) printf ("Allocating distributions \n");
//......................device distributions.................................
int dist_mem_size = Np*sizeof(double);
int neighborSize=18*(Np*sizeof(int));
int *NeighborList;
int *dvcMap;
double *fq, *Aq, *Bq;
double *Den, *Phi;
double *SolidPotential;
double *Velocity;
double *Gradient;
double *Pressure;
//...........................................................................
ScaLBL_AllocateDeviceMemory((void **) &NeighborList, neighborSize);
ScaLBL_AllocateDeviceMemory((void **) &dvcMap, sizeof(int)*Np);
ScaLBL_AllocateDeviceMemory((void **) &fq, 19*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Aq, 7*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Bq, 7*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Den, 2*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Phi, sizeof(double)*Np);
ScaLBL_AllocateDeviceMemory((void **) &Pressure, sizeof(double)*Np);
ScaLBL_AllocateDeviceMemory((void **) &Velocity, 3*sizeof(double)*Np);
ScaLBL_AllocateDeviceMemory((void **) &Gradient, 3*sizeof(double)*Np);
ScaLBL_AllocateDeviceMemory((void **) &SolidPotential, 3*sizeof(double)*Np);
//...........................................................................
// Update GPU data structures
if (rank==0) printf ("Setting up device map and neighbor list \n");
int *TmpMap;
TmpMap=new int[Np];
for (int k=1; k<Nz-1; k++){
for (int j=1; j<Ny-1; j++){
for (int i=1; i<Nx-1; i++){
int idx=Map(i,j,k);
if (!(idx < 0))
TmpMap[idx] = k*Nx*Ny+j*Nx+i;
}
}
}
ScaLBL_CopyToDevice(dvcMap, TmpMap, sizeof(int)*Np);
ScaLBL_DeviceBarrier();
delete [] TmpMap;
// Compute the solid interaction potential and copy result to device
if (rank==0) printf("Computing solid interaction potential \n");
double *Tmp;
Tmp=new double[3*Np];
//Averages->UpdateMeshValues(); // this computes the gradient of distance field (among other things)
// Create the distance stencil
// Compute solid forces based on mean field approximation
double *Dst;
Dst = new double [5*5*5];
for (int kk=0; kk<5; kk++){
for (int jj=0; jj<5; jj++){
for (int ii=0; ii<5; ii++){
int index = kk*25+jj*5+ii;
Dst[index] = sqrt(double(ii-2)*double(ii-2) + double(jj-2)*double(jj-2)+ double(kk-2)*double(kk-2));
}
}
}
for (int k=1; k<Nz-1; k++){
for (int j=1; j<Ny-1; j++){
for (int i=1; i<Nx-1; i++){
int idx=Map(i,j,k);
if (!(idx < 0)){
double phi_x = 0.f;
double phi_y = 0.f;
double phi_z = 0.f;
for (int kk=0; kk<5; kk++){
for (int jj=0; jj<5; jj++){
for (int ii=0; ii<5; ii++){
int index = kk*25+jj*5+ii;
double distval= Dst[index];
int idi=i+ii-2;
int idj=j+jj-2;
int idk=k+kk-2;
if (idi < 0) idi=0;
if (idj < 0) idj=0;
if (idk < 0) idk=0;
if (!(idi < Nx)) idi=Nx-1;
if (!(idj < Ny)) idj=Ny-1;
if (!(idk < Nz)) idk=Nz-1;
int nn = idk*Nx*Ny + idj*Nx + idi;
if (!(Mask->id[nn] > 0)){
double vec_x = double(ii-2);
double vec_y = double(jj-2);
double vec_z = double(kk-2);
double ALPHA=PhaseLabel[nn];
double GAMMA=-2.f;
if (distval > 2.f) ALPHA=0.f; // symmetric cutoff distance
phi_x += ALPHA*exp(GAMMA*distval)*vec_x/distval;
phi_y += ALPHA*exp(GAMMA*distval)*vec_y/distval;
phi_z += ALPHA*exp(GAMMA*distval)*vec_z/distval;
}
}
}
}
Tmp[idx] = phi_x;
Tmp[idx+Np] = phi_y;
Tmp[idx+2*Np] = phi_z;
/* double d = Averages->SDs(n);
double dx = Averages->SDs_x(n);
double dy = Averages->SDs_y(n);
double dz = Averages->SDs_z(n);
double value=cns*exp(-bns*fabs(d))-cws*exp(-bns*fabs(d));
Tmp[idx] = value*dx;
Tmp[idx+Np] = value*dy;
Tmp[idx+2*Np] = value*dz;
*/
}
}
}
}
ScaLBL_CopyToDevice(SolidPotential, Tmp, 3*sizeof(double)*Np);
ScaLBL_DeviceBarrier();
delete [] Tmp;
delete [] Dst;
DoubleArray Psx(Nx,Ny,Nz);
DoubleArray Psy(Nx,Ny,Nz);
DoubleArray Psz(Nx,Ny,Nz);
DoubleArray Psnorm(Nx,Ny,Nz);
ScaLBL_Comm.RegularLayout(Map,&SolidPotential[0],Psx);
ScaLBL_Comm.RegularLayout(Map,&SolidPotential[Np],Psy);
ScaLBL_Comm.RegularLayout(Map,&SolidPotential[2*Np],Psz);
for (int n=0; n<N; n++) Psnorm(n) = Psx(n)*Psx(n)+Psy(n)*Psy(n)+Psz(n)*Psz(n);
FILE *PFILE;
sprintf(LocalRankFilename,"Potential.%05i.raw",rank);
PFILE = fopen(LocalRankFilename,"wb");
fwrite(Psnorm.data(),8,N,PFILE);
fclose(PFILE);
// initialize fluid phases
double count_wet=0.f;
for (int k=1; k<Nz-1; k++){
for (int j=1; j<Ny-1; j++){
for (int i=1; i<Nx-1; i++){
int idx=Map(i,j,k);
int n = k*Nx*Ny+j*Nx+i;
if (!(idx < 0)){
if (Mask->id[n] == 1)
PhaseLabel[idx] = 1.0;
else {
PhaseLabel[idx] = -1.0;
count_wet+=1.f;
}
}
}
}
}
//printf("sw=%f \n",count_wet/double(Np));
// copy the neighbor list
ScaLBL_CopyToDevice(NeighborList, neighborList, neighborSize);
// initialize phi based on PhaseLabel (include solid component labels)
ScaLBL_CopyToDevice(Phi, PhaseLabel, Np*sizeof(double));
//...........................................................................
if (rank==0) printf ("Initializing distributions \n");
ScaLBL_D3Q19_Init(fq, Np);
if (rank==0) printf ("Initializing phase field \n");
ScaLBL_DFH_Init(Phi, Den, Aq, Bq, 0, ScaLBL_Comm.last_interior, Np);
//.......................................................................
// Once phase has been initialized, map solid to account for 'smeared' interface
//for (i=0; i<N; i++) Averages->SDs(i) -= (1.0);
// Make sure the id match for the two domains
for (int i=0; i<N; i++) Dm->id[i] = Mask->id[i];
//.......................................................................
// Finalize setup for averaging domain
Averages->UpdateSolid();
//.......................................................................
//ScaLBL_D3Q19_Pressure(fq,Pressure,Np);
//ScaLBL_D3Q19_Momentum(fq,Velocity,Np);
//...........................................................................
// Copy the phase indicator field for the earlier timestep
ScaLBL_DeviceBarrier();
ScaLBL_CopyToHost(Averages->Phase_tplus.data(),Phi,Np*sizeof(double));
//...........................................................................
// Copy the data for for the analysis timestep
//...........................................................................
// Copy the phase from the GPU -> CPU
//...........................................................................
ScaLBL_DeviceBarrier();
ScaLBL_CopyToHost(Averages->Phase.data(),Phi,Np*sizeof(double));
ScaLBL_Comm.RegularLayout(Map,Pressure,Averages->Press);
ScaLBL_Comm.RegularLayout(Map,&Velocity[0],Averages->Vel_x);
ScaLBL_Comm.RegularLayout(Map,&Velocity[Np],Averages->Vel_y);
ScaLBL_Comm.RegularLayout(Map,&Velocity[2*Np],Averages->Vel_z);
//...........................................................................
if (rank==0) printf("********************************************************\n");
if (rank==0) printf("No. of timesteps: %i \n", timestepMax);
//.......create and start timer............
double starttime,stoptime,cputime;
ScaLBL_DeviceBarrier();
MPI_Barrier(comm);
starttime = MPI_Wtime();
//.........................................
//************ MAIN ITERATION LOOP ***************************************/
PROFILE_START("Loop");
runAnalysis analysis( analysis_db, rank_info, ScaLBL_Comm, Dm, Np, pBC, beta, Map );
while (timestep < timestepMax ) {
//if ( rank==0 ) { printf("Running timestep %i (%i MB)\n",timestep+1,(int)(Utilities::getMemoryUsage()/1048576)); }
PROFILE_START("Update");
// *************ODD TIMESTEP*************
timestep++;
// Compute the Phase indicator field
// Read for Aq, Bq happens in this routine (requires communication)
ScaLBL_Comm.BiSendD3Q7AA(Aq,Bq); //READ FROM NORMAL
ScaLBL_D3Q7_AAodd_DFH(NeighborList, Aq, Bq, Den, Phi, ScaLBL_Comm.first_interior, ScaLBL_Comm.last_interior, Np);
ScaLBL_Comm.BiRecvD3Q7AA(Aq,Bq); //WRITE INTO OPPOSITE
ScaLBL_D3Q7_AAodd_DFH(NeighborList, Aq, Bq, Den, Phi, 0, ScaLBL_Comm.next, Np);
// compute the gradient
ScaLBL_D3Q19_Gradient_DFH(NeighborList, Phi, Gradient, SolidPotential, ScaLBL_Comm.first_interior, ScaLBL_Comm.last_interior, Np);
ScaLBL_Comm.SendHalo(Phi);
ScaLBL_D3Q19_Gradient_DFH(NeighborList, Phi, Gradient, SolidPotential, 0, ScaLBL_Comm.next, Np);
ScaLBL_Comm.RecvGrad(Phi,Gradient);
// Perform the collision operation
ScaLBL_Comm.SendD3Q19AA(fq); //READ FROM NORMAL
ScaLBL_D3Q19_AAodd_DFH(NeighborList, fq, Aq, Bq, Den, Phi, Gradient, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, ScaLBL_Comm.first_interior, ScaLBL_Comm.last_interior, Np);
ScaLBL_Comm.RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
// Set BCs
if (BoundaryCondition > 0){
ScaLBL_Comm.Color_BC_z(dvcMap, Phi, Den, inletA, inletB);
ScaLBL_Comm.Color_BC_Z(dvcMap, Phi, Den, outletA, outletB);
}
if (BoundaryCondition == 3){
ScaLBL_Comm.D3Q19_Pressure_BC_z(NeighborList, fq, din, timestep);
ScaLBL_Comm.D3Q19_Pressure_BC_Z(NeighborList, fq, dout, timestep);
}
if (BoundaryCondition == 4){
din = ScaLBL_Comm.D3Q19_Flux_BC_z(NeighborList, fq, flux, timestep);
ScaLBL_Comm.D3Q19_Pressure_BC_Z(NeighborList, fq, dout, timestep);
}
ScaLBL_D3Q19_AAodd_DFH(NeighborList, fq, Aq, Bq, Den, Phi, Gradient, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, 0, ScaLBL_Comm.next, Np);
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
// *************EVEN TIMESTEP*************
timestep++;
// Compute the Phase indicator field
ScaLBL_Comm.BiSendD3Q7AA(Aq,Bq); //READ FROM NORMAL
ScaLBL_D3Q7_AAeven_DFH(Aq, Bq, Den, Phi, ScaLBL_Comm.first_interior, ScaLBL_Comm.last_interior, Np);
ScaLBL_Comm.BiRecvD3Q7AA(Aq,Bq); //WRITE INTO OPPOSITE
ScaLBL_D3Q7_AAeven_DFH(Aq, Bq, Den, Phi, 0, ScaLBL_Comm.next, Np);
// compute the gradient
ScaLBL_D3Q19_Gradient_DFH(NeighborList, Phi, Gradient, SolidPotential, ScaLBL_Comm.first_interior, ScaLBL_Comm.last_interior, Np);
ScaLBL_Comm.SendHalo(Phi);
ScaLBL_D3Q19_Gradient_DFH(NeighborList, Phi, Gradient, SolidPotential, 0, ScaLBL_Comm.next, Np);
ScaLBL_Comm.RecvGrad(Phi,Gradient);
// Perform the collision operation
ScaLBL_Comm.SendD3Q19AA(fq); //READ FORM NORMAL
ScaLBL_D3Q19_AAeven_DFH(NeighborList, fq, Aq, Bq, Den, Phi, Gradient, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, ScaLBL_Comm.first_interior, ScaLBL_Comm.last_interior, Np);
ScaLBL_Comm.RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
// Set boundary conditions
if (BoundaryCondition > 0){
ScaLBL_Comm.Color_BC_z(dvcMap, Phi, Den, inletA, inletB);
ScaLBL_Comm.Color_BC_Z(dvcMap, Phi, Den, outletA, outletB);
}
if (BoundaryCondition == 3){
ScaLBL_Comm.D3Q19_Pressure_BC_z(NeighborList, fq, din, timestep);
ScaLBL_Comm.D3Q19_Pressure_BC_Z(NeighborList, fq, dout, timestep);
}
else if (BoundaryCondition == 4){
din = ScaLBL_Comm.D3Q19_Flux_BC_z(NeighborList, fq, flux, timestep);
ScaLBL_Comm.D3Q19_Pressure_BC_Z(NeighborList, fq, dout, timestep);
}
ScaLBL_D3Q19_AAeven_DFH(NeighborList, fq, Aq, Bq, Den, Phi, Gradient, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, 0, ScaLBL_Comm.next, Np);
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
//************************************************************************
MPI_Barrier(comm);
PROFILE_STOP("Update");
// Run the analysis
analysis.run( timestep, *Averages, Phi, Pressure, Velocity, fq, Den );
}
analysis.finish();
PROFILE_STOP("Loop");
PROFILE_SAVE("lbpm_color_simulator",1);
//************************************************************************
ScaLBL_DeviceBarrier();
MPI_Barrier(comm);
stoptime = MPI_Wtime();
if (rank==0) printf("-------------------------------------------------------------------\n");
// Compute the walltime per timestep
cputime = (stoptime - starttime)/timestep;
// Performance obtained from each node
double MLUPS = double(Np)/cputime/1000000;
if (rank==0) printf("********************************************************\n");
if (rank==0) printf("CPU time = %f \n", cputime);
if (rank==0) printf("Lattice update rate (per core)= %f MLUPS \n", MLUPS);
MLUPS *= nprocs;
if (rank==0) printf("Lattice update rate (total)= %f MLUPS \n", MLUPS);
if (rank==0) printf("********************************************************\n");
// ************************************************************************
// Copy back final phase indicator field and convert to regular layout
DoubleArray PhaseField(Nx,Ny,Nz);
ScaLBL_Comm.RegularLayout(Map,Phi,PhaseField);
FILE *OUTFILE;
sprintf(LocalRankFilename,"Phase.%05i.raw",rank);
OUTFILE = fopen(LocalRankFilename,"wb");
fwrite(PhaseField.data(),8,N,OUTFILE);
fclose(OUTFILE);
PROFILE_STOP("Main");
PROFILE_SAVE("lbpm_color_simulator",1);
// ****************************************************
MPI_Barrier(comm);
} // Limit scope so variables that contain communicators will free before MPI_Finialize
MPI_Comm_free(&comm);
MPI_Finalize();
}