497 lines
16 KiB
C++
497 lines
16 KiB
C++
#include <stdio.h>
|
|
#include <math.h>
|
|
|
|
extern "C" void ScaLBL_D3Q7_Membrane_AssignLinkCoef(int *membrane, int *Map, double *Distance, double *Psi, double *coef,
|
|
double Threshold, double MassFractionIn, double MassFractionOut, double ThresholdMassFractionIn, double ThresholdMassFractionOut,
|
|
int memLinks, int Nx, int Ny, int Nz, int Np){
|
|
|
|
int link,iq,ip,nq,np,nqm,npm;
|
|
double aq, ap, membranePotential;
|
|
/* Interior Links */
|
|
for (link=0; link<memLinks; link++){
|
|
|
|
// inside //outside
|
|
aq = MassFractionIn; ap = MassFractionOut;
|
|
iq = membrane[2*link]; ip = membrane[2*link+1];
|
|
nq = iq%Np; np = ip%Np;
|
|
nqm = Map[nq]; npm = Map[np]; // strided layout
|
|
|
|
/* membrane potential for this link */
|
|
membranePotential = Psi[nqm] - Psi[npm];
|
|
if (membranePotential > Threshold){
|
|
aq = ThresholdMassFractionIn; ap = ThresholdMassFractionOut;
|
|
}
|
|
|
|
/* Save the mass transfer coefficients */
|
|
coef[2*link] = aq; coef[2*link+1] = ap;
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_D3Q7_Membrane_AssignLinkCoef_halo(
|
|
const int Cqx, const int Cqy, int const Cqz,
|
|
int *Map, double *Distance, double *Psi, double Threshold,
|
|
double MassFractionIn, double MassFractionOut, double ThresholdMassFractionIn, double ThresholdMassFractionOut,
|
|
int *d3q7_recvlist, int *d3q7_linkList, double *coef, int start, int nlinks, int count,
|
|
const int N, const int Nx, const int Ny, const int Nz) {
|
|
//....................................................................................
|
|
// Unack distribution from the recv buffer
|
|
// Distribution q matche Cqx, Cqy, Cqz
|
|
// swap rule means that the distributions in recvbuf are OPPOSITE of q
|
|
// dist may be even or odd distributions stored by stream layout
|
|
//....................................................................................
|
|
int n, idx, link, nqm, npm, i, j, k;
|
|
double distanceLocal, distanceNonlocal;
|
|
double psiLocal, psiNonlocal, membranePotential;
|
|
double ap,aq; // coefficient
|
|
|
|
/* second enforce custom rule for membrane links */
|
|
for (link = nlinks; link < count; link++) {
|
|
// get the index for the recv list (deal with reordering of links)
|
|
idx = d3q7_linkList[link]; // THINK start NEEDS TO BE HERE
|
|
// get the distribution index
|
|
n = d3q7_recvlist[start+idx];
|
|
// get the index in strided layout
|
|
nqm = Map[n];
|
|
distanceLocal = Distance[nqm];
|
|
psiLocal = Psi[nqm];
|
|
|
|
// Get the 3-D indices from the send process
|
|
k = nqm/(Nx*Ny); j = (nqm-Nx*Ny*k)/Nx; i = nqm-Nx*Ny*k-Nx*j;
|
|
// Streaming link the non-local distribution
|
|
i -= Cqx; j -= Cqy; k -= Cqz;
|
|
npm = k*Nx*Ny + j*Nx + i;
|
|
distanceNonlocal = Distance[npm];
|
|
psiNonlocal = Psi[npm];
|
|
|
|
membranePotential = psiLocal - psiNonlocal;
|
|
aq = MassFractionIn;
|
|
ap = MassFractionOut;
|
|
|
|
/* link is inside membrane */
|
|
if (distanceLocal > 0.0){
|
|
if (membranePotential < Threshold*(-1.0)){
|
|
ap = MassFractionIn;
|
|
aq = MassFractionOut;
|
|
}
|
|
else {
|
|
ap = ThresholdMassFractionIn;
|
|
aq = ThresholdMassFractionOut;
|
|
}
|
|
}
|
|
else if (membranePotential > Threshold){
|
|
aq = ThresholdMassFractionIn;
|
|
ap = ThresholdMassFractionOut;
|
|
}
|
|
|
|
// update link based on mass transfer coefficients
|
|
coef[2*(link-nlinks)] = aq;
|
|
coef[2*(link-nlinks)+1] = ap;
|
|
}
|
|
}
|
|
|
|
|
|
extern "C" void ScaLBL_D3Q7_Membrane_Unpack(int q,
|
|
int *d3q7_recvlist, int *d3q7_linkList, int start, int nlinks, int count,
|
|
double *recvbuf, double *dist, int N, double *coef) {
|
|
//....................................................................................
|
|
// Unack distribution from the recv buffer
|
|
// Distribution q matche Cqx, Cqy, Cqz
|
|
// swap rule means that the distributions in recvbuf are OPPOSITE of q
|
|
// dist may be even or odd distributions stored by stream layout
|
|
//....................................................................................
|
|
int n, idx, link;
|
|
double fq,fp,fqq,ap,aq; // coefficient
|
|
/* First unpack the regular links */
|
|
for (link = 0; link < nlinks; link++) {
|
|
// get the index for the recv list (deal with reordering of links)
|
|
idx = d3q7_linkList[link];
|
|
// get the distribution index
|
|
n = d3q7_recvlist[start+idx];
|
|
if (!(n < 0)){
|
|
fp = recvbuf[start + idx];
|
|
dist[q * N + n] = fp;
|
|
}
|
|
//printf(" site=%i, index=%i, value = %e \n",n,idx,fp);
|
|
}
|
|
/* second enforce custom rule for membrane links */
|
|
for (link = nlinks; link < count; link++) {
|
|
// get the index for the recv list (deal with reordering of links)
|
|
idx = d3q7_linkList[link];
|
|
// get the distribution index
|
|
n = d3q7_recvlist[start+idx];
|
|
// update link based on mass transfer coefficients
|
|
if (!(n < 0)){
|
|
aq = coef[2*(link-nlinks)];
|
|
ap = coef[2*(link-nlinks)+1];
|
|
fq = dist[q * N + n];
|
|
fp = recvbuf[start + idx];
|
|
fqq = (1-aq)*fq+ap*fp;
|
|
dist[q * N + n] = fqq;
|
|
}
|
|
//printf(" LINK: site=%i, index=%i \n", n, idx);
|
|
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_D3Q7_Membrane_IonTransport(int *membrane, double *coef,
|
|
double *dist, double *Den, int memLinks, int Np){
|
|
|
|
int link,iq,ip,nq,np;
|
|
double aq, ap, fq, fp, fqq, fpp, Cq, Cp;
|
|
for (link=0; link<memLinks; link++){
|
|
// inside //outside
|
|
aq = coef[2*link]; ap = coef[2*link+1];
|
|
iq = membrane[2*link]; ip = membrane[2*link+1];
|
|
nq = iq%Np; np = ip%Np;
|
|
fq = dist[iq]; fp = dist[ip];
|
|
fqq = (1-aq)*fq+ap*fp; fpp = (1-ap)*fp+aq*fq;
|
|
Cq = Den[nq]; Cp = Den[np];
|
|
Cq += fqq - fq; Cp += fpp - fp;
|
|
Den[nq] = Cq; Den[np] = Cp;
|
|
dist[iq] = fqq; dist[ip] = fpp;
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_D3Q7_AAodd_IonConcentration(int *neighborList,
|
|
double *dist, double *Den,
|
|
int start, int finish,
|
|
int Np) {
|
|
int n, nread;
|
|
double fq, Ci;
|
|
for (n = start; n < finish; n++) {
|
|
|
|
// q=0
|
|
fq = dist[n];
|
|
Ci = fq;
|
|
|
|
// q=1
|
|
nread = neighborList[n];
|
|
fq = dist[nread];
|
|
Ci += fq;
|
|
|
|
// q=2
|
|
nread = neighborList[n + Np];
|
|
fq = dist[nread];
|
|
Ci += fq;
|
|
|
|
// q=3
|
|
nread = neighborList[n + 2 * Np];
|
|
fq = dist[nread];
|
|
Ci += fq;
|
|
|
|
// q=4
|
|
nread = neighborList[n + 3 * Np];
|
|
fq = dist[nread];
|
|
Ci += fq;
|
|
|
|
// q=5
|
|
nread = neighborList[n + 4 * Np];
|
|
fq = dist[nread];
|
|
Ci += fq;
|
|
|
|
// q=6
|
|
nread = neighborList[n + 5 * Np];
|
|
fq = dist[nread];
|
|
Ci += fq;
|
|
|
|
Den[n] = Ci;
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_D3Q7_AAeven_IonConcentration(double *dist, double *Den,
|
|
int start, int finish,
|
|
int Np) {
|
|
int n;
|
|
double fq, Ci;
|
|
for (n = start; n < finish; n++) {
|
|
|
|
// q=0
|
|
fq = dist[n];
|
|
Ci = fq;
|
|
|
|
// q=1
|
|
fq = dist[2 * Np + n];
|
|
Ci += fq;
|
|
|
|
// q=2
|
|
fq = dist[1 * Np + n];
|
|
Ci += fq;
|
|
|
|
// q=3
|
|
fq = dist[4 * Np + n];
|
|
Ci += fq;
|
|
|
|
// q=4
|
|
fq = dist[3 * Np + n];
|
|
Ci += fq;
|
|
|
|
// q=5
|
|
fq = dist[6 * Np + n];
|
|
Ci += fq;
|
|
|
|
// q=6
|
|
fq = dist[5 * Np + n];
|
|
Ci += fq;
|
|
|
|
Den[n] = Ci;
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_D3Q7_AAodd_Ion(int *neighborList, double *dist,
|
|
double *Den, double *FluxDiffusive,
|
|
double *FluxAdvective,
|
|
double *FluxElectrical, double *Velocity,
|
|
double *ElectricField, double Di, int zi,
|
|
double rlx, double Vt, int start,
|
|
int finish, int Np) {
|
|
int n;
|
|
double Ci;
|
|
double ux, uy, uz;
|
|
double uEPx, uEPy, uEPz; //electrochemical induced velocity
|
|
double Ex, Ey, Ez; //electrical field
|
|
double flux_diffusive_x, flux_diffusive_y, flux_diffusive_z;
|
|
double f0, f1, f2, f3, f4, f5, f6;
|
|
double X,Y,Z,factor_x, factor_y, factor_z;
|
|
int nr1, nr2, nr3, nr4, nr5, nr6;
|
|
|
|
for (n = start; n < finish; n++) {
|
|
|
|
//Load data
|
|
Ex = ElectricField[n + 0 * Np];
|
|
Ey = ElectricField[n + 1 * Np];
|
|
Ez = ElectricField[n + 2 * Np];
|
|
ux = Velocity[n + 0 * Np];
|
|
uy = Velocity[n + 1 * Np];
|
|
uz = Velocity[n + 2 * Np];
|
|
uEPx = zi * Di / Vt * Ex;
|
|
uEPy = zi * Di / Vt * Ey;
|
|
uEPz = zi * Di / Vt * Ez;
|
|
|
|
// q=0
|
|
f0 = dist[n];
|
|
// q=1
|
|
nr1 = neighborList[n]; // neighbor 2 ( > 10Np => odd part of dist)
|
|
f1 = dist[nr1]; // reading the f1 data into register fq
|
|
// q=2
|
|
nr2 = neighborList[n + Np]; // neighbor 1 ( < 10Np => even part of dist)
|
|
f2 = dist[nr2]; // reading the f2 data into register fq
|
|
// q=3
|
|
nr3 = neighborList[n + 2 * Np]; // neighbor 4
|
|
f3 = dist[nr3];
|
|
// q=4
|
|
nr4 = neighborList[n + 3 * Np]; // neighbor 3
|
|
f4 = dist[nr4];
|
|
// q=5
|
|
nr5 = neighborList[n + 4 * Np];
|
|
f5 = dist[nr5];
|
|
// q=6
|
|
nr6 = neighborList[n + 5 * Np];
|
|
f6 = dist[nr6];
|
|
|
|
// compute diffusive flux
|
|
Ci = f0 + f1 + f2 + f3 + f4 + f5 + f6;
|
|
flux_diffusive_x = (1.0 - 0.5 * rlx) * ((f1 - f2) - ux * Ci);
|
|
flux_diffusive_y = (1.0 - 0.5 * rlx) * ((f3 - f4) - uy * Ci);
|
|
flux_diffusive_z = (1.0 - 0.5 * rlx) * ((f5 - f6) - uz * Ci);
|
|
FluxDiffusive[n + 0 * Np] = flux_diffusive_x;
|
|
FluxDiffusive[n + 1 * Np] = flux_diffusive_y;
|
|
FluxDiffusive[n + 2 * Np] = flux_diffusive_z;
|
|
FluxAdvective[n + 0 * Np] = ux * Ci;
|
|
FluxAdvective[n + 1 * Np] = uy * Ci;
|
|
FluxAdvective[n + 2 * Np] = uz * Ci;
|
|
FluxElectrical[n + 0 * Np] = uEPx * Ci;
|
|
FluxElectrical[n + 1 * Np] = uEPy * Ci;
|
|
FluxElectrical[n + 2 * Np] = uEPz * Ci;
|
|
|
|
Den[n] = Ci;
|
|
|
|
/* use logistic function to prevent negative distributions*/
|
|
X = 4.0 * (ux + uEPx);
|
|
Y = 4.0 * (uy + uEPy);
|
|
Z = 4.0 * (uz + uEPz);
|
|
factor_x = X / sqrt(1 + X*X);
|
|
factor_y = Y / sqrt(1 + Y*Y);
|
|
factor_z = Z / sqrt(1 + Z*Z);
|
|
|
|
// q=0
|
|
dist[n] = f0 * (1.0 - rlx) + rlx * 0.25 * Ci;
|
|
|
|
// q = 1
|
|
dist[nr2] =
|
|
f1 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + factor_x);
|
|
//f1 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + 4.0 * (ux + uEPx));
|
|
|
|
|
|
// q=2
|
|
dist[nr1] =
|
|
f2 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - factor_x);
|
|
//f2 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - 4.0 * (ux + uEPx));
|
|
|
|
// q = 3
|
|
dist[nr4] =
|
|
f3 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + factor_y );
|
|
//f3 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + 4.0 * (uy + uEPy));
|
|
|
|
// q = 4
|
|
dist[nr3] =
|
|
f4 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - factor_y);
|
|
//f4 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - 4.0 * (uy + uEPy));
|
|
|
|
// q = 5
|
|
dist[nr6] =
|
|
f5 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + factor_z);
|
|
//f5 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + 4.0 * (uz + uEPz));
|
|
|
|
// q = 6
|
|
dist[nr5] =
|
|
f6 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - factor_z);
|
|
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_D3Q7_AAeven_Ion(
|
|
double *dist, double *Den, double *FluxDiffusive, double *FluxAdvective,
|
|
double *FluxElectrical, double *Velocity, double *ElectricField, double Di,
|
|
int zi, double rlx, double Vt, int start, int finish, int Np) {
|
|
int n;
|
|
double Ci;
|
|
double ux, uy, uz;
|
|
double uEPx, uEPy, uEPz; //electrochemical induced velocity
|
|
double Ex, Ey, Ez; //electrical field
|
|
double flux_diffusive_x, flux_diffusive_y, flux_diffusive_z;
|
|
double f0, f1, f2, f3, f4, f5, f6;
|
|
double X,Y,Z, factor_x, factor_y, factor_z;
|
|
|
|
for (n = start; n < finish; n++) {
|
|
|
|
//Load data
|
|
//Ci = Den[n];
|
|
Ex = ElectricField[n + 0 * Np];
|
|
Ey = ElectricField[n + 1 * Np];
|
|
Ez = ElectricField[n + 2 * Np];
|
|
ux = Velocity[n + 0 * Np];
|
|
uy = Velocity[n + 1 * Np];
|
|
uz = Velocity[n + 2 * Np];
|
|
uEPx = zi * Di / Vt * Ex;
|
|
uEPy = zi * Di / Vt * Ey;
|
|
uEPz = zi * Di / Vt * Ez;
|
|
|
|
f0 = dist[n];
|
|
f1 = dist[2 * Np + n];
|
|
f2 = dist[1 * Np + n];
|
|
f3 = dist[4 * Np + n];
|
|
f4 = dist[3 * Np + n];
|
|
f5 = dist[6 * Np + n];
|
|
f6 = dist[5 * Np + n];
|
|
|
|
// compute diffusive flux
|
|
Ci = f0 + f1 + f2 + f3 + f4 + f5 + f6;
|
|
flux_diffusive_x = (1.0 - 0.5 * rlx) * ((f1 - f2) - ux * Ci);
|
|
flux_diffusive_y = (1.0 - 0.5 * rlx) * ((f3 - f4) - uy * Ci);
|
|
flux_diffusive_z = (1.0 - 0.5 * rlx) * ((f5 - f6) - uz * Ci);
|
|
FluxDiffusive[n + 0 * Np] = flux_diffusive_x;
|
|
FluxDiffusive[n + 1 * Np] = flux_diffusive_y;
|
|
FluxDiffusive[n + 2 * Np] = flux_diffusive_z;
|
|
FluxAdvective[n + 0 * Np] = ux * Ci;
|
|
FluxAdvective[n + 1 * Np] = uy * Ci;
|
|
FluxAdvective[n + 2 * Np] = uz * Ci;
|
|
FluxElectrical[n + 0 * Np] = uEPx * Ci;
|
|
FluxElectrical[n + 1 * Np] = uEPy * Ci;
|
|
FluxElectrical[n + 2 * Np] = uEPz * Ci;
|
|
|
|
Den[n] = Ci;
|
|
|
|
/* use logistic function to prevent negative distributions*/
|
|
X = 4.0 * (ux + uEPx);
|
|
Y = 4.0 * (uy + uEPy);
|
|
Z = 4.0 * (uz + uEPz);
|
|
factor_x = X / sqrt(1 + X*X);
|
|
factor_y = Y / sqrt(1 + Y*Y);
|
|
factor_z = Z / sqrt(1 + Z*Z);
|
|
|
|
// q=0
|
|
dist[n] = f0 * (1.0 - rlx) + rlx * 0.25 * Ci;
|
|
|
|
// q = 1
|
|
dist[1 * Np + n] =
|
|
f1 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + factor_x);
|
|
//f1 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + 4.0 * (ux + uEPx));
|
|
|
|
// q=2
|
|
dist[2 * Np + n] =
|
|
f2 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - factor_x);
|
|
//f2 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - 4.0 * (ux + uEPx));
|
|
|
|
// q = 3
|
|
dist[3 * Np + n] =
|
|
f3 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + factor_y);
|
|
//f3 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + 4.0 * (uy + uEPy));
|
|
|
|
// q = 4
|
|
dist[4 * Np + n] =
|
|
f4 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - factor_y);
|
|
//f4 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - 4.0 * (uy + uEPy));
|
|
|
|
// q = 5
|
|
dist[5 * Np + n] =
|
|
f5 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + factor_z);
|
|
//f5 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 + 4.0 * (uz + uEPz));
|
|
|
|
// q = 6
|
|
dist[6 * Np + n] =
|
|
f6 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - factor_z);
|
|
//f6 * (1.0 - rlx) + rlx * 0.125 * Ci * (1.0 - 4.0 * (uz + uEPz));
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_D3Q7_Ion_Init(double *dist, double *Den, double DenInit,
|
|
int Np) {
|
|
int n;
|
|
for (n = 0; n < Np; n++) {
|
|
dist[0 * Np + n] = 0.25 * DenInit;
|
|
dist[1 * Np + n] = 0.125 * DenInit;
|
|
dist[2 * Np + n] = 0.125 * DenInit;
|
|
dist[3 * Np + n] = 0.125 * DenInit;
|
|
dist[4 * Np + n] = 0.125 * DenInit;
|
|
dist[5 * Np + n] = 0.125 * DenInit;
|
|
dist[6 * Np + n] = 0.125 * DenInit;
|
|
Den[n] = DenInit;
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_D3Q7_Ion_Init_FromFile(double *dist, double *Den,
|
|
int Np) {
|
|
int n;
|
|
double DenInit;
|
|
for (n = 0; n < Np; n++) {
|
|
DenInit = Den[n];
|
|
dist[0 * Np + n] = 0.25 * DenInit;
|
|
dist[1 * Np + n] = 0.125 * DenInit;
|
|
dist[2 * Np + n] = 0.125 * DenInit;
|
|
dist[3 * Np + n] = 0.125 * DenInit;
|
|
dist[4 * Np + n] = 0.125 * DenInit;
|
|
dist[5 * Np + n] = 0.125 * DenInit;
|
|
dist[6 * Np + n] = 0.125 * DenInit;
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_D3Q7_Ion_ChargeDensity(double *Den,
|
|
double *ChargeDensity,
|
|
int IonValence, int ion_component,
|
|
int start, int finish, int Np) {
|
|
|
|
int n;
|
|
double Ci; //ion concentration of species i
|
|
double CD; //charge density
|
|
double CD_tmp;
|
|
double F =
|
|
96485.0; //Faraday's constant; unit[C/mol]; F=e*Na, where Na is the Avogadro constant
|
|
|
|
for (n = start; n < finish; n++) {
|
|
Ci = Den[n + ion_component * Np];
|
|
CD = ChargeDensity[n];
|
|
CD_tmp = F * IonValence * Ci;
|
|
ChargeDensity[n] = CD * (ion_component > 0) + CD_tmp;
|
|
}
|
|
}
|