Files
LBPM/common/Array.h
James E McClure 2e8382cceb Added OPM headers
2018-06-11 15:19:05 -04:00

978 lines
30 KiB
C++

/*
Copyright 2013--2018 James E. McClure, Virginia Polytechnic & State University
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef included_ArrayClass
#define included_ArrayClass
#include <array>
#include <cstring>
#include <functional>
#include <initializer_list>
#include <iostream>
#include <memory>
#include <vector>
#include "Utilities.h"
#if defined( __CUDA_ARCH__ )
#include <cuda.h>
#define HOST_DEVICE __host__ __device__
#else
#define HOST_DEVICE
#endif
#if defined( USING_GCC ) || defined( USING_CLANG )
#define ATTRIBUTE_INLINE __attribute__( ( always_inline ) )
#else
#define ATTRIBUTE_INLINE
#endif
#if ( defined( DEBUG ) || defined( _DEBUG ) ) && !defined( NDEBUG )
#define CHECK_ARRAY_LENGTH( i ) \
do { \
if ( i >= d_length ) \
throw std::length_error( "Index exceeds array bounds" ); \
} while ( 0 )
#else
#define CHECK_ARRAY_LENGTH( i ) \
do { \
} while ( 0 )
#endif
// Forward decleration
class FunctionTable;
//! Simple range class
template<class TYPE = size_t>
class Range final
{
public:
//! Empty constructor
Range() : i( 0 ), j( -1 ), k( 1 ) {}
/*!
* Create a range i:k:j (or i:j)
* @param i_ Starting value
* @param j_ Ending value
* @param k_ Increment value
*/
Range( TYPE i_, TYPE j_, TYPE k_ = 1 ) : i( i_ ), j( j_ ), k( k_ ) {}
TYPE i, j, k;
};
//! Simple class to store the array dimensions
class ArraySize final
{
public:
//! Empty constructor
inline ArraySize();
/*!
* Create the vector size
* @param N1 Number of elements in the first dimension
*/
inline ArraySize( size_t N1 );
/*!
* Create the vector size
* @param N1 Number of elements in the first dimension
* @param N2 Number of elements in the second dimension
*/
inline ArraySize( size_t N1, size_t N2 );
/*!
* Create the vector size
* @param N1 Number of elements in the first dimension
* @param N2 Number of elements in the second dimension
* @param N3 Number of elements in the third dimension
*/
inline ArraySize( size_t N1, size_t N2, size_t N3 );
/*!
* Create the vector size
* @param N1 Number of elements in the first dimension
* @param N2 Number of elements in the second dimension
* @param N3 Number of elements in the third dimension
* @param N4 Number of elements in the fourth dimension
*/
inline ArraySize( size_t N1, size_t N2, size_t N3, size_t N4 );
/*!
* Create the vector size
* @param N1 Number of elements in the first dimension
* @param N2 Number of elements in the second dimension
* @param N3 Number of elements in the third dimension
* @param N4 Number of elements in the fourth dimension
* @param N5 Number of elements in the fifth dimension
*/
inline ArraySize( size_t N1, size_t N2, size_t N3, size_t N4, size_t N5 );
/*!
* Create from initializer list
* @param N Size of the array
*/
inline ArraySize( std::initializer_list<size_t> N );
/*!
* Create from raw pointer
* @param ndim Number of dimensions
* @param ndim Dimensions
*/
inline ArraySize( size_t ndim, const size_t *dims );
/*!
* Create from std::vector
* @param N Size of the array
*/
inline ArraySize( const std::vector<size_t> &N );
/*!
* Copy constructor
* @param rhs Array to copy
*/
inline ArraySize( const ArraySize &rhs );
/*!
* Move constructor
* @param rhs Array to copy
*/
inline ArraySize( ArraySize &&rhs );
/*!
* Assignment operator
* @param rhs Array to copy
*/
inline ArraySize &operator=( const ArraySize &rhs );
/*!
* Move assignment operator
* @param rhs Array to copy
*/
inline ArraySize &operator=( ArraySize &&rhs );
/*!
* Access the ith dimension
* @param i Index to access
*/
inline size_t operator[]( size_t i ) const { return d_N[i]; }
//! Sum the elements
inline uint8_t ndim() const ATTRIBUTE_INLINE { return d_ndim; }
//! Sum the elements
inline size_t size() const ATTRIBUTE_INLINE { return d_ndim; }
//! Sum the elements
inline size_t length() const ATTRIBUTE_INLINE { return d_length; }
//! Sum the elements
inline void resize( uint8_t dim, size_t N );
//! Returns an iterator to the beginning
inline const size_t *begin() const ATTRIBUTE_INLINE { return d_N; }
//! Returns an iterator to the end
inline const size_t *end() const ATTRIBUTE_INLINE { return d_N + d_ndim; }
// Check if two matrices are equal
inline bool operator==( const ArraySize &rhs ) const ATTRIBUTE_INLINE
{
return d_ndim == rhs.d_ndim && memcmp( d_N, rhs.d_N, sizeof( d_N ) ) == 0;
}
//! Check if two matrices are not equal
inline bool operator!=( const ArraySize &rhs ) const ATTRIBUTE_INLINE
{
return d_ndim != rhs.d_ndim || memcmp( d_N, rhs.d_N, sizeof( d_N ) ) != 0;
}
//! Maximum supported dimension
constexpr static uint8_t maxDim() ATTRIBUTE_INLINE { return 5u; }
//! Get the index
inline size_t index( size_t i ) const ATTRIBUTE_INLINE
{
CHECK_ARRAY_LENGTH( i );
return i;
}
//! Get the index
inline size_t index( size_t i1, size_t i2 ) const ATTRIBUTE_INLINE
{
size_t index = i1 + i2 * d_N[0];
CHECK_ARRAY_LENGTH( index );
return index;
}
//! Get the index
inline size_t index( size_t i1, size_t i2, size_t i3 ) const ATTRIBUTE_INLINE
{
size_t index = i1 + d_N[0] * ( i2 + d_N[1] * i3 );
CHECK_ARRAY_LENGTH( index );
return index;
}
//! Get the index
inline size_t index( size_t i1, size_t i2, size_t i3, size_t i4 ) const ATTRIBUTE_INLINE
{
size_t index = i1 + d_N[0] * ( i2 + d_N[1] * ( i3 + d_N[2] * i4 ) );
CHECK_ARRAY_LENGTH( index );
return index;
}
//! Get the index
inline size_t index(
size_t i1, size_t i2, size_t i3, size_t i4, size_t i5 ) const ATTRIBUTE_INLINE
{
size_t index = i1 + d_N[0] * ( i2 + d_N[1] * ( i3 + d_N[2] * ( i4 + d_N[3] * i5 ) ) );
CHECK_ARRAY_LENGTH( index );
return index;
}
private:
uint8_t d_ndim;
size_t d_length;
size_t d_N[5];
};
/*!
* Class Array is a multi-dimensional array class written by Mark Berrill
*/
template<class TYPE, class FUN = FunctionTable>
class Array final
{
public: // Constructors / assignment operators
/*!
* Create a new empty Array
*/
Array();
/*!
* Create an Array with the given size
* @param N Size of the array
*/
explicit Array( const ArraySize &N );
/*!
* Create a new 1D Array with the given number of elements
* @param N Number of elements in the array
*/
explicit Array( size_t N );
/*!
* Create a new 2D Array with the given number of rows and columns
* @param N_rows Number of rows
* @param N_columns Number of columns
*/
explicit Array( size_t N_rows, size_t N_columns );
/*!
* Create a new 3D Array with the given number of rows and columns
* @param N1 Number of rows
* @param N2 Number of columns
* @param N3 Number of elements in the third dimension
*/
explicit Array( size_t N1, size_t N2, size_t N3 );
/*!
* Create a new 4D Array with the given number of rows and columns
* @param N1 Number of elements in the first dimension
* @param N2 Number of elements in the second dimension
* @param N3 Number of elements in the third dimension
* @param N4 Number of elements in the fourth dimension
*/
explicit Array( size_t N1, size_t N2, size_t N3, size_t N4 );
/*!
* Create a new 4D Array with the given number of rows and columns
* @param N1 Number of elements in the first dimension
* @param N2 Number of elements in the second dimension
* @param N3 Number of elements in the third dimension
* @param N4 Number of elements in the fourth dimension
* @param N5 Number of elements in the fifth dimension
*/
explicit Array( size_t N1, size_t N2, size_t N3, size_t N4, size_t N5 );
/*!
* Create a multi-dimensional Array with the given number of elements
* @param N Number of elements in each dimension
* @param data Optional raw array to copy the src data
*/
explicit Array( const std::vector<size_t> &N, const TYPE *data = NULL );
/*!
* Create a 1D Array with the range
* @param range Range of the data
*/
explicit Array( const Range<TYPE> &range );
/*!
* Create a 1D Array with the given initializer list
* @param data Input data
*/
Array( std::initializer_list<TYPE> data );
/*!
* Copy constructor
* @param rhs Array to copy
*/
Array( const Array &rhs );
/*!
* Move constructor
* @param rhs Array to copy
*/
Array( Array &&rhs );
/*!
* Assignment operator
* @param rhs Array to copy
*/
Array &operator=( const Array &rhs );
/*!
* Move assignment operator
* @param rhs Array to copy
*/
Array &operator=( Array &&rhs );
/*!
* Assignment operator
* @param rhs std::vector to copy
*/
Array &operator=( const std::vector<TYPE> &rhs );
public: // Views/copies/subset
/*!
* Create a 1D Array view to a raw block of data
* @param N Number of elements in the array
* @param data Pointer to the data
*/
static std::shared_ptr<Array> view( size_t N, std::shared_ptr<TYPE> const &data );
/*!
* Create a new 2D Array with the given number of rows and columns
* @param N_rows Number of rows
* @param N_columns Number of columns
* @param data Pointer to the data
*/
static std::shared_ptr<Array> view(
size_t N_rows, size_t N_columns, std::shared_ptr<TYPE> const &data );
/*!
* Create a new 3D Array view to a raw block of data
* @param N1 Number of rows
* @param N2 Number of columns
* @param N3 Number of elements in the third dimension
* @param data Pointer to the data
*/
static std::shared_ptr<Array> view(
size_t N1, size_t N2, size_t N3, std::shared_ptr<TYPE> const &data );
/*!
* Create a multi-dimensional Array view to a raw block of data
* @param N Number of elements in each dimension
* @param data Pointer to the data
*/
static std::shared_ptr<Array> view( const ArraySize &N, std::shared_ptr<TYPE> const &data );
/*!
* Create a 1D Array view to a raw block of data
* @param N Number of elements in the array
* @param data Pointer to the data
*/
static std::shared_ptr<const Array> constView(
size_t N, std::shared_ptr<const TYPE> const &data );
/*!
* Create a new 2D Array with the given number of rows and columns
* @param N_rows Number of rows
* @param N_columns Number of columns
* @param data Pointer to the data
*/
static std::shared_ptr<const Array> constView(
size_t N_rows, size_t N_columns, std::shared_ptr<const TYPE> const &data );
/*!
* Create a new 3D Array view to a raw block of data
* @param N1 Number of rows
* @param N2 Number of columns
* @param N3 Number of elements in the third dimension
* @param data Pointer to the data
*/
static std::shared_ptr<const Array> constView(
size_t N1, size_t N2, size_t N3, std::shared_ptr<const TYPE> const &data );
/*!
* Create a multi-dimensional Array view to a raw block of data
* @param N Number of elements in each dimension
* @param data Pointer to the data
*/
static std::shared_ptr<const Array> constView(
const ArraySize &N, std::shared_ptr<const TYPE> const &data );
/*!
* Make this object a view of the src
* @param src Source vector to take the view of
*/
void view2( Array &src );
/*!
* Make this object a view of the data
* @param N Number of elements in each dimension
* @param data Pointer to the data
*/
void view2( const ArraySize &N, std::shared_ptr<TYPE> const &data );
/*!
* Make this object a view of the raw data (expert use only).
* Use view2( N, std::shared_ptr(data,[](TYPE*){}) ) instead.
* Note: this interface is not recommended as it does not protect from
* the src data being deleted while still being used by the Array.
* Additionally for maximum performance it does not set the internal shared_ptr
* so functions like getPtr and resize will not work correctly.
* @param ndim Number of dimensions
* @param dims Number of elements in each dimension
* @param data Pointer to the data
*/
void viewRaw( int ndim, const size_t *dims, TYPE *data );
/*!
* Make this object a view of the raw data (expert use only).
* Use view2( N, std::shared_ptr(data,[](TYPE*){}) ) instead.
* Note: this interface is not recommended as it does not protect from
* the src data being deleted while still being used by the Array.
* Additionally for maximum performance it does not set the internal shared_ptr
* so functions like getPtr and resize will not work correctly.
* @param N Number of elements in each dimension
* @param data Pointer to the data
*/
void viewRaw( const ArraySize &N, TYPE *data );
/*!
* Convert an array of one type to another. This may or may not allocate new memory.
* @param array Input array
*/
template<class TYPE2>
static std::shared_ptr<Array<TYPE2>> convert( std::shared_ptr<Array<TYPE, FUN>> array );
/*!
* Convert an array of one type to another. This may or may not allocate new memory.
* @param array Input array
*/
template<class TYPE2>
static std::shared_ptr<const Array<TYPE2>> convert(
std::shared_ptr<const Array<TYPE, FUN>> array );
/*!
* Copy and convert data from another array to this array
* @param array Source array
*/
template<class TYPE2>
void copy( const Array<TYPE2> &array );
/*!
* Copy and convert data from a raw vector to this array.
* Note: The current array must be allocated to the proper size first.
* @param array Source array
*/
template<class TYPE2>
void copy( const TYPE2 *array );
/*!
* Copy and convert data from this array to a raw vector.
* @param array Source array
*/
template<class TYPE2>
void copyTo( TYPE2 *array ) const;
/*!
* Copy and convert data from this array to a raw vector.
* @param array Source array
*/
template<class TYPE2>
Array<TYPE2, FUN> cloneTo() const;
/*!
* Fill the array with the given value
* @param value Value to fill
*/
void fill( const TYPE &value );
/*!
* Scale the array by the given value
* @param scale Value to scale by
*/
void scale( const TYPE &scale );
/*!
* Set the values of this array to pow(base, exp)
* @param base Base array
* @param exp Exponent value
*/
void pow( const Array<TYPE, FUN> &base, const TYPE &exp );
//! Destructor
~Array();
//! Clear the data in the array
void clear();
//! Return the size of the Array
inline int ndim() const { return d_size.ndim(); }
//! Return the size of the Array
inline ArraySize &size() { return d_size; }
//! Return the size of the Array
inline ArraySize size() const { return d_size; }
//! Return the size of the Array
inline size_t size( int d ) const { return d_size[d]; }
//! Return the size of the Array
inline size_t length() const { return d_size.length(); }
//! Return true if the Array is empty
inline bool empty() const { return d_size.length() == 0; }
/*!
* Resize the Array
* @param N NUmber of elements
*/
void resize( size_t N );
/*!
* Resize the Array
* @param N_rows Number of rows
* @param N_columns Number of columns
*/
void resize( size_t N_rows, size_t N_columns );
/*!
* Resize the Array
* @param N1 Number of rows
* @param N2 Number of columns
* @param N3 Number of elements in the third dimension
*/
void resize( size_t N1, size_t N2, size_t N3 );
/*!
* Resize the Array
* @param N Number of elements in each dimension
*/
void resize( const ArraySize &N );
/*!
* Resize the given dimension of the array
* @param dim The dimension to resize
* @param N Number of elements for the given dimension
* @param value Value to initialize new elements
*/
void resizeDim( int dim, size_t N, const TYPE &value );
/*!
* Reshape the Array (total size of array will not change)
* @param N Number of elements in each dimension
*/
void reshape( const ArraySize &N );
/*!
* Subset the Array (total size of array will not change)
* @param index Index to subset (imin,imax,jmin,jmax,kmin,kmax,...)
*/
template<class TYPE2 = TYPE>
Array<TYPE2, FUN> subset( const std::vector<size_t> &index ) const;
/*!
* Subset the Array (total size of array will not change)
* @param index Index to subset (ix:kx:jx,iy:ky:jy,...)
*/
template<class TYPE2 = TYPE>
Array<TYPE2, FUN> subset( const std::vector<Range<size_t>> &index ) const;
/*!
* Copy data from an array into a subset of this array
* @param index Index of the subset (imin,imax,jmin,jmax,kmin,kmax,...)
* @param subset The subset array to copy from
*/
template<class TYPE2>
void copySubset( const std::vector<size_t> &index, const Array<TYPE2, FUN> &subset );
/*!
* Copy data from an array into a subset of this array
* @param index Index of the subset
* @param subset The subset array to copy from
*/
template<class TYPE2>
void copySubset( const std::vector<Range<size_t>> &index, const Array<TYPE2, FUN> &subset );
/*!
* Add data from an array into a subset of this array
* @param index Index of the subset (imin,imax,jmin,jmax,kmin,kmax,...)
* @param subset The subset array to add from
*/
void addSubset( const std::vector<size_t> &index, const Array<TYPE, FUN> &subset );
/*!
* Add data from an array into a subset of this array
* @param index Index of the subset
* @param subset The subset array to add from
*/
void addSubset( const std::vector<Range<size_t>> &index, const Array<TYPE, FUN> &subset );
public: // Accessors
/*!
* Access the desired element
* @param i The row index
*/
HOST_DEVICE inline TYPE &operator()( size_t i ) ATTRIBUTE_INLINE
{
return d_data[d_size.index( i )];
}
/*!
* Access the desired element
* @param i The row index
*/
HOST_DEVICE inline const TYPE &operator()( size_t i ) const ATTRIBUTE_INLINE
{
return d_data[d_size.index( i )];
}
/*!
* Access the desired element
* @param i The row index
* @param j The column index
*/
HOST_DEVICE inline TYPE &operator()( size_t i, size_t j ) ATTRIBUTE_INLINE
{
return d_data[d_size.index( i, j )];
}
/*!
* Access the desired element
* @param i The row index
* @param j The column index
*/
HOST_DEVICE inline const TYPE &operator()( size_t i, size_t j ) const ATTRIBUTE_INLINE
{
return d_data[d_size.index( i, j )];
}
/*!
* Access the desired element
* @param i The row index
* @param j The column index
* @param k The third index
*/
HOST_DEVICE inline TYPE &operator()( size_t i, size_t j, size_t k ) ATTRIBUTE_INLINE
{
return d_data[d_size.index( i, j, k )];
}
/*!
* Access the desired element
* @param i The row index
* @param j The column index
* @param k The third index
*/
HOST_DEVICE inline const TYPE &operator()( size_t i, size_t j, size_t k ) const ATTRIBUTE_INLINE
{
return d_data[d_size.index( i, j, k )];
}
/*!
* Access the desired element
* @param i1 The first index
* @param i2 The second index
* @param i3 The third index
* @param i4 The fourth index
*/
HOST_DEVICE inline TYPE &operator()(
size_t i1, size_t i2, size_t i3, size_t i4 ) ATTRIBUTE_INLINE
{
return d_data[d_size.index( i1, i2, i3, i4 )];
}
/*!
* Access the desired element
* @param i1 The first index
* @param i2 The second index
* @param i3 The third index
* @param i4 The fourth index
*/
HOST_DEVICE inline const TYPE &operator()(
size_t i1, size_t i2, size_t i3, size_t i4 ) const ATTRIBUTE_INLINE
{
return d_data[d_size.index( i1, i2, i3, i4 )];
}
/*!
* Access the desired element
* @param i1 The first index
* @param i2 The second index
* @param i3 The third index
* @param i4 The fourth index
* @param i5 The fifth index
*/
HOST_DEVICE inline TYPE &operator()(
size_t i1, size_t i2, size_t i3, size_t i4, size_t i5 ) ATTRIBUTE_INLINE
{
return d_data[d_size.index( i1, i2, i3, i4, i5 )];
}
/*!
* Access the desired element
* @param i1 The first index
* @param i2 The second index
* @param i3 The third index
* @param i4 The fourth index
* @param i5 The fifth index
*/
HOST_DEVICE inline const TYPE &operator()(
size_t i1, size_t i2, size_t i3, size_t i4, size_t i5 ) const ATTRIBUTE_INLINE
{
return d_data[d_size.index( i1, i2, i3, i4, i5 )];
}
/*!
* Access the desired element as a raw pointer
* @param i The global index
*/
HOST_DEVICE inline TYPE *ptr( size_t i ) ATTRIBUTE_INLINE
{
return i >= d_size.length() ? nullptr : &d_data[i];
}
/*!
* Access the desired element as a raw pointer
* @param i The global index
*/
HOST_DEVICE inline const TYPE *ptr( size_t i ) const ATTRIBUTE_INLINE
{
return i >= d_size.length() ? nullptr : &d_data[i];
}
//! Get iterator to beginning of data
inline TYPE *begin() ATTRIBUTE_INLINE { return d_data; }
//! Get iterator to beginning of data
inline const TYPE *begin() const ATTRIBUTE_INLINE { return d_data; }
//! Get iterator to beginning of data
inline TYPE *end() ATTRIBUTE_INLINE { return d_data + d_size.length(); }
//! Get iterator to beginning of data
inline const TYPE *end() const ATTRIBUTE_INLINE { return d_data + d_size.length(); }
//! Return the pointer to the raw data
inline std::shared_ptr<TYPE> getPtr() ATTRIBUTE_INLINE { return d_ptr; }
//! Return the pointer to the raw data
inline std::shared_ptr<const TYPE> getPtr() const ATTRIBUTE_INLINE { return d_ptr; }
//! Return the pointer to the raw data
HOST_DEVICE inline TYPE *data() ATTRIBUTE_INLINE { return d_data; }
//! Return the pointer to the raw data
HOST_DEVICE inline const TYPE *data() const ATTRIBUTE_INLINE { return d_data; }
public: // Operator overloading
//! Check if two matrices are equal
// Equality means the dimensions and data have to be identical
bool operator==( const Array &rhs ) const;
//! Check if two matrices are not equal
inline bool operator!=( const Array &rhs ) const { return !this->operator==( rhs ); }
//! Add another array
Array &operator+=( const Array &rhs );
//! Subtract another array
Array &operator-=( const Array &rhs );
//! Add a scalar
Array &operator+=( const TYPE &rhs );
//! Subtract a scalar
Array &operator-=( const TYPE &rhs );
public: // Math operations
//! Concatenates the arrays along the dimension dim.
static Array cat( const std::vector<Array> &x, int dim = 0 );
//! Concatenates a given array with the current array
void cat( const Array &x, int dim = 0 );
//! Initialize the array with random values (defined from the function table)
void rand();
//! Return true if NaNs are present
inline bool NaNs() const;
//! Return the smallest value
inline TYPE min() const;
//! Return the largest value
inline TYPE max() const;
//! Return the sum of all elements
inline TYPE sum() const;
//! Return the mean of all elements
inline TYPE mean() const;
//! Return the min of all elements in a given direction
Array<TYPE, FUN> min( int dir ) const;
//! Return the max of all elements in a given direction
Array<TYPE, FUN> max( int dir ) const;
//! Return the sum of all elements in a given direction
Array<TYPE, FUN> sum( int dir ) const;
//! Return the smallest value
inline TYPE min( const std::vector<size_t> &index ) const;
//! Return the largest value
inline TYPE max( const std::vector<size_t> &index ) const;
//! Return the sum of all elements
inline TYPE sum( const std::vector<size_t> &index ) const;
//! Return the mean of all elements
inline TYPE mean( const std::vector<size_t> &index ) const;
//! Return the smallest value
inline TYPE min( const std::vector<Range<size_t>> &index ) const;
//! Return the largest value
inline TYPE max( const std::vector<Range<size_t>> &index ) const;
//! Return the sum of all elements
inline TYPE sum( const std::vector<Range<size_t>> &index ) const;
//! Return the mean of all elements
inline TYPE mean( const std::vector<Range<size_t>> &index ) const;
//! Find all elements that match the operator
std::vector<size_t> find(
const TYPE &value, std::function<bool( const TYPE &, const TYPE & )> compare ) const;
//! Print an array
void print(
std::ostream &os, const std::string &name = "A", const std::string &prefix = "" ) const;
//! Multiply two arrays
static Array multiply( const Array &a, const Array &b );
//! Transpose an array
Array<TYPE, FUN> reverseDim() const;
//! Replicate an array a given number of times in each direction
Array<TYPE, FUN> repmat( const std::vector<size_t> &N ) const;
//! Coarsen an array using the given filter
Array<TYPE, FUN> coarsen( const Array<TYPE, FUN> &filter ) const;
//! Coarsen an array using the given filter
Array<TYPE, FUN> coarsen( const std::vector<size_t> &ratio,
std::function<TYPE( const Array<TYPE, FUN> & )> filter ) const;
/*!
* Perform a element-wise operation y = f(x)
* @param[in] fun The function operation
* @param[in] x The input array
*/
static Array transform( std::function<TYPE( const TYPE & )> fun, const Array &x );
/*!
* Perform a element-wise operation z = f(x,y)
* @param[in] fun The function operation
* @param[in] x The first array
* @param[in] y The second array
*/
static Array transform(
std::function<TYPE( const TYPE &, const TYPE & )> fun, const Array &x, const Array &y );
/*!
* axpby operation: this = alpha*x + beta*this
* @param[in] alpha alpha
* @param[in] x x
* @param[in] beta beta
*/
void axpby( const TYPE &alpha, const Array<TYPE, FUN> &x, const TYPE &beta );
private:
ArraySize d_size; // Size of each dimension
TYPE *d_data; // Raw pointer to data in array
std::shared_ptr<TYPE> d_ptr; // Shared pointer to data in array
void allocate( const ArraySize &N );
public:
template<class TYPE2, class FUN2>
inline bool sizeMatch( const Array<TYPE2, FUN2> &rhs ) const
{
return d_size == rhs.d_size;
}
private:
inline void checkSubsetIndex( const std::vector<Range<size_t>> &range ) const;
inline std::vector<Range<size_t>> convert( const std::vector<size_t> &index ) const;
static inline void getSubsetArrays( const std::vector<Range<size_t>> &range,
std::array<size_t, 5> &first, std::array<size_t, 5> &last, std::array<size_t, 5> &inc,
std::array<size_t, 5> &N );
};
typedef Array<double> DoubleArray;
typedef Array<float> FloatArray;
typedef Array<int> IntArray;
#include "common/Array.hpp"
#endif