Files
LBPM/tests/TestCommD3Q19.cpp
2018-05-19 07:49:32 -04:00

465 lines
15 KiB
C++

//*************************************************************************
// Lattice Boltzmann Simulator for Single Phase Flow in Porous Media
// James E. McCLure
//*************************************************************************
#include <stdio.h>
#include <iostream>
#include <fstream>
#include "common/ScaLBL.h"
#include "common/MPI_Helpers.h"
using namespace std;
std::shared_ptr<Database> loadInputs( int nprocs )
{
auto db = std::make_shared<Database>( "Domain.in" );
const int dim = 50;
db->putScalar<int>( "BC", 0 );
if ( nprocs == 1 ){
db->putVector<int>( "nproc", { 1, 1, 1 } );
db->putVector<int>( "n", { 3, 1, 1 } );
db->putScalar<int>( "nspheres", 0 );
db->putVector<double>( "L", { 1, 1, 1 } );
} else if ( nprocs == 2 ) {
db->putVector<int>( "nproc", { 2, 1, 1 } );
db->putVector<int>( "n", { dim, dim, dim } );
db->putScalar<int>( "nspheres", 0 );
db->putVector<double>( "L", { 1, 1, 1 } );
} else if ( nprocs == 4 ) {
db->putVector<int>( "nproc", { 2, 2, 1 } );
db->putVector<int>( "n", { dim, dim, dim } );
db->putScalar<int>( "nspheres", 0 );
db->putVector<double>( "L", { 1, 1, 1 } );
} else if (nprocs==8){
db->putVector<int>( "nproc", { 2, 2, 2 } );
db->putVector<int>( "n", { dim, dim, dim } );
db->putScalar<int>( "nspheres", 0 );
db->putVector<double>( "L", { 1, 1, 1 } );
}
return db;
}
extern void GlobalFlipScaLBL_D3Q19_Init(double *dist, IntArray Map, int Np, int Nx, int Ny, int Nz,
int iproc, int jproc, int kproc, int nprocx, int nprocy, int nprocz)
{
// Set of Discrete velocities for the D3Q19 Model
static int D3Q19[18][3]={{1,0,0},{-1,0,0},{0,1,0},{0,-1,0},{0,0,1},{0,0,-1},
{1,1,0},{-1,-1,0},{1,-1,0},{-1,1,0},{1,0,1},{-1,0,-1},{1,0,-1},{-1,0,1},
{0,1,1},{0,-1,-1},{0,1,-1},{0,-1,1}};
int q,i,j,k,n,N;
int Cqx,Cqy,Cqz; // Discrete velocity
int x,y,z; // Global indices
int xn,yn,zn; // Global indices of neighbor
int X,Y,Z; // Global size
int idx;
X = Nx*nprocx;
Y = Ny*nprocy;
Z = Nz*nprocz;
NULL_USE(Z);
N = (Nx+2)*(Ny+2)*(Nz+2); // size of the array including halo
for (k=0; k<Nz; k++){
for (j=0; j<Ny; j++){
for (i=0; i<Nx; i++){
//n = (k+1)*(Nx+2)*(Ny+2) + (j+1)*(Nx+2) + i+1;
idx=Map(i,j,k);
if (idx > 0){
// Get the 'global' index
x = iproc*Nx+i;
y = jproc*Ny+j;
z = kproc*Nz+k;
for (q=0; q<18; q++){
// Odd distribution
Cqx = D3Q19[q][0];
Cqy = D3Q19[q][1];
Cqz = D3Q19[q][2];
xn = x - Cqx;
yn = y - Cqy;
zn = z - Cqz;
xn=x; yn=y;zn=z;
if (xn < 0) xn += nprocx*Nx;
if (yn < 0) yn += nprocy*Ny;
if (zn < 0) zn += nprocz*Nz;
if (!(xn < nprocx*Nx)) xn -= nprocx*Nx;
if (!(yn < nprocy*Ny)) yn -= nprocy*Ny;
if (!(zn < nprocz*Nz)) zn -= nprocz*Nz;
dist[(q+1)*Np+idx] = (zn*X*Y+yn*X+xn) + (q+1)*0.01;
}
}
}
}
}
}
extern int GlobalCheckDebugDist(double *dist, IntArray Map, int Np, int Nx, int Ny, int Nz,
int iproc, int jproc, int kproc, int nprocx, int nprocy, int nprocz, int start, int finish)
{
int returnValue = 0;
int q,i,j,k,n,N,idx;
int Cqx,Cqy,Cqz; // Discrete velocity
int x,y,z; // Global indices
int xn,yn,zn; // Global indices of neighbor
int X,Y,Z; // Global size
X = Nx*nprocx;
Y = Ny*nprocy;
Z = Nz*nprocz;
NULL_USE(Z);
N = (Nx+2)*(Ny+2)*(Nz+2); // size of the array including halo
for (k=0; k<Nz; k++){
for (j=0; j<Ny; j++){
for (i=0; i<Nx; i++){
idx=Map(i,j,k);
if (idx > start && idx< finish){
// Get the 'global' index
x = iproc*Nx+i;
y = jproc*Ny+j;
z = kproc*Nz+k;
for (q=0; q<18; q++){
if (dist[(q+1)*Np+idx] != (z*X*Y+y*X+x) + (q+1)*0.01){
printf("******************************************\n");
printf("error in distribution q = %i \n", (q+1));
printf("i,j,k= %i, %i, %i \n", x,y,z);
printf("dist = %5.2f \n", dist[(q+1)*Np+idx]);
printf("n= %i \n",z*X*Y+y*X+x);
returnValue++;
}
}
}
}
}
}
return returnValue;
}
inline void PackID(int *list, int count, char *sendbuf, char *ID){
// Fill in the phase ID values from neighboring processors
// This packs up the values that need to be sent from one processor to another
int idx,n;
for (idx=0; idx<count; idx++){
n = list[idx];
sendbuf[idx] = ID[n];
}
}
//***************************************************************************************
inline void UnpackID(int *list, int count, char *recvbuf, char *ID){
// Fill in the phase ID values from neighboring processors
// This unpacks the values once they have been recieved from neighbors
int idx,n;
for (idx=0; idx<count; idx++){
n = list[idx];
ID[n] = recvbuf[idx];
}
}
//***************************************************************************************
int main(int argc, char **argv)
{
//*****************************************
// ***** MPI STUFF ****************
//*****************************************
// Initialize MPI
int rank,nprocs;
MPI_Init(&argc,&argv);
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Comm_rank(comm,&rank);
MPI_Comm_size(comm,&nprocs);
int check;
{
// parallel domain size (# of sub-domains)
int nprocx,nprocy,nprocz;
int iproc,jproc,kproc;
//*****************************************
// MPI ranks for all 18 neighbors
//**********************************
int rank_x,rank_y,rank_z,rank_X,rank_Y,rank_Z;
int rank_xy,rank_XY,rank_xY,rank_Xy;
int rank_xz,rank_XZ,rank_xZ,rank_Xz;
int rank_yz,rank_YZ,rank_yZ,rank_Yz;
//**********************************
MPI_Request req1[18],req2[18];
MPI_Status stat1[18],stat2[18];
if (rank == 0){
printf("********************************************************\n");
printf("Running Unit Test for D3Q19 MPI Communication \n");
printf("********************************************************\n");
}
// BGK Model parameters
string FILENAME;
unsigned int nBlocks, nthreads;
int timestepMax, interval;
double tau,Fx,Fy,Fz,tol;
// Domain variables
int i,j,k,n;
// Load inputs
auto db = loadInputs( nprocs );
int Nx = db->getVector<int>( "n" )[0];
int Ny = db->getVector<int>( "n" )[1];
int Nz = db->getVector<int>( "n" )[2];
if (rank==0){
printf("********************************************************\n");
printf("Sub-domain size = %i x %i x %i\n",Nz,Nz,Nz);
printf("Parallel domain size = %i x %i x %i\n",nprocx,nprocy,nprocz);
printf("********************************************************\n");
}
MPI_Barrier(comm);
kproc = rank/(nprocx*nprocy);
jproc = (rank-nprocx*nprocy*kproc)/nprocx;
iproc = rank-nprocx*nprocy*kproc-nprocz*jproc;
double iVol_global = 1.0/Nx/Ny/Nz/nprocx/nprocy/nprocz;
Domain Dm(db);
InitializeRanks( rank, nprocx, nprocy, nprocz, iproc, jproc, kproc,
rank_x, rank_y, rank_z, rank_X, rank_Y, rank_Z,
rank_xy, rank_XY, rank_xY, rank_Xy, rank_xz, rank_XZ, rank_xZ, rank_Xz,
rank_yz, rank_YZ, rank_yZ, rank_Yz );
Nx += 2;
Ny += 2;
Nz += 2;
int N = Nx*Ny*Nz;
int dist_mem_size = N*sizeof(double);
//.......................................................................
// Assign the phase ID field
//.......................................................................
char LocalRankString[8];
sprintf(LocalRankString,"%05d",rank);
char LocalRankFilename[40];
sprintf(LocalRankFilename,"ID.%05i",rank);
char *id;
id = new char[Nx*Ny*Nz];
if (rank==0) printf("Assigning phase ID from file \n");
if (rank==0) printf("Initialize from segmented data: solid=0, NWP=1, WP=2 \n");
FILE *IDFILE = fopen(LocalRankFilename,"rb");
if (IDFILE==NULL) ERROR("Error opening file: ID.xxxxx");
fread(id,1,N,IDFILE);
fclose(IDFILE);
// Setup the domain
for (k=0;k<Nz;k++){
for (j=0;j<Ny;j++){
for (i=0;i<Nx;i++){
n = k*Nx*Ny+j*Nx+i;
//id[n] = 1;
Dm.id[n] = id[n];
}
}
}
Dm.CommInit();
//.......................................................................
// Compute the media porosity
//.......................................................................
double sum;
double sum_local=0.0, porosity;
char component = 0; // solid phase
int Np=0;
for (k=1;k<Nz-1;k++){
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
if (id[n] == component){
sum_local+=1.0;
}
else Np++;
}
}
}
MPI_Allreduce(&sum_local,&sum,1,MPI_DOUBLE,MPI_SUM,comm);
porosity = 1.0-sum*iVol_global;
if (rank==0) printf("Media porosity = %f \n",porosity);
//.......................................................................
//...........................................................................
MPI_Barrier(comm);
if (rank == 0) cout << "Domain set." << endl;
//...........................................................................
//...........................................................................
if (rank==0) printf ("Create ScaLBL_Communicator \n");
// Create a communicator for the device (will use optimized layout)
ScaLBL_Communicator ScaLBL_Comm(Dm);
if (rank==0) printf ("Set up memory efficient layout \n");
int neighborSize=18*Np*sizeof(int);
int *neighborList;
IntArray Map(Nx,Ny,Nz);
neighborList= new int[18*Np];
ScaLBL_Comm.MemoryOptimizedLayoutAA(Map,neighborList,Dm.id,Np);
MPI_Barrier(comm);
//......................device distributions.................................
dist_mem_size = Np*sizeof(double);
if (rank==0) printf ("Allocating distributions \n");
int *NeighborList;
int *dvcMap;
double *fq;
//...........................................................................
ScaLBL_AllocateDeviceMemory((void **) &NeighborList, neighborSize);
ScaLBL_AllocateDeviceMemory((void **) &dvcMap, sizeof(int)*Np);
ScaLBL_AllocateDeviceMemory((void **) &fq, 19*dist_mem_size);
//...........................................................................
double *fq_host;
fq_host = new double [19*Np];
// Update GPU data structures
if (rank==0) printf ("Setting up device map and neighbor list \n");
int *TmpMap;
TmpMap=new int[Np];
for (k=1; k<Nz-1; k++){
for (j=1; j<Ny-1; j++){
for (i=1; i<Nx-1; i++){
int idx=Map(i,j,k);
if (!(idx < 0))
TmpMap[idx] = k*Nx*Ny+j*Nx+i;
}
}
}
ScaLBL_CopyToDevice(dvcMap, TmpMap, sizeof(int)*Np);
ScaLBL_DeviceBarrier();
delete [] TmpMap;
//...........................................................................
/* // Write the communcation structure into a file for debugging
char LocalCommFile[40];
sprintf(LocalCommFile,"%s%s","Comm.",LocalRankString);
FILE *CommFile;
CommFile = fopen(LocalCommFile,"w");
fprintf(CommFile,"rank=%d, ",rank);
fprintf(CommFile,"i=%d,j=%d,k=%d :",iproc,jproc,kproc);
fprintf(CommFile,"x=%d, ",rank_x);
fprintf(CommFile,"X=%d, ",rank_X);
fprintf(CommFile,"y=%d, ",rank_y);
fprintf(CommFile,"Y=%d, ",rank_Y);
fprintf(CommFile,"z=%d, ",rank_z);
fprintf(CommFile,"Z=%d, ",rank_Z);
fprintf(CommFile,"xy=%d, ",rank_xy);
fprintf(CommFile,"XY=%d, ",rank_XY);
fprintf(CommFile,"xY=%d, ",rank_xY);
fprintf(CommFile,"Xy=%d, ",rank_Xy);
fprintf(CommFile,"xz=%d, ",rank_xz);
fprintf(CommFile,"XZ=%d, ",rank_XZ);
fprintf(CommFile,"xZ=%d, ",rank_xZ);
fprintf(CommFile,"Xz=%d, ",rank_Xz);
fprintf(CommFile,"yz=%d, ",rank_yz);
fprintf(CommFile,"YZ=%d, ",rank_YZ);
fprintf(CommFile,"yZ=%d, ",rank_yZ);
fprintf(CommFile,"Yz=%d, ",rank_Yz);
fprintf(CommFile,"\n");
fclose(CommFile);
*/
if (rank==0) printf("Setting the distributions, size = : %i\n", Np);
//...........................................................................
GlobalFlipScaLBL_D3Q19_Init(fq_host, Map, Np, Nx-2, Ny-2, Nz-2,iproc,jproc,kproc,nprocx,nprocy,nprocz);
ScaLBL_CopyToDevice(fq, fq_host, 19*dist_mem_size);
ScaLBL_DeviceBarrier();
MPI_Barrier(comm);
//*************************************************************************
// First timestep
ScaLBL_Comm.SendD3Q19AA(fq); //READ FROM NORMAL
ScaLBL_Comm.RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
// Second timestep
ScaLBL_Comm.SendD3Q19AA(fq); //READ FROM NORMAL
ScaLBL_Comm.RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
//...........................................................................
ScaLBL_CopyToHost(fq_host,fq,19*Np*sizeof(double));
check = GlobalCheckDebugDist(fq_host, Map, Np, Nx-2, Ny-2, Nz-2,iproc,jproc,kproc,nprocx,nprocy,nprocz,0,ScaLBL_Comm.next);
//...........................................................................
int timestep = 0;
if (rank==0) printf("********************************************************\n");
if (rank==0) printf("No. of timesteps for timing: %i \n", 100);
//.......create and start timer............
double starttime,stoptime,cputime;
MPI_Barrier(comm);
starttime = MPI_Wtime();
//.........................................
//************ MAIN ITERATION LOOP (timing communications)***************************************/
while (timestep < 100){
// First timestep
ScaLBL_Comm.SendD3Q19AA(fq); //READ FROM NORMAL
ScaLBL_Comm.RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
// Second timestep
ScaLBL_Comm.SendD3Q19AA(fq); //READ FROM NORMAL
ScaLBL_Comm.RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
//*********************************************
ScaLBL_DeviceBarrier();
MPI_Barrier(comm);
// Iteration completed!
timestep++;
//...................................................................
}
//************************************************************************/
stoptime = MPI_Wtime();
// cout << "CPU time: " << (stoptime - starttime) << " seconds" << endl;
cputime = stoptime - starttime;
// cout << "Lattice update rate: "<< double(Nx*Ny*Nz*timestep)/cputime/1000000 << " MLUPS" << endl;
double MLUPS = double(Np)*double(timestep)/cputime*1e-6;
if (rank==0) printf("********************************************************\n");
if (rank==0) printf("CPU time = %f \n", cputime);
if (rank==0) printf("Lattice update rate (per process)= %f MLUPS \n", MLUPS);
MLUPS *= nprocs;
if (rank==0) printf("Lattice update rate (process)= %f MLUPS \n", MLUPS);
if (rank==0) printf("********************************************************\n");
// Number of memory references from the swap algorithm (per timestep)
// 18 reads and 18 writes for each lattice site
double MemoryRefs = double(Np)*36;
// number of memory references for the swap algorithm - GigaBytes / second
if (rank==0) printf("DRAM bandwidth (per process)= %f GB/sec \n",MemoryRefs*8*double(timestep)*1e-9);
// Report bandwidth in Gigabits per second
// communication bandwidth includes both send and recieve
if (rank==0) printf("Communication bandwidth (per process)= %f Gbit/sec \n",ScaLBL_Comm.CommunicationCount*64*timestep/1e9);
if (rank==0) printf("Aggregated communication bandwidth = %f Gbit/sec \n",nprocs*ScaLBL_Comm.CommunicationCount*64*timestep/1e9);
}
// ****************************************************
MPI_Barrier(comm);
MPI_Finalize();
// ****************************************************
return check;
}