220 lines
6.0 KiB
C++
220 lines
6.0 KiB
C++
// Sequential blob analysis
|
|
// Reads parallel simulation data and performs connectivity analysis
|
|
// and averaging on a blob-by-blob basis
|
|
// James E. McClure 2014
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include <sstream>
|
|
#include <functional>
|
|
|
|
#include "common/Array.h"
|
|
#include "common/Domain.h"
|
|
#include "common/Communication.h"
|
|
#include "common/MPI_Helpers.h"
|
|
#include "IO/MeshDatabase.h"
|
|
#include "IO/Mesh.h"
|
|
#include "IO/Writer.h"
|
|
#include "IO/netcdf.h"
|
|
#include "analysis/analysis.h"
|
|
#include "analysis/filters.h"
|
|
#include "analysis/distance.h"
|
|
#include "analysis/Minkowski.h"
|
|
|
|
#include "ProfilerApp.h"
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
|
|
// Initialize MPI
|
|
int rank, nprocs;
|
|
MPI_Init(&argc,&argv);
|
|
MPI_Comm comm = MPI_COMM_WORLD;
|
|
MPI_Comm_rank(comm,&rank);
|
|
MPI_Comm_size(comm,&nprocs);
|
|
{
|
|
Utilities::setErrorHandlers();
|
|
PROFILE_START("Main");
|
|
|
|
//std::vector<std::string> filenames;
|
|
if ( argc<2 ) {
|
|
if ( rank == 0 ){
|
|
printf("At least one filename must be specified\n");
|
|
}
|
|
return 1;
|
|
}
|
|
std::string filename = std::string(argv[1]);
|
|
if ( rank == 0 ){
|
|
printf("Input data file: %s\n",filename.c_str());
|
|
}
|
|
|
|
auto db = std::make_shared<Database>( filename );
|
|
auto domain_db = db->getDatabase( "Domain" );
|
|
|
|
// Read domain parameters
|
|
auto Filename = domain_db->getScalar<std::string>( "Filename" );
|
|
auto L = domain_db->getVector<double>( "L" );
|
|
auto size = domain_db->getVector<int>( "n" );
|
|
auto SIZE = domain_db->getVector<int>( "N" );
|
|
auto nproc = domain_db->getVector<int>( "nproc" );
|
|
auto ReadValues = domain_db->getVector<char>( "ReadValues" );
|
|
auto WriteValues = domain_db->getVector<char>( "WriteValues" );
|
|
auto nx = size[0];
|
|
auto ny = size[1];
|
|
auto nz = size[2];
|
|
auto nprocx = nproc[0];
|
|
auto nprocy = nproc[1];
|
|
auto nprocz = nproc[2];
|
|
auto Nx = SIZE[0];
|
|
auto Ny = SIZE[1];
|
|
auto Nz = SIZE[2];
|
|
|
|
int i,j,k,n;
|
|
|
|
char *SegData = NULL;
|
|
// Rank=0 reads the entire segmented data and distributes to worker processes
|
|
if (rank==0){
|
|
printf("Dimensions of segmented image: %i x %i x %i \n",Nx,Ny,Nz);
|
|
SegData = new char[Nx*Ny*Nz];
|
|
FILE *SEGDAT = fopen(Filename.c_str(),"rb");
|
|
if (SEGDAT==NULL) ERROR("Error reading segmented data");
|
|
size_t ReadSeg;
|
|
ReadSeg=fread(SegData,1,Nx*Ny*Nz,SEGDAT);
|
|
if (ReadSeg != size_t(Nx*Ny*Nz)) printf("lbpm_segmented_decomp: Error reading segmented data (rank=%i)\n",rank);
|
|
fclose(SEGDAT);
|
|
printf("Read segmented data from %s \n",Filename.c_str());
|
|
}
|
|
MPI_Barrier(comm);
|
|
|
|
// Get the rank info
|
|
int N = (nx+2)*(ny+2)*(nz+2);
|
|
|
|
std::shared_ptr<Domain> Dm (new Domain(domain_db,comm));
|
|
for (k=0;k<nz+2;k++){
|
|
for (j=0;j<ny+2;j++){
|
|
for (i=0;i<nx+2;i++){
|
|
n = k*(nx+2)*(ny+2)+j*(nx+2)+i;
|
|
Dm->id[n] = 1;
|
|
}
|
|
}
|
|
}
|
|
Dm->CommInit();
|
|
|
|
int z_transition_size = 0;
|
|
int xStart = 0;
|
|
int yStart = 0;
|
|
int zStart = 0;
|
|
// Set up the sub-domains
|
|
if (rank==0){
|
|
printf("Distributing subdomain across %i processors \n",nprocs);
|
|
printf("Process grid: %i x %i x %i \n",Dm->nprocx(),Dm->nprocy(),Dm->nprocz());
|
|
printf("Subdomain size: %i \n",N);
|
|
//printf("Size of transition region: %i \n", z_transition_size);
|
|
char *tmp;
|
|
tmp = new char[N];
|
|
for (int kp=0; kp<nprocz; kp++){
|
|
for (int jp=0; jp<nprocy; jp++){
|
|
for (int ip=0; ip<nprocx; ip++){
|
|
// rank of the process that gets this subdomain
|
|
int rnk = kp*Dm->nprocx()*Dm->nprocy() + jp*Dm->nprocx() + ip;
|
|
// Pack and send the subdomain for rnk
|
|
for (k=0;k<nz+2;k++){
|
|
for (j=0;j<ny+2;j++){
|
|
for (i=0;i<nx+2;i++){
|
|
int x = xStart + ip*nx + i-1;
|
|
int y = yStart + jp*ny + j-1;
|
|
// int z = zStart + kp*nz + k-1;
|
|
int z = zStart + kp*nz + k-1 - z_transition_size;
|
|
if (x<xStart) x=xStart;
|
|
if (!(x<Nx)) x=Nx-1;
|
|
if (y<yStart) y=yStart;
|
|
if (!(y<Ny)) y=Ny-1;
|
|
if (z<zStart) z=zStart;
|
|
if (!(z<Nz)) z=Nz-1;
|
|
int nlocal = k*(nx+2)*(ny+2) + j*(nx+2) + i;
|
|
int nglobal = z*Nx*Ny+y*Nx+x;
|
|
tmp[nlocal] = SegData[nglobal];
|
|
}
|
|
}
|
|
}
|
|
if (rnk==0){
|
|
for (k=0;k<nz+2;k++){
|
|
for (j=0;j<ny+2;j++){
|
|
for (i=0;i<nx+2;i++){
|
|
int nlocal = k*(nx+2)*(ny+2) + j*(nx+2) + i;
|
|
Dm->id[nlocal] = tmp[nlocal];
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else{
|
|
printf("Sending data to process %i \n", rnk);
|
|
MPI_Send(tmp,N,MPI_CHAR,rnk,15,comm);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else{
|
|
// Recieve the subdomain from rank = 0
|
|
printf("Ready to recieve data %i at process %i \n", N,rank);
|
|
MPI_Recv(Dm->id,N,MPI_CHAR,0,15,comm,MPI_STATUS_IGNORE);
|
|
}
|
|
MPI_Barrier(comm);
|
|
|
|
// Compute the Minkowski functionals
|
|
MPI_Barrier(comm);
|
|
std::shared_ptr<Minkowski> Averages(new Minkowski(Dm));
|
|
|
|
// Calculate the distance
|
|
// Initialize the domain and communication
|
|
nx+=2; ny+=2; nz+=2;
|
|
Array<char> id(nx,ny,nz);
|
|
DoubleArray Distance(nx,ny,nz);
|
|
|
|
//if (rank==0){
|
|
//printf("ID: %i, %i, %i \n",Dm->Nx, Dm->Ny, Dm->Nz);
|
|
// printf("ID: %i, %i, %i \n",id.size(0),id.size(1),id.size(2));
|
|
// printf("SDn: %i, %i, %i \n",Averages->SDn.size(0),Averages->SDn.size(1),Averages->SDn.size(2));
|
|
//}
|
|
|
|
// Solve for the position of the solid phase
|
|
for (k=0;k<nz;k++){
|
|
for (j=0;j<ny;j++){
|
|
for (i=0;i<nx;i++){
|
|
n = k*nx*ny+j*nx+i;
|
|
// Initialize the object
|
|
if (Dm->id[n] == ReadValues[0]) id(i,j,k) = 1;
|
|
else id(i,j,k) = 0;
|
|
}
|
|
}
|
|
}
|
|
for (k=0;k<nz;k++){
|
|
for (j=0;j<ny;j++){
|
|
for (i=0;i<nx;i++){
|
|
n=k*nx*ny+j*nx+i;
|
|
// Initialize distance to +/- 1
|
|
Distance(i,j,k) = 2.0*double(id(i,j,k))-1.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
//std::array<bool> bc(3)={1,1,1};
|
|
if (rank==0) printf("Initialized solid phase -- Converting to Signed Distance function \n");
|
|
CalcDist(Distance,id,*Dm);
|
|
|
|
if (rank==0) printf("Computing Minkowski functionals \n");
|
|
Averages->ComputeScalar(Distance,0.f);
|
|
Averages->PrintAll();
|
|
}
|
|
PROFILE_STOP("Main");
|
|
PROFILE_SAVE("Minkowski",true);
|
|
MPI_Barrier(comm);
|
|
MPI_Finalize();
|
|
return 0;
|
|
}
|
|
|