670 lines
18 KiB
C++
670 lines
18 KiB
C++
#include "analysis/dcel.h"
|
|
|
|
/*
|
|
Double connected edge list (DECL)
|
|
*/
|
|
|
|
Vertex::Vertex(){
|
|
size_ = 0;
|
|
vertex_data.resize(36);
|
|
}
|
|
|
|
Vertex::~Vertex(){
|
|
|
|
}
|
|
|
|
void Vertex::add(Point P){
|
|
vertex_data.push_back(P.x);
|
|
vertex_data.push_back(P.y);
|
|
vertex_data.push_back(P.z);
|
|
size_++;
|
|
}
|
|
|
|
void Vertex::assign(int idx, Point P){
|
|
vertex_data[3*idx] = P.x;
|
|
vertex_data[3*idx+1] = P.y;
|
|
vertex_data[3*idx+2] = P.z;
|
|
}
|
|
|
|
int Vertex::size(){
|
|
return size_;
|
|
}
|
|
|
|
Point Vertex::coords(int idx){
|
|
Point P;
|
|
P.x = vertex_data[3*idx];
|
|
P.y = vertex_data[3*idx+1];
|
|
P.z = vertex_data[3*idx+2];
|
|
return P;
|
|
}
|
|
|
|
|
|
Halfedge::Halfedge(){
|
|
size_=0;
|
|
}
|
|
|
|
Halfedge::~Halfedge(){
|
|
|
|
}
|
|
int Halfedge::v1(int edge){
|
|
return data(0,edge);
|
|
}
|
|
|
|
int Halfedge::v2(int edge){
|
|
return data(1,edge);
|
|
}
|
|
|
|
int Halfedge::face(int edge){
|
|
return data(2,edge);
|
|
}
|
|
|
|
int Halfedge::twin(int edge){
|
|
return data(3,edge);
|
|
}
|
|
|
|
int Halfedge::prev(int edge){
|
|
return data(4,edge);
|
|
}
|
|
|
|
int Halfedge::next(int edge){
|
|
return data(5,edge);
|
|
}
|
|
|
|
int Halfedge::size(){
|
|
return size_;
|
|
}
|
|
|
|
|
|
DECL::DECL(){
|
|
}
|
|
|
|
DECL::~DECL(){
|
|
TriangleCount=0;
|
|
VertexCount=0;
|
|
|
|
}
|
|
|
|
int DECL::Face(int index){
|
|
return FaceData(index);
|
|
}
|
|
|
|
void DECL::LocalIsosurface(const DoubleArray A, double value, const int i, const int j, const int k){
|
|
Point P,Q;
|
|
Point PlaceHolder;
|
|
Point C0,C1,C2,C3,C4,C5,C6,C7;
|
|
|
|
int CubeIndex;
|
|
int nTris = 0;
|
|
int nVert =0;
|
|
|
|
Point VertexList[12];
|
|
Point NewVertexList[12];
|
|
int LocalRemap[12];
|
|
|
|
DTMutableList<Point> cellvertices = DTMutableList<Point>(20);
|
|
IntArray Triangles = IntArray(3,20);
|
|
|
|
// Values from array 'A' at the cube corners
|
|
double CubeValues[8];
|
|
|
|
// Points corresponding to cube corners
|
|
C0.x = 0.0; C0.y = 0.0; C0.z = 0.0;
|
|
C1.x = 1.0; C1.y = 0.0; C1.z = 0.0;
|
|
C2.x = 1.0; C2.y = 1.0; C2.z = 0.0;
|
|
C3.x = 0.0; C3.y = 1.0; C3.z = 0.0;
|
|
C4.x = 0.0; C4.y = 0.0; C4.z = 1.0;
|
|
C5.x = 1.0; C5.y = 0.0; C5.z = 1.0;
|
|
C6.x = 1.0; C6.y = 1.0; C6.z = 1.0;
|
|
C7.x = 0.0; C7.y = 1.0; C7.z = 1.0;
|
|
|
|
CubeValues[0] = A(i,j,k) - value;
|
|
CubeValues[1] = A(i+1,j,k) - value;
|
|
CubeValues[2] = A(i+1,j+1,k) - value;
|
|
CubeValues[3] = A(i,j+1,k) - value;
|
|
CubeValues[4] = A(i,j,k+1) - value;
|
|
CubeValues[5] = A(i+1,j,k+1) - value;
|
|
CubeValues[6] = A(i+1,j+1,k+1) - value;
|
|
CubeValues[7] = A(i,j+1,k+1) -value;
|
|
//printf("Set cube values: %i, %i, %i \n",i,j,k);
|
|
|
|
//Determine the index into the edge table which
|
|
//tells us which vertices are inside of the surface
|
|
CubeIndex = 0;
|
|
if (CubeValues[0] < 0.0f) CubeIndex |= 1;
|
|
if (CubeValues[1] < 0.0f) CubeIndex |= 2;
|
|
if (CubeValues[2] < 0.0f) CubeIndex |= 4;
|
|
if (CubeValues[3] < 0.0f) CubeIndex |= 8;
|
|
if (CubeValues[4] < 0.0f) CubeIndex |= 16;
|
|
if (CubeValues[5] < 0.0f) CubeIndex |= 32;
|
|
if (CubeValues[6] < 0.0f) CubeIndex |= 64;
|
|
if (CubeValues[7] < 0.0f) CubeIndex |= 128;
|
|
|
|
//Find the vertices where the surface intersects the cube
|
|
if (edgeTable[CubeIndex] & 1){
|
|
P = VertexInterp(C0,C1,CubeValues[0],CubeValues[1]);
|
|
VertexList[0] = P;
|
|
Q = C0;
|
|
}
|
|
if (edgeTable[CubeIndex] & 2){
|
|
P = VertexInterp(C1,C2,CubeValues[1],CubeValues[2]);
|
|
VertexList[1] = P;
|
|
Q = C1;
|
|
}
|
|
if (edgeTable[CubeIndex] & 4){
|
|
P = VertexInterp(C2,C3,CubeValues[2],CubeValues[3]);
|
|
VertexList[2] = P;
|
|
Q = C2;
|
|
}
|
|
if (edgeTable[CubeIndex] & 8){
|
|
P = VertexInterp(C3,C0,CubeValues[3],CubeValues[0]);
|
|
VertexList[3] = P;
|
|
Q = C3;
|
|
}
|
|
if (edgeTable[CubeIndex] & 16){
|
|
P = VertexInterp(C4,C5,CubeValues[4],CubeValues[5]);
|
|
VertexList[4] = P;
|
|
Q = C4;
|
|
}
|
|
if (edgeTable[CubeIndex] & 32){
|
|
P = VertexInterp(C5,C6,CubeValues[5],CubeValues[6]);
|
|
VertexList[5] = P;
|
|
Q = C5;
|
|
}
|
|
if (edgeTable[CubeIndex] & 64){
|
|
P = VertexInterp(C6,C7,CubeValues[6],CubeValues[7]);
|
|
VertexList[6] = P;
|
|
Q = C6;
|
|
}
|
|
if (edgeTable[CubeIndex] & 128){
|
|
P = VertexInterp(C7,C4,CubeValues[7],CubeValues[4]);
|
|
VertexList[7] = P;
|
|
Q = C7;
|
|
}
|
|
if (edgeTable[CubeIndex] & 256){
|
|
P = VertexInterp(C0,C4,CubeValues[0],CubeValues[4]);
|
|
VertexList[8] = P;
|
|
Q = C0;
|
|
}
|
|
if (edgeTable[CubeIndex] & 512){
|
|
P = VertexInterp(C1,C5,CubeValues[1],CubeValues[5]);
|
|
VertexList[9] = P;
|
|
Q = C1;
|
|
}
|
|
if (edgeTable[CubeIndex] & 1024){
|
|
P = VertexInterp(C2,C6,CubeValues[2],CubeValues[6]);
|
|
VertexList[10] = P;
|
|
Q = C2;
|
|
}
|
|
if (edgeTable[CubeIndex] & 2048){
|
|
P = VertexInterp(C3,C7,CubeValues[3],CubeValues[7]);
|
|
VertexList[11] = P;
|
|
Q = C3;
|
|
}
|
|
|
|
VertexCount=0;
|
|
for (int idx=0;idx<12;idx++)
|
|
LocalRemap[idx] = -1;
|
|
|
|
for (int idx=0;triTable[CubeIndex][idx]!=-1;idx++)
|
|
{
|
|
if(LocalRemap[triTable[CubeIndex][idx]] == -1)
|
|
{
|
|
NewVertexList[VertexCount] = VertexList[triTable[CubeIndex][idx]];
|
|
LocalRemap[triTable[CubeIndex][idx]] = VertexCount;
|
|
VertexCount++;
|
|
}
|
|
}
|
|
|
|
//printf("Found %i vertices \n",VertexCount);
|
|
|
|
for (int idx=0;idx<VertexCount;idx++) {
|
|
P = NewVertexList[idx];
|
|
//P.x += i;
|
|
//P.y += j;
|
|
//P.z += k;
|
|
cellvertices(idx) = P;
|
|
}
|
|
nVert = VertexCount;
|
|
|
|
TriangleCount = 0;
|
|
for (int idx=0;triTable[CubeIndex][idx]!=-1;idx+=3) {
|
|
Triangles(0,TriangleCount) = LocalRemap[triTable[CubeIndex][idx+0]];
|
|
Triangles(1,TriangleCount) = LocalRemap[triTable[CubeIndex][idx+1]];
|
|
Triangles(2,TriangleCount) = LocalRemap[triTable[CubeIndex][idx+2]];
|
|
TriangleCount++;
|
|
}
|
|
nTris = TriangleCount;
|
|
|
|
// Now add the local values to the DECL data structure
|
|
if (nTris>0){
|
|
FaceData.resize(TriangleCount);
|
|
//printf("Construct halfedge structure... \n");
|
|
//printf(" Construct %i triangles \n",nTris);
|
|
halfedge.data.resize(6,nTris*3);
|
|
int idx_edge=0;
|
|
for (int idx=0; idx<TriangleCount; idx++){
|
|
int V1 = Triangles(0,idx);
|
|
int V2 = Triangles(1,idx);
|
|
int V3 = Triangles(2,idx);
|
|
FaceData(idx) = idx_edge;
|
|
// first edge: V1->V2
|
|
halfedge.data(0,idx_edge) = V1; // first vertex
|
|
halfedge.data(1,idx_edge) = V2; // second vertex
|
|
halfedge.data(2,idx_edge) = idx; // triangle
|
|
halfedge.data(3,idx_edge) = -1; // twin
|
|
halfedge.data(4,idx_edge) = idx_edge+2; // previous edge
|
|
halfedge.data(5,idx_edge) = idx_edge+1; // next edge
|
|
idx_edge++;
|
|
// second edge: V2->V3
|
|
halfedge.data(0,idx_edge) = V2; // first vertex
|
|
halfedge.data(1,idx_edge) = V3; // second vertex
|
|
halfedge.data(2,idx_edge) = idx; // triangle
|
|
halfedge.data(3,idx_edge) = -1; // twin
|
|
halfedge.data(4,idx_edge) = idx_edge-1; // previous edge
|
|
halfedge.data(5,idx_edge) = idx_edge+1; // next edge
|
|
idx_edge++;
|
|
// third edge: V3->V1
|
|
halfedge.data(0,idx_edge) = V3; // first vertex
|
|
halfedge.data(1,idx_edge) = V1; // second vertex
|
|
halfedge.data(2,idx_edge) = idx; // triangle
|
|
halfedge.data(3,idx_edge) = -1; // twin
|
|
halfedge.data(4,idx_edge) = idx_edge-1; // previous edge
|
|
halfedge.data(5,idx_edge) = idx_edge-2; // next edge
|
|
idx_edge++;
|
|
//printf(" ***tri %i ***edge %i *** \n",idx, idx_edge);
|
|
}
|
|
//printf(" parsing halfedge structure\n");
|
|
int EdgeCount=idx_edge;
|
|
for (int idx=0; idx<EdgeCount; idx++){
|
|
int V1=halfedge.data(0,idx);
|
|
int V2=halfedge.data(1,idx);
|
|
// Find all the twins within the cube
|
|
for (int jdx=0; jdx<EdgeCount; jdx++){
|
|
if (halfedge.data(1,jdx) == V1 && halfedge.data(0,jdx) == V2){
|
|
// this is the pair
|
|
halfedge.data(3,idx) = jdx;
|
|
halfedge.data(3,jdx) = idx;
|
|
}
|
|
if (halfedge.data(1,jdx) == V2 && halfedge.data(0,jdx) == V1 && !(idx==jdx)){
|
|
std::printf("WARNING: half edges with identical orientation! \n");
|
|
}
|
|
}
|
|
// Use "ghost" twins if edge is on a cube face
|
|
P = cellvertices(V1);
|
|
Q = cellvertices(V2);
|
|
if (P.x == 0.0 && Q.x == 0.0) halfedge.data(3,idx) = -1; // ghost twin for x=0 face
|
|
if (P.x == 1.0 && Q.x == 1.0) halfedge.data(3,idx) = -4; // ghost twin for x=1 face
|
|
if (P.y == 0.0 && Q.y == 0.0) halfedge.data(3,idx) = -2; // ghost twin for y=0 face
|
|
if (P.y == 1.0 && Q.y == 1.0) halfedge.data(3,idx) = -5; // ghost twin for y=1 face
|
|
if (P.z == 0.0 && Q.z == 0.0) halfedge.data(3,idx) = -3; // ghost twin for z=0 face
|
|
if (P.z == 1.0 && Q.z == 1.0) halfedge.data(3,idx) = -6; // ghost twin for z=1 face
|
|
}
|
|
}
|
|
|
|
// Map vertices to global coordinates
|
|
for (int idx=0;idx<VertexCount;idx++) {
|
|
P = cellvertices(idx);
|
|
P.x += i;
|
|
P.y += j;
|
|
P.z += k;
|
|
vertex.assign(idx,P);
|
|
}
|
|
}
|
|
|
|
Point DECL::TriNormal(int edge)
|
|
{
|
|
Point P,Q,R;
|
|
Point U,V,W;
|
|
double nx,ny,nz,len;
|
|
// at cube faces define outward normal to cube
|
|
if (edge == -1){
|
|
W.x = -1.0; W.y = 0.0; W.z = 0.0; // x cube face
|
|
}
|
|
else if (edge == -2){
|
|
W.x = 0.0; W.y = -1.0; W.z = 0.0; // y cube face
|
|
}
|
|
else if (edge == -3){
|
|
W.x = 0.0; W.y = 0.0; W.z = -1.0; // z cube face
|
|
}
|
|
else if (edge == -4){
|
|
W.x = 1.0; W.y = 0.0; W.z = 0.0; // x cube face
|
|
}
|
|
else if (edge == -5){
|
|
W.x = 0.0; W.y = 1.0; W.z = 0.0; // y cube face
|
|
}
|
|
else if (edge == -6){
|
|
W.x = 0.0; W.y = 0.0; W.z = 1.0; // z cube face
|
|
}
|
|
else{
|
|
// vertices for triange
|
|
int e2 = halfedge.next(edge);
|
|
int e3 = halfedge.next(e2);
|
|
P=vertex.coords(halfedge.v1(edge));
|
|
Q=vertex.coords(halfedge.v1(e2));
|
|
R=vertex.coords(halfedge.v1(e3));
|
|
// edge vectors
|
|
U = Q-P;
|
|
V = R-Q;
|
|
// normal vector
|
|
nx = U.y*V.z - U.z*V.y;
|
|
ny = U.z*V.x - U.x*V.z;
|
|
nz = U.x*V.y - U.y*V.x;
|
|
len = sqrt(nx*nx+ny*ny+nz*nz);
|
|
W.x = nx/len; W.y = ny/len; W.z = nz/len;
|
|
}
|
|
return W;
|
|
}
|
|
|
|
double DECL::EdgeAngle(int edge)
|
|
{
|
|
double angle;
|
|
double nx,ny,nz;
|
|
double dotprod,length,hypotenuse;
|
|
Point P,Q,R; // triangle vertices
|
|
Point U,V,W; // normal vectors
|
|
int e2 = halfedge.next(edge);
|
|
int e3 = halfedge.next(e2);
|
|
P=vertex.coords(halfedge.v1(edge));
|
|
Q=vertex.coords(halfedge.v1(e2));
|
|
R=vertex.coords(halfedge.v1(e3));
|
|
U = TriNormal(edge);
|
|
V = TriNormal(halfedge.twin(edge));
|
|
if (halfedge.twin(edge) < 0 ){
|
|
// compute edge normal in plane of cube face
|
|
W = P - Q; // edge tangent vector
|
|
length = sqrt(W.x*W.x+W.y*W.y+W.z*W.z);
|
|
W.x /= length;
|
|
W.y /= length;
|
|
W.z /= length;
|
|
// edge normal within the plane of the cube face
|
|
nx = W.y*V.z - W.z*V.y;
|
|
ny = W.z*V.x - W.x*V.z;
|
|
nz = W.x*V.y - W.y*V.x;
|
|
length = sqrt(nx*nx+ny*ny+nz*nz);
|
|
// new value for V is this normal vector
|
|
V.x = nx/length; V.y = ny/length; V.z = nz/length;
|
|
dotprod = U.x*V.x + U.y*V.y + U.z*V.z;
|
|
if (dotprod < 0.f){
|
|
//printf("negative dot product on face\n");
|
|
dotprod=-dotprod;
|
|
V.x = -V.x; V.y = -V.y; V.z = -V.z;
|
|
}
|
|
|
|
if (dotprod > 1.f) dotprod=1.f;
|
|
angle = acos(dotprod);
|
|
/* project onto plane of cube face also works
|
|
W = U - dotprod*V;
|
|
length = sqrt(W.x*W.x+W.y*W.y+W.z*W.z); // for normalization
|
|
dotprod = (U.x*W.x + U.y*W.y + U.z*W.z)/length;
|
|
if (dotprod > 1.f) dotprod=1.f;
|
|
if (dotprod < -1.f) dotprod=-1.f;
|
|
angle = acos(dotprod);
|
|
*/
|
|
}
|
|
else{
|
|
dotprod=U.x*V.x + U.y*V.y + U.z*V.z;
|
|
if (dotprod > 1.f) dotprod=1.f;
|
|
if (dotprod < -1.f) dotprod=-1.f;
|
|
angle = 0.5*acos(dotprod);
|
|
}
|
|
// determine if angle is concave or convex based on edge normal
|
|
W.x = (P.y-Q.y)*U.z - (P.z-Q.z)*U.y;
|
|
W.y = (P.z-Q.z)*U.x - (P.x-Q.x)*U.z;
|
|
W.z = (P.x-Q.x)*U.y - (P.y-Q.y)*U.x;
|
|
//length = sqrt(nx*nx+ny*ny+nz*nz);
|
|
Point w=0.5*(P+Q)-R;
|
|
if (W.x*w.x + W.y*w.y + W.z*w.z < 0.f){
|
|
//printf("flip edge normal \n");
|
|
W.x = -W.x;
|
|
W.y = -W.y;
|
|
W.z = -W.z;
|
|
}
|
|
if (W.x*V.x + W.y*V.y + W.z*V.z > 0.f){
|
|
// concave
|
|
angle = -angle;
|
|
}
|
|
//printf("angle=%f,dot=%f (Edge=%i, twin=%i): P={%f, %f, %f}, Q={%f, %f, %f} U={%f, %f, %f}, V={%f, %f, %f}\n",angle,dotprod,edge,halfedge.twin(edge),P.x,P.y,P.z,Q.x,Q.y,Q.z,U.x,U.y,U.z,V.x,V.y,V.z);
|
|
return angle;
|
|
}
|
|
|
|
void Isosurface(DoubleArray &A, const double &v)
|
|
{
|
|
Point P,Q;
|
|
Point PlaceHolder;
|
|
double temp;
|
|
Point C0,C1,C2,C3,C4,C5,C6,C7;
|
|
|
|
int TriangleCount;
|
|
int VertexCount;
|
|
int CubeIndex;
|
|
int nTris, nVert;
|
|
|
|
Point VertexList[12];
|
|
Point NewVertexList[12];
|
|
int LocalRemap[12];
|
|
|
|
DTMutableList<Point> cellvertices = DTMutableList<Point>(20);
|
|
IntArray Triangles = IntArray(3,20);
|
|
|
|
// Values from array 'A' at the cube corners
|
|
double CubeValues[8];
|
|
|
|
int Nx = A.size(0);
|
|
int Ny = A.size(1);
|
|
int Nz = A.size(2);
|
|
|
|
// Points corresponding to cube corners
|
|
C0.x = 0.0; C0.y = 0.0; C0.z = 0.0;
|
|
C1.x = 1.0; C1.y = 0.0; C1.z = 0.0;
|
|
C2.x = 1.0; C2.y = 1.0; C2.z = 0.0;
|
|
C3.x = 0.0; C3.y = 1.0; C3.z = 0.0;
|
|
C4.x = 0.0; C4.y = 0.0; C4.z = 1.0;
|
|
C5.x = 1.0; C5.y = 0.0; C5.z = 1.0;
|
|
C6.x = 1.0; C6.y = 1.0; C6.z = 1.0;
|
|
C7.x = 0.0; C7.y = 1.0; C7.z = 1.0;
|
|
|
|
for (int k=1; k<Nz-1; k++){
|
|
for (int j=1; j<Ny-1; j++){
|
|
for (int i=1; i<Nx-1; i++){
|
|
// Set the corner values for this cube
|
|
CubeValues[0] = A(i,j,k);
|
|
CubeValues[1] = A(i+1,j,k);
|
|
CubeValues[2] = A(i+1,j+1,k);
|
|
CubeValues[3] = A(i,j+1,k);
|
|
CubeValues[4] = A(i,j,k+1);
|
|
CubeValues[5] = A(i+1,j,k+1);
|
|
CubeValues[6] = A(i+1,j+1,k+1);
|
|
CubeValues[7] = A(i,j+1,k+1);
|
|
|
|
//Determine the index into the edge table which
|
|
//tells us which vertices are inside of the surface
|
|
CubeIndex = 0;
|
|
if (CubeValues[0] < 0.0f) CubeIndex |= 1;
|
|
if (CubeValues[1] < 0.0f) CubeIndex |= 2;
|
|
if (CubeValues[2] < 0.0f) CubeIndex |= 4;
|
|
if (CubeValues[3] < 0.0f) CubeIndex |= 8;
|
|
if (CubeValues[4] < 0.0f) CubeIndex |= 16;
|
|
if (CubeValues[5] < 0.0f) CubeIndex |= 32;
|
|
if (CubeValues[6] < 0.0f) CubeIndex |= 64;
|
|
if (CubeValues[7] < 0.0f) CubeIndex |= 128;
|
|
|
|
//Find the vertices where the surface intersects the cube
|
|
if (edgeTable[CubeIndex] & 1){
|
|
P = VertexInterp(C0,C1,CubeValues[0],CubeValues[1]);
|
|
VertexList[0] = P;
|
|
Q = C0;
|
|
}
|
|
if (edgeTable[CubeIndex] & 2){
|
|
P = VertexInterp(C1,C2,CubeValues[1],CubeValues[2]);
|
|
VertexList[1] = P;
|
|
Q = C1;
|
|
}
|
|
if (edgeTable[CubeIndex] & 4){
|
|
P = VertexInterp(C2,C3,CubeValues[2],CubeValues[3]);
|
|
VertexList[2] = P;
|
|
Q = C2;
|
|
}
|
|
if (edgeTable[CubeIndex] & 8){
|
|
P = VertexInterp(C3,C0,CubeValues[3],CubeValues[0]);
|
|
VertexList[3] = P;
|
|
Q = C3;
|
|
}
|
|
if (edgeTable[CubeIndex] & 16){
|
|
P = VertexInterp(C4,C5,CubeValues[4],CubeValues[5]);
|
|
VertexList[4] = P;
|
|
Q = C4;
|
|
}
|
|
if (edgeTable[CubeIndex] & 32){
|
|
P = VertexInterp(C5,C6,CubeValues[5],CubeValues[6]);
|
|
VertexList[5] = P;
|
|
Q = C5;
|
|
}
|
|
if (edgeTable[CubeIndex] & 64){
|
|
P = VertexInterp(C6,C7,CubeValues[6],CubeValues[7]);
|
|
VertexList[6] = P;
|
|
Q = C6;
|
|
}
|
|
if (edgeTable[CubeIndex] & 128){
|
|
P = VertexInterp(C7,C4,CubeValues[7],CubeValues[4]);
|
|
VertexList[7] = P;
|
|
Q = C7;
|
|
}
|
|
if (edgeTable[CubeIndex] & 256){
|
|
P = VertexInterp(C0,C4,CubeValues[0],CubeValues[4]);
|
|
VertexList[8] = P;
|
|
Q = C0;
|
|
}
|
|
if (edgeTable[CubeIndex] & 512){
|
|
P = VertexInterp(C1,C5,CubeValues[1],CubeValues[5]);
|
|
VertexList[9] = P;
|
|
Q = C1;
|
|
}
|
|
if (edgeTable[CubeIndex] & 1024){
|
|
P = VertexInterp(C2,C6,CubeValues[2],CubeValues[6]);
|
|
VertexList[10] = P;
|
|
Q = C2;
|
|
}
|
|
if (edgeTable[CubeIndex] & 2048){
|
|
P = VertexInterp(C3,C7,CubeValues[3],CubeValues[7]);
|
|
VertexList[11] = P;
|
|
Q = C3;
|
|
}
|
|
|
|
VertexCount=0;
|
|
for (int idx=0;idx<12;idx++)
|
|
LocalRemap[idx] = -1;
|
|
|
|
for (int idx=0;triTable[CubeIndex][idx]!=-1;idx++)
|
|
{
|
|
if(LocalRemap[triTable[CubeIndex][idx]] == -1)
|
|
{
|
|
NewVertexList[VertexCount] = VertexList[triTable[CubeIndex][idx]];
|
|
LocalRemap[triTable[CubeIndex][idx]] = VertexCount;
|
|
VertexCount++;
|
|
}
|
|
}
|
|
|
|
for (int idx=0;idx<VertexCount;idx++) {
|
|
P = NewVertexList[idx];
|
|
//P.x += i;
|
|
//P.y += j;
|
|
//P.z += k;
|
|
cellvertices(idx) = P;
|
|
}
|
|
nVert = VertexCount;
|
|
|
|
TriangleCount = 0;
|
|
for (int idx=0;triTable[CubeIndex][idx]!=-1;idx+=3) {
|
|
Triangles(0,TriangleCount) = LocalRemap[triTable[CubeIndex][idx+0]];
|
|
Triangles(1,TriangleCount) = LocalRemap[triTable[CubeIndex][idx+1]];
|
|
Triangles(2,TriangleCount) = LocalRemap[triTable[CubeIndex][idx+2]];
|
|
TriangleCount++;
|
|
}
|
|
nTris = TriangleCount;
|
|
|
|
// Now add the local values to the DECL data structure
|
|
IntArray HalfEdge(6,nTris*3);
|
|
DoubleArray EdgeAngles(nTris*3);
|
|
int idx_edge=0;
|
|
for (int idx=0; idx<TriangleCount; idx++){
|
|
int V1 = Triangles(0,idx);
|
|
int V2 = Triangles(1,idx);
|
|
int V3 = Triangles(2,idx);
|
|
// first edge: V1->V2
|
|
HalfEdge(0,idx_edge) = V1; // first vertex
|
|
HalfEdge(1,idx_edge) = V2; // second vertex
|
|
HalfEdge(2,idx_edge) = idx; // triangle
|
|
HalfEdge(3,idx_edge) = -1; // twin
|
|
HalfEdge(4,idx_edge) = idx_edge+2; // previous edge
|
|
HalfEdge(5,idx_edge) = idx_edge+1; // next edge
|
|
idx_edge++;
|
|
// second edge: V2->V3
|
|
HalfEdge(0,idx_edge) = V2; // first vertex
|
|
HalfEdge(1,idx_edge) = V3; // second vertex
|
|
HalfEdge(2,idx_edge) = idx; // triangle
|
|
HalfEdge(3,idx_edge) = -1; // twin
|
|
HalfEdge(4,idx_edge) = idx_edge-1; // previous edge
|
|
HalfEdge(5,idx_edge) = idx_edge+1; // next edge
|
|
idx_edge++;
|
|
// third edge: V3->V1
|
|
HalfEdge(0,idx_edge) = V3; // first vertex
|
|
HalfEdge(1,idx_edge) = V1; // second vertex
|
|
HalfEdge(2,idx_edge) = idx; // triangle
|
|
HalfEdge(3,idx_edge) = -1; // twin
|
|
HalfEdge(4,idx_edge) = idx_edge-1; // previous edge
|
|
HalfEdge(5,idx_edge) = idx_edge-2; // next edge
|
|
idx_edge++;
|
|
}
|
|
int EdgeCount=idx_edge;
|
|
for (int idx=0; idx<EdgeCount; idx++){
|
|
int V1=HalfEdge(0,idx);
|
|
int V2=HalfEdge(1,idx);
|
|
// Find all the twins within the cube
|
|
for (int jdx=0; idx<EdgeCount; jdx++){
|
|
if (HalfEdge(1,jdx) == V1 && HalfEdge(0,jdx) == V2){
|
|
// this is the pair
|
|
HalfEdge(3,idx) = jdx;
|
|
HalfEdge(3,jdx) = idx;
|
|
}
|
|
if (HalfEdge(1,jdx) == V2 && HalfEdge(0,jdx) == V1 && !(idx==jdx)){
|
|
std::printf("WARNING: half edges with identical orientation! \n");
|
|
}
|
|
}
|
|
// Use "ghost" twins if edge is on a cube face
|
|
P = cellvertices(V1);
|
|
Q = cellvertices(V2);
|
|
if (P.x == 0.0 && Q.x == 0.0) HalfEdge(3,idx_edge) = -1; // ghost twin for x=0 face
|
|
if (P.x == 1.0 && Q.x == 1.0) HalfEdge(3,idx_edge) = -2; // ghost twin for x=1 face
|
|
if (P.y == 0.0 && Q.y == 0.0) HalfEdge(3,idx_edge) = -3; // ghost twin for y=0 face
|
|
if (P.y == 1.0 && Q.y == 1.0) HalfEdge(3,idx_edge) = -4; // ghost twin for y=1 face
|
|
if (P.z == 0.0 && Q.z == 0.0) HalfEdge(3,idx_edge) = -5; // ghost twin for z=0 face
|
|
if (P.z == 1.0 && Q.z == 1.0) HalfEdge(3,idx_edge) = -6; // ghost twin for z=1 face
|
|
}
|
|
// Find all the angles
|
|
for (int idx=0; idx<EdgeCount; idx++){
|
|
int V1=HalfEdge(0,idx);
|
|
int V2=HalfEdge(1,idx);
|
|
int T1= HalfEdge(2,idx_edge);
|
|
int twin=HalfEdge(3,idx_edge);
|
|
if (twin == -1){
|
|
|
|
}
|
|
}
|
|
|
|
// Map vertices to global coordinates
|
|
for (int idx=0;idx<VertexCount;idx++) {
|
|
P = cellvertices(idx);
|
|
P.x += i;
|
|
P.y += j;
|
|
P.z += k;
|
|
cellvertices(idx) = P;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|