Files
LBPM/tests/TestColorMassBounceback.cpp
2018-04-30 15:20:21 -04:00

558 lines
17 KiB
C++

//*************************************************************************
// Lattice Boltzmann Simulator for Single Phase Flow in Porous Media
// James E. McCLure
//*************************************************************************
#include <stdio.h>
#include <iostream>
#include <fstream>
#include "common/ScaLBL.h"
#include "common/MPI_Helpers.h"
using namespace std;
//***************************************************************************************
int main(int argc, char **argv)
{
//*****************************************
// ***** MPI STUFF ****************
//*****************************************
// Initialize MPI
int rank,nprocs;
MPI_Init(&argc,&argv);
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Comm_rank(comm,&rank);
MPI_Comm_size(comm,&nprocs);
int check;
{
// parallel domain size (# of sub-domains)
int nprocx,nprocy,nprocz;
int iproc,jproc,kproc;
if (rank == 0){
printf("********************************************************\n");
printf("Running Color Model: TestColor \n");
printf("********************************************************\n");
}
// BGK Model parameters
string FILENAME;
unsigned int nBlocks, nthreads;
int timestepMax, interval;
double Fx,Fy,Fz,tol;
// Domain variables
double Lx,Ly,Lz;
int nspheres;
int Nx,Ny,Nz;
int i,j,k,n;
int dim = 3;
//if (rank == 0) printf("dim=%d\n",dim);
int timestep = 0;
int timesteps = 100;
int centralNode = 2;
double tauA = 1.0;
double tauB = 1.0;
double rhoA = 1.0;
double rhoB = 1.0;
double alpha = 0.005;
double beta = 0.95;
double tau = 1.0;
double mu=(tau-0.5)/3.0;
double rlx_setA=1.0/tau;
double rlx_setB = 8.f*(2.f-rlx_setA)/(8.f-rlx_setA);
Fx = Fy = 0.f;
Fz = 0.f;
if (rank==0){
//.......................................................................
// Reading the domain information file
//.......................................................................
ifstream domain("Domain.in");
if (domain.good()){
domain >> nprocx;
domain >> nprocy;
domain >> nprocz;
domain >> Nx;
domain >> Ny;
domain >> Nz;
domain >> nspheres;
domain >> Lx;
domain >> Ly;
domain >> Lz;
}
else if (nprocs==1){
nprocx=nprocy=nprocz=1;
Nx=Ny=Nz=3;
nspheres=0;
Lx=Ly=Lz=1;
}
else if (nprocs==2){
nprocx=2; nprocy=1;
nprocz=1;
Nx=Ny=Nz=dim;
Nx = dim; Ny = dim; Nz = dim;
nspheres=0;
Lx=Ly=Lz=1;
}
else if (nprocs==4){
nprocx=nprocy=2;
nprocz=1;
Nx=Ny=Nz=dim;
nspheres=0;
Lx=Ly=Lz=1;
}
else if (nprocs==8){
nprocx=nprocy=nprocz=2;
Nx=Ny=Nz=dim;
nspheres=0;
Lx=Ly=Lz=1;
}
//.......................................................................
}
// **************************************************************
// Broadcast simulation parameters from rank 0 to all other procs
MPI_Barrier(comm);
//.................................................
MPI_Bcast(&Nx,1,MPI_INT,0,comm);
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
MPI_Bcast(&Nz,1,MPI_INT,0,comm);
MPI_Bcast(&nprocx,1,MPI_INT,0,comm);
MPI_Bcast(&nprocy,1,MPI_INT,0,comm);
MPI_Bcast(&nprocz,1,MPI_INT,0,comm);
MPI_Bcast(&nspheres,1,MPI_INT,0,comm);
MPI_Bcast(&Lx,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Ly,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Lz,1,MPI_DOUBLE,0,comm);
//.................................................
MPI_Barrier(comm);
// **************************************************************
// **************************************************************
if (nprocs != nprocx*nprocy*nprocz){
printf("nprocx = %i \n",nprocx);
printf("nprocy = %i \n",nprocy);
printf("nprocz = %i \n",nprocz);
INSIST(nprocs == nprocx*nprocy*nprocz,"Fatal error in processor count!");
}
if (rank==0){
printf("********************************************************\n");
printf("Sub-domain size = %i x %i x %i\n",Nx,Ny,Nz);
printf("********************************************************\n");
}
MPI_Barrier(comm);
double iVol_global = 1.0/Nx/Ny/Nz/nprocx/nprocy/nprocz;
int BoundaryCondition=0;
Domain Dm(Nx,Ny,Nz,rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BoundaryCondition);
Nx += 2;
Ny += 2;
Nz += 2;
int N = Nx*Ny*Nz;
int Np=0; // number of local pore nodes
double *PhaseLabel;
PhaseLabel = new double[N];
//.......................................................................
for (k=0;k<Nz;k++){
for (j=0;j<Ny;j++){
for (i=0;i<Nx;i++){
n = k*Nx*Ny+j*Nx+i;
Dm.id[n]=0;
}
}
}
for (k=1;k<Nz-1;k++){
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
Dm.id[n]=1;
Np++;
// constant color
PhaseLabel[n]= -1.0;
}
}
}
Dm.CommInit(comm);
MPI_Barrier(comm);
if (rank == 0) cout << "Domain set." << endl;
if (rank==0) printf ("Create ScaLBL_Communicator \n");
//Create a second communicator based on the regular data layout
ScaLBL_Communicator ScaLBL_Comm_Regular(Dm);
ScaLBL_Communicator ScaLBL_Comm(Dm);
// LBM variables
if (rank==0) printf ("Set up the neighborlist \n");
int neighborSize=18*Np*sizeof(int);
int *neighborList;
IntArray Map(Nx,Ny,Nz);
neighborList= new int[18*Np];
ScaLBL_Comm.MemoryOptimizedLayoutAA(Map,neighborList,Dm.id,Np);
MPI_Barrier(comm);
//......................device distributions.................................
int dist_mem_size = Np*sizeof(double);
if (rank==0) printf ("Allocating distributions \n");
int *NeighborList;
int *dvcMap;
// double *f_even,*f_odd;
double *fq, *Aq, *Bq;
double *Den, *Phi;
double *ColorGrad;
double *Vel;
double *Pressure;
//...........................................................................
ScaLBL_AllocateDeviceMemory((void **) &NeighborList, neighborSize);
ScaLBL_AllocateDeviceMemory((void **) &dvcMap, sizeof(int)*Np);
ScaLBL_AllocateDeviceMemory((void **) &fq, 19*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Aq, 7*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Bq, 7*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Den, 2*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Phi, sizeof(double)*Nx*Ny*Nz);
ScaLBL_AllocateDeviceMemory((void **) &Pressure, sizeof(double)*Np);
ScaLBL_AllocateDeviceMemory((void **) &Vel, 3*sizeof(double)*Np);
ScaLBL_AllocateDeviceMemory((void **) &ColorGrad, 3*sizeof(double)*Np);
//...........................................................................
// Update GPU data structures
if (rank==0) printf ("Setting up device map and neighbor list \n");
int *TmpMap;
TmpMap=new int[Np*sizeof(int)];
for (k=1; k<Nz-1; k++){
for (j=1; j<Ny-1; j++){
for (i=1; i<Nx-1; i++){
int idx=Map(i,j,k);
if (!(idx < 0))
TmpMap[idx] = k*Nx*Ny+j*Nx+i;
}
}
}
ScaLBL_CopyToDevice(dvcMap, TmpMap, sizeof(int)*Np);
ScaLBL_DeviceBarrier();
delete [] TmpMap;
// copy the neighbor list
ScaLBL_CopyToDevice(NeighborList, neighborList, neighborSize);
//...........................................................................
// Distributions / densities for checking
double nA,nB;
double *DIST;
DIST= new double [7*Np];
double *DENSITY;
DENSITY= new double [2*Np];
int SIZE;
int errc_odd_a=0;
int errc_even_a=0;
int errc_odd_b=0;
int errc_even_b=0;
//*******************Component A*******************
// initialize phi based on PhaseLabel (include solid component labels)
for (k=1;k<Nz-1;k++){
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
// constant color
PhaseLabel[n]= 1.0;
}
}
}
ScaLBL_CopyToDevice(Phi, PhaseLabel, N*sizeof(double));
if (rank==0) printf ("Initializing distributions \n");
// Initialize the phase field and variables
ScaLBL_D3Q19_Init(fq, Np);
if (rank==0) printf ("Initializing phase field \n");
ScaLBL_PhaseField_Init(dvcMap, Phi, Den, Aq, Bq, 0, ScaLBL_Comm.last_interior, Np);
// *************ODD TIMESTEP*************
// Compute the Phase indicator field
// Read for Aq, Bq happens in this routine (requires communication)
ScaLBL_Comm.BiSendD3Q7AA(Aq,Bq); //READ FROM NORMAL
ScaLBL_D3Q7_AAodd_PhaseField(NeighborList, dvcMap, Aq, Bq, Den, Phi, ScaLBL_Comm.next, Np, Np);
ScaLBL_Comm.BiRecvD3Q7AA(Aq,Bq); //WRITE INTO OPPOSITE
ScaLBL_D3Q7_AAodd_PhaseField(NeighborList, dvcMap, Aq, Bq, Den, Phi, 0, ScaLBL_Comm.next, Np);
// Halo exchange for phase field
ScaLBL_Comm_Regular.SendHalo(Phi);
ScaLBL_Comm_Regular.RecvHalo(Phi);
// Perform the collision operation
ScaLBL_Comm.SendD3Q19AA(fq); //READ FROM NORMAL
ScaLBL_D3Q19_AAodd_Color(NeighborList, dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, ScaLBL_Comm.next, Np, Np);
ScaLBL_Comm.RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
ScaLBL_D3Q19_AAodd_Color(NeighborList, dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, 0, ScaLBL_Comm.next, Np);
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
timestep++;
printf("Check after odd time \n");
SIZE=2*Np*sizeof(double);
ScaLBL_CopyToHost(&DENSITY[0],&Den[0],SIZE);
// Check the distributions
SIZE=7*Np*sizeof(double);
ScaLBL_CopyToHost(&DIST[0],&Aq[0],SIZE);
for (k=1;k<Nz-1;k++){
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
if (Dm.id[n] > 0){
int idx = Map(i,j,k);
nA=DENSITY[idx];
nB=DENSITY[Np+idx];
//printf("i,j,k=%i,%i,%i \n",i,j,k);
//printf(" nA=%f, nB=%f \n",nA,nB);
double val=DIST[idx];
double error = fabs(val - 0.3333333333333333*nA);
if (error > 1.0e-12) {
printf(" q=0, Aq=%f \n",val);
errc_odd_b++;
}
for (int q=1; q<7; q++){
val=DIST[q*Np+idx];
error = fabs(val - 0.1111111111111111*nA);
if (error > 1.0e-12) {
printf(" q=%i, Aq=%f \n",q,val);
errc_odd_b++;
}
}
}
}
}
}
// *************EVEN TIMESTEP*************
// Compute the Phase indicator field
ScaLBL_Comm.BiSendD3Q7AA(Aq,Bq); //READ FROM NORMAL
ScaLBL_D3Q7_AAeven_PhaseField(dvcMap, Aq, Bq, Den, Phi, ScaLBL_Comm.next, Np, Np);
ScaLBL_Comm.BiRecvD3Q7AA(Aq,Bq); //WRITE INTO OPPOSITE
ScaLBL_D3Q7_AAeven_PhaseField(dvcMap, Aq, Bq, Den, Phi, 0, ScaLBL_Comm.next, Np);
// Halo exchange for phase field
ScaLBL_Comm_Regular.SendHalo(Phi);
ScaLBL_Comm_Regular.RecvHalo(Phi);
// Perform the collision operation
ScaLBL_Comm.SendD3Q19AA(fq); //READ FORM NORMAL
ScaLBL_D3Q19_AAeven_Color(dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, ScaLBL_Comm.next, Np, Np);
ScaLBL_Comm.RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
ScaLBL_D3Q19_AAeven_Color(dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, 0, ScaLBL_Comm.next, Np);
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
timestep++;
printf("Check after even time \n");
SIZE=2*Np*sizeof(double);
ScaLBL_CopyToHost(&DENSITY[0],&Den[0],SIZE);
// Check the distributions
SIZE=7*Np*sizeof(double);
ScaLBL_CopyToHost(&DIST[0],&Aq[0],SIZE);
for (k=1;k<Nz-1;k++){
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
if (Dm.id[n] > 0){
int idx = Map(i,j,k);
nA=DENSITY[idx];
nB=DENSITY[Np+idx];
//printf("i,j,k=%i,%i,%i \n",i,j,k);
//printf(" nA=%f, nB=%f \n",nA,nB);
double val=DIST[idx];
double error = fabs(val - 0.3333333333333333*nA);
if (error > 1.0e-12) {
printf(" q=0, Aq=%f \n",val);
errc_even_b++;
}
for (int q=1; q<7; q++){
val=DIST[q*Np+idx];
error = fabs(val - 0.1111111111111111*nA);
if (error > 1.0e-12) {
printf(" q=%i, Aq=%f \n",q,val);
errc_even_b++;
}
}
}
}
}
}
//*******************Component B*******************
// initialize phi based on PhaseLabel (include solid component labels)
for (k=1;k<Nz-1;k++){
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
// constant color
PhaseLabel[n]= -1.0;
}
}
}
ScaLBL_CopyToDevice(Phi, PhaseLabel, N*sizeof(double));
if (rank==0) printf ("Initializing distributions \n");
// Initialize the phase field and variables
ScaLBL_D3Q19_Init(fq, Np);
if (rank==0) printf ("Initializing phase field \n");
ScaLBL_PhaseField_Init(dvcMap, Phi, Den, Aq, Bq, 0, ScaLBL_Comm.last_interior, Np);
// *************ODD TIMESTEP*************
// Compute the Phase indicator field
// Read for Aq, Bq happens in this routine (requires communication)
ScaLBL_Comm.BiSendD3Q7AA(Aq,Bq); //READ FROM NORMAL
ScaLBL_D3Q7_AAodd_PhaseField(NeighborList, dvcMap, Aq, Bq, Den, Phi, ScaLBL_Comm.next, Np, Np);
ScaLBL_Comm.BiRecvD3Q7AA(Aq,Bq); //WRITE INTO OPPOSITE
ScaLBL_D3Q7_AAodd_PhaseField(NeighborList, dvcMap, Aq, Bq, Den, Phi, 0, ScaLBL_Comm.next, Np);
// Halo exchange for phase field
ScaLBL_Comm_Regular.SendHalo(Phi);
ScaLBL_Comm_Regular.RecvHalo(Phi);
// Perform the collision operation
ScaLBL_Comm.SendD3Q19AA(fq); //READ FROM NORMAL
ScaLBL_D3Q19_AAodd_Color(NeighborList, dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, ScaLBL_Comm.next, Np, Np);
ScaLBL_Comm.RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
ScaLBL_D3Q19_AAodd_Color(NeighborList, dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, 0, ScaLBL_Comm.next, Np);
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
timestep++;
printf("Check after odd time \n");
SIZE=2*Np*sizeof(double);
ScaLBL_CopyToHost(&DENSITY[0],&Den[0],SIZE);
// Check the distributions
SIZE=7*Np*sizeof(double);
ScaLBL_CopyToHost(&DIST[0],&Bq[0],SIZE);
for (k=1;k<Nz-1;k++){
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
if (Dm.id[n] > 0){
int idx = Map(i,j,k);
nA=DENSITY[idx];
nB=DENSITY[Np+idx];
//printf("i,j,k=%i,%i,%i \n",i,j,k);
//printf(" nA=%f, nB=%f \n",nA,nB);
double val=DIST[idx];
double error = fabs(val - 0.3333333333333333*nB);
if (error > 1.0e-12) {
printf(" q=0, Bq=%f \n",val);
errc_odd_b++;
}
for (int q=1; q<7; q++){
val=DIST[q*Np+idx];
error = fabs(val - 0.1111111111111111*nB);
if (error > 1.0e-12) {
printf(" q=%i, Bq=%f \n",q,val);
errc_odd_b++;
}
}
}
}
}
}
// *************EVEN TIMESTEP*************
// Compute the Phase indicator field
ScaLBL_Comm.BiSendD3Q7AA(Aq,Bq); //READ FROM NORMAL
ScaLBL_D3Q7_AAeven_PhaseField(dvcMap, Aq, Bq, Den, Phi, ScaLBL_Comm.next, Np, Np);
ScaLBL_Comm.BiRecvD3Q7AA(Aq,Bq); //WRITE INTO OPPOSITE
ScaLBL_D3Q7_AAeven_PhaseField(dvcMap, Aq, Bq, Den, Phi, 0, ScaLBL_Comm.next, Np);
// Halo exchange for phase field
ScaLBL_Comm_Regular.SendHalo(Phi);
ScaLBL_Comm_Regular.RecvHalo(Phi);
// Perform the collision operation
ScaLBL_Comm.SendD3Q19AA(fq); //READ FORM NORMAL
ScaLBL_D3Q19_AAeven_Color(dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, ScaLBL_Comm.next, Np, Np);
ScaLBL_Comm.RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
ScaLBL_D3Q19_AAeven_Color(dvcMap, fq, Aq, Bq, Den, Phi, Vel, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, 0, ScaLBL_Comm.next, Np);
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
timestep++;
printf("Check after even time \n");
SIZE=2*Np*sizeof(double);
ScaLBL_CopyToHost(&DENSITY[0],&Den[0],SIZE);
// Check the distributions
SIZE=7*Np*sizeof(double);
ScaLBL_CopyToHost(&DIST[0],&Bq[0],SIZE);
for (k=1;k<Nz-1;k++){
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
if (Dm.id[n] > 0){
int idx = Map(i,j,k);
nA=DENSITY[idx];
nB=DENSITY[Np+idx];
//printf("i,j,k=%i,%i,%i \n",i,j,k);
//printf(" nA=%f, nB=%f \n",nA,nB);
double val=DIST[idx];
double error = fabs(val - 0.3333333333333333*nB);
if (error > 1.0e-12) {
printf(" q=0, Bq=%f \n",val);
errc_even_b++;
}
for (int q=1; q<7; q++){
val=DIST[q*Np+idx];
error = fabs(val - 0.1111111111111111*nB);
if (error > 1.0e-12) {
printf(" q=%i, Bq=%f \n",q,val);
errc_even_b++;
}
}
}
}
}
}
printf("Error counts: A even=%i, A odd=%i, B even=%i, B odd=%i \n",errc_even_a,errc_odd_a,errc_even_b,errc_odd_b);
int errc_total=errc_even_a+errc_odd_a+errc_even_b+errc_odd_b;
if (errc_total>0) check=1;
else check=0;
}
// ****************************************************
MPI_Barrier(comm);
MPI_Finalize();
// ****************************************************
return check;
}