878 lines
29 KiB
C++
878 lines
29 KiB
C++
/*
|
|
Copyright 2013--2018 James E. McClure, Virginia Polytechnic & State University
|
|
Copyright Equnior ASA
|
|
|
|
This file is part of the Open Porous Media project (OPM).
|
|
OPM is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
OPM is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
You should have received a copy of the GNU General Public License
|
|
along with OPM. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
#ifndef included_ArrayClass
|
|
#define included_ArrayClass
|
|
|
|
#include "common/ArraySize.h"
|
|
|
|
#include <array>
|
|
#include <cstdint>
|
|
#include <functional>
|
|
#include <initializer_list>
|
|
#include <iostream>
|
|
#include <memory>
|
|
#include <stdint.h>
|
|
#include <string>
|
|
#include <vector>
|
|
|
|
/*!
|
|
* Class Array is a multi-dimensional array class written by Mark Berrill
|
|
*/
|
|
template <class TYPE, class FUN, class Allocator> class Array final {
|
|
public: // Constructors / assignment operators
|
|
/*!
|
|
* Create a new empty Array
|
|
*/
|
|
Array();
|
|
|
|
/*!
|
|
* Create an Array with the given size
|
|
* @param N Size of the array
|
|
*/
|
|
explicit Array(const ArraySize &N);
|
|
|
|
/*!
|
|
* Create a new 1D Array with the given number of elements
|
|
* @param N Number of elements in the array
|
|
*/
|
|
explicit Array(size_t N);
|
|
|
|
/*!
|
|
* Create a new 2D Array with the given number of rows and columns
|
|
* @param N_rows Number of rows
|
|
* @param N_columns Number of columns
|
|
*/
|
|
explicit Array(size_t N_rows, size_t N_columns);
|
|
|
|
/*!
|
|
* Create a new 3D Array with the given number of rows and columns
|
|
* @param N1 Number of rows
|
|
* @param N2 Number of columns
|
|
* @param N3 Number of elements in the third dimension
|
|
*/
|
|
explicit Array(size_t N1, size_t N2, size_t N3);
|
|
|
|
/*!
|
|
* Create a new 4D Array with the given number of rows and columns
|
|
* @param N1 Number of elements in the first dimension
|
|
* @param N2 Number of elements in the second dimension
|
|
* @param N3 Number of elements in the third dimension
|
|
* @param N4 Number of elements in the fourth dimension
|
|
*/
|
|
explicit Array(size_t N1, size_t N2, size_t N3, size_t N4);
|
|
|
|
/*!
|
|
* Create a new 4D Array with the given number of rows and columns
|
|
* @param N1 Number of elements in the first dimension
|
|
* @param N2 Number of elements in the second dimension
|
|
* @param N3 Number of elements in the third dimension
|
|
* @param N4 Number of elements in the fourth dimension
|
|
* @param N5 Number of elements in the fifth dimension
|
|
*/
|
|
explicit Array(size_t N1, size_t N2, size_t N3, size_t N4, size_t N5);
|
|
|
|
/*!
|
|
* Create a multi-dimensional Array with the given number of elements
|
|
* @param N Number of elements in each dimension
|
|
* @param data Optional raw array to copy the src data
|
|
*/
|
|
explicit Array(const std::vector<size_t> &N, const TYPE *data = nullptr);
|
|
|
|
/*!
|
|
* Create a 1D Array using a string that mimic's MATLAB
|
|
* @param range Range of the data
|
|
*/
|
|
explicit Array(std::string range);
|
|
|
|
/*!
|
|
* Create a 1D Array with the given initializer list
|
|
* @param data Input data
|
|
*/
|
|
Array(std::initializer_list<TYPE> data);
|
|
|
|
/*!
|
|
* Create a 2D Array with the given initializer lists
|
|
* @param data Input data
|
|
*/
|
|
Array(std::initializer_list<std::initializer_list<TYPE>> data);
|
|
|
|
/*!
|
|
* Copy constructor
|
|
* @param rhs Array to copy
|
|
*/
|
|
Array(const Array &rhs);
|
|
|
|
/*!
|
|
* Move constructor
|
|
* @param rhs Array to copy
|
|
*/
|
|
Array(Array &&rhs);
|
|
|
|
/*!
|
|
* Assignment operator
|
|
* @param rhs Array to copy
|
|
*/
|
|
Array &operator=(const Array &rhs);
|
|
|
|
/*!
|
|
* Move assignment operator
|
|
* @param rhs Array to copy
|
|
*/
|
|
Array &operator=(Array &&rhs);
|
|
|
|
/*!
|
|
* Assignment operator
|
|
* @param rhs std::vector to copy
|
|
*/
|
|
Array &operator=(const std::vector<TYPE> &rhs);
|
|
|
|
//! Is copyable?
|
|
inline bool isCopyable() const { return d_isCopyable; }
|
|
|
|
//! Set is copyable
|
|
inline void setCopyable(bool flag) { d_isCopyable = flag; }
|
|
|
|
//! Is fixed size?
|
|
inline bool isFixedSize() const { return d_isFixedSize; }
|
|
|
|
//! Set is copyable
|
|
inline void setFixedSize(bool flag) { d_isFixedSize = flag; }
|
|
|
|
public: // Views/copies/subset
|
|
/*!
|
|
* Create a multi-dimensional Array view to a raw block of data
|
|
* @param N Number of elements in each dimension
|
|
* @param data Pointer to the data
|
|
*/
|
|
static std::unique_ptr<Array> view(const ArraySize &N,
|
|
std::shared_ptr<TYPE> data);
|
|
|
|
/*!
|
|
* Create a multi-dimensional Array view to a raw block of data
|
|
* @param N Number of elements in each dimension
|
|
* @param data Pointer to the data
|
|
*/
|
|
static std::unique_ptr<const Array>
|
|
constView(const ArraySize &N, std::shared_ptr<const TYPE> const &data);
|
|
|
|
/*!
|
|
* Make this object a view of the src
|
|
* @param src Source vector to take the view of
|
|
*/
|
|
void view2(Array &src);
|
|
|
|
/*!
|
|
* Make this object a view of the data
|
|
* @param N Number of elements in each dimension
|
|
* @param data Pointer to the data
|
|
*/
|
|
void view2(const ArraySize &N, std::shared_ptr<TYPE> data);
|
|
|
|
/*!
|
|
* Make this object a view of the raw data (expert use only).
|
|
* Use view2( N, shared_ptr(data,[](TYPE*){}) ) instead.
|
|
* Note: this interface is not recommended as it does not protect from
|
|
* the src data being deleted while still being used by the Array.
|
|
* Additionally for maximum performance it does not set the internal shared_ptr
|
|
* so functions like getPtr and resize will not work correctly.
|
|
* @param ndim Number of dimensions
|
|
* @param dims Number of elements in each dimension
|
|
* @param data Pointer to the data
|
|
* @param isCopyable Once the view is created, can the array be copied
|
|
* @param isFixedSize Once the view is created, is the array size fixed
|
|
*/
|
|
inline void viewRaw(int ndim, const size_t *dims, TYPE *data,
|
|
bool isCopyable = true, bool isFixedSize = true) {
|
|
viewRaw(ArraySize(ndim, dims), data, isCopyable, isFixedSize);
|
|
}
|
|
|
|
/*!
|
|
* Make this object a view of the raw data (expert use only).
|
|
* Use view2( N, shared_ptr(data,[](TYPE*){}) ) instead.
|
|
* Note: this interface is not recommended as it does not protect from
|
|
* the src data being deleted while still being used by the Array.
|
|
* Additionally for maximum performance it does not set the internal shared_ptr
|
|
* so functions like getPtr and resize will not work correctly.
|
|
* @param N Number of elements in each dimension
|
|
* @param data Pointer to the data
|
|
* @param isCopyable Once the view is created, can the array be copied
|
|
* @param isFixedSize Once the view is created, is the array size fixed
|
|
*/
|
|
void viewRaw(const ArraySize &N, TYPE *data, bool isCopyable = true,
|
|
bool isFixedSize = true);
|
|
|
|
/*!
|
|
* Create an array view of the given data (expert use only).
|
|
* Use view2( N, shared_ptr(data,[](TYPE*){}) ) instead.
|
|
* Note: this interface is not recommended as it does not protect from
|
|
* the src data being deleted while still being used by the Array.
|
|
* Additionally for maximum performance it does not set the internal shared_ptr
|
|
* so functions like getPtr and resize will not work correctly.
|
|
* @param N Number of elements in each dimension
|
|
* @param data Pointer to the data
|
|
*/
|
|
static inline Array staticView(const ArraySize &N, TYPE *data) {
|
|
Array x;
|
|
x.viewRaw(N, data, true, true);
|
|
return x;
|
|
}
|
|
|
|
/*!
|
|
* Convert an array of one type to another. This may or may not allocate new memory.
|
|
* @param array Input array
|
|
*/
|
|
template <class TYPE2>
|
|
static inline std::unique_ptr<Array<TYPE2, FUN, Allocator>>
|
|
convert(std::shared_ptr<Array<TYPE, FUN, Allocator>> array) {
|
|
auto array2 = std::make_unique<Array<TYPE2>>(array->size());
|
|
array2.copy(*array);
|
|
return array2;
|
|
}
|
|
|
|
/*!
|
|
* Convert an array of one type to another. This may or may not allocate new memory.
|
|
* @param array Input array
|
|
*/
|
|
template <class TYPE2>
|
|
static inline std::unique_ptr<const Array<TYPE2, FUN, Allocator>>
|
|
convert(std::shared_ptr<const Array<TYPE, FUN, Allocator>> array) {
|
|
auto array2 = std::make_unique<Array<TYPE2>>(array->size());
|
|
array2.copy(*array);
|
|
return array2;
|
|
}
|
|
|
|
/*!
|
|
* Copy and convert data from another array to this array
|
|
* @param array Source array
|
|
*/
|
|
template <class TYPE2, class FUN2, class Allocator2>
|
|
void inline copy(const Array<TYPE2, FUN2, Allocator2> &array) {
|
|
resize(array.size());
|
|
copy(array.data());
|
|
}
|
|
|
|
/*!
|
|
* Copy and convert data from a raw vector to this array.
|
|
* Note: The current array must be allocated to the proper size first.
|
|
* @param data Source data
|
|
*/
|
|
template <class TYPE2> inline void copy(const TYPE2 *data);
|
|
|
|
/*!
|
|
* Copy and convert data from this array to a raw vector.
|
|
* @param data Source data
|
|
*/
|
|
template <class TYPE2> inline void copyTo(TYPE2 *data) const;
|
|
|
|
/*!
|
|
* Copy and convert data from this array to a new array
|
|
*/
|
|
template <class TYPE2>
|
|
Array<TYPE2, FUN, std::allocator<TYPE2>> inline cloneTo() const {
|
|
Array<TYPE2, FUN, std::allocator<TYPE2>> dst(this->size());
|
|
copyTo(dst.data());
|
|
return dst;
|
|
}
|
|
|
|
/*! swap the raw data pointers for the Arrays after checking for compatibility */
|
|
void swap(Array &other);
|
|
|
|
/*!
|
|
* Fill the array with the given value
|
|
* @param y Value to fill
|
|
*/
|
|
inline void fill(const TYPE &y) {
|
|
for (auto &x : *this)
|
|
x = y;
|
|
}
|
|
|
|
/*!
|
|
* Scale the array by the given value
|
|
* @param y Value to scale by
|
|
*/
|
|
template <class TYPE2> inline void scale(const TYPE2 &y) {
|
|
for (auto &x : *this)
|
|
x *= y;
|
|
}
|
|
|
|
/*!
|
|
* Set the values of this array to pow(base, exp)
|
|
* @param base Base array
|
|
* @param exp Exponent value
|
|
*/
|
|
void pow(const Array &base, const TYPE &exp);
|
|
|
|
//! Destructor
|
|
~Array();
|
|
|
|
//! Clear the data in the array
|
|
void clear();
|
|
|
|
//! Return the size of the Array
|
|
inline int ndim() const { return d_size.ndim(); }
|
|
|
|
//! Return the size of the Array
|
|
inline const ArraySize &size() const { return d_size; }
|
|
|
|
//! Return the size of the Array
|
|
inline size_t size(int d) const { return d_size[d]; }
|
|
|
|
//! Return the size of the Array
|
|
inline size_t length() const { return d_size.length(); }
|
|
|
|
//! Return true if the Array is empty
|
|
inline bool empty() const { return d_size.length() == 0; }
|
|
|
|
//! Return true if the Array is not empty
|
|
inline operator bool() const { return d_size.length() != 0; }
|
|
|
|
/*!
|
|
* Resize the Array
|
|
* @param N NUmber of elements
|
|
*/
|
|
inline void resize(size_t N) { resize(ArraySize(N)); }
|
|
|
|
/*!
|
|
* Resize the Array
|
|
* @param N_row Number of rows
|
|
* @param N_col Number of columns
|
|
*/
|
|
inline void resize(size_t N_row, size_t N_col) {
|
|
resize(ArraySize(N_row, N_col));
|
|
}
|
|
|
|
/*!
|
|
* Resize the Array
|
|
* @param N1 Number of rows
|
|
* @param N2 Number of columns
|
|
* @param N3 Number of elements in the third dimension
|
|
*/
|
|
inline void resize(size_t N1, size_t N2, size_t N3) {
|
|
resize(ArraySize(N1, N2, N3));
|
|
}
|
|
|
|
/*!
|
|
* Resize the Array
|
|
* @param N Number of elements in each dimension
|
|
*/
|
|
void resize(const ArraySize &N);
|
|
|
|
/*!
|
|
* Resize the given dimension of the array
|
|
* @param dim The dimension to resize
|
|
* @param N Number of elements for the given dimension
|
|
* @param value Value to initialize new elements
|
|
*/
|
|
void resizeDim(int dim, size_t N, const TYPE &value);
|
|
|
|
/*!
|
|
* Reshape the Array (total size of array will not change)
|
|
* @param N Number of elements in each dimension
|
|
*/
|
|
void reshape(const ArraySize &N);
|
|
|
|
/*!
|
|
* Remove singleton dimensions.
|
|
*/
|
|
void squeeze();
|
|
|
|
/*!
|
|
* Reshape the Array so that the number of dimensions is the
|
|
* max of ndim and the largest dim>1.
|
|
* @param ndim Desired number of dimensions
|
|
*/
|
|
inline void setNdim(int ndim) { d_size.setNdim(ndim); }
|
|
|
|
/*!
|
|
* Subset the Array
|
|
* @param index Index to subset (imin,imax,jmin,jmax,kmin,kmax,...)
|
|
*/
|
|
Array subset(const std::vector<size_t> &index) const;
|
|
|
|
/*!
|
|
* Subset the Array
|
|
* @param index Index to subset (ix:kx:jx,iy:ky:jy,...)
|
|
*/
|
|
Array subset(const std::vector<Range<size_t>> &index) const;
|
|
|
|
/*!
|
|
* Copy data from an array into a subset of this array
|
|
* @param index Index of the subset (imin,imax,jmin,jmax,kmin,kmax,...)
|
|
* @param subset The subset array to copy from
|
|
*/
|
|
void copySubset(const std::vector<size_t> &index, const Array &subset);
|
|
|
|
/*!
|
|
* Copy data from an array into a subset of this array
|
|
* @param index Index of the subset
|
|
* @param subset The subset array to copy from
|
|
*/
|
|
void copySubset(const std::vector<Range<size_t>> &index,
|
|
const Array &subset);
|
|
|
|
/*!
|
|
* Add data from an array into a subset of this array
|
|
* @param index Index of the subset (imin,imax,jmin,jmax,kmin,kmax,...)
|
|
* @param subset The subset array to add from
|
|
*/
|
|
void addSubset(const std::vector<size_t> &index, const Array &subset);
|
|
|
|
/*!
|
|
* Add data from an array into a subset of this array
|
|
* @param index Index of the subset
|
|
* @param subset The subset array to add from
|
|
*/
|
|
void addSubset(const std::vector<Range<size_t>> &index,
|
|
const Array &subset);
|
|
|
|
public: // Accessors
|
|
/*!
|
|
* Access the desired element
|
|
* @param i The row index
|
|
*/
|
|
ARRAY_ATTRIBUTE inline TYPE &operator()(size_t i) {
|
|
return d_data[d_size.index(i)];
|
|
}
|
|
|
|
/*!
|
|
* Access the desired element
|
|
* @param i The row index
|
|
*/
|
|
ARRAY_ATTRIBUTE inline const TYPE &operator()(size_t i) const {
|
|
return d_data[d_size.index(i)];
|
|
}
|
|
|
|
/*!
|
|
* Access the desired element
|
|
* @param i The row index
|
|
* @param j The column index
|
|
*/
|
|
ARRAY_ATTRIBUTE inline TYPE &operator()(size_t i, size_t j) {
|
|
return d_data[d_size.index(i, j)];
|
|
}
|
|
|
|
/*!
|
|
* Access the desired element
|
|
* @param i The row index
|
|
* @param j The column index
|
|
*/
|
|
ARRAY_ATTRIBUTE inline const TYPE &operator()(size_t i, size_t j) const {
|
|
return d_data[d_size.index(i, j)];
|
|
}
|
|
|
|
/*!
|
|
* Access the desired element
|
|
* @param i The row index
|
|
* @param j The column index
|
|
* @param k The third index
|
|
*/
|
|
ARRAY_ATTRIBUTE inline TYPE &operator()(size_t i, size_t j, size_t k) {
|
|
return d_data[d_size.index(i, j, k)];
|
|
}
|
|
|
|
/*!
|
|
* Access the desired element
|
|
* @param i The row index
|
|
* @param j The column index
|
|
* @param k The third index
|
|
*/
|
|
ARRAY_ATTRIBUTE inline const TYPE &operator()(size_t i, size_t j,
|
|
size_t k) const {
|
|
return d_data[d_size.index(i, j, k)];
|
|
}
|
|
|
|
/*!
|
|
* Access the desired element
|
|
* @param i1 The first index
|
|
* @param i2 The second index
|
|
* @param i3 The third index
|
|
* @param i4 The fourth index
|
|
*/
|
|
ARRAY_ATTRIBUTE inline TYPE &operator()(size_t i1, size_t i2, size_t i3,
|
|
size_t i4) {
|
|
return d_data[d_size.index(i1, i2, i3, i4)];
|
|
}
|
|
|
|
/*!
|
|
* Access the desired element
|
|
* @param i1 The first index
|
|
* @param i2 The second index
|
|
* @param i3 The third index
|
|
* @param i4 The fourth index
|
|
*/
|
|
ARRAY_ATTRIBUTE inline const TYPE &operator()(size_t i1, size_t i2,
|
|
size_t i3, size_t i4) const {
|
|
return d_data[d_size.index(i1, i2, i3, i4)];
|
|
}
|
|
|
|
/*!
|
|
* Access the desired element
|
|
* @param i1 The first index
|
|
* @param i2 The second index
|
|
* @param i3 The third index
|
|
* @param i4 The fourth index
|
|
* @param i5 The fifth index
|
|
*/
|
|
ARRAY_ATTRIBUTE inline TYPE &operator()(size_t i1, size_t i2, size_t i3,
|
|
size_t i4, size_t i5) {
|
|
return d_data[d_size.index(i1, i2, i3, i4, i5)];
|
|
}
|
|
|
|
/*!
|
|
* Access the desired element
|
|
* @param i1 The first index
|
|
* @param i2 The second index
|
|
* @param i3 The third index
|
|
* @param i4 The fourth index
|
|
* @param i5 The fifth index
|
|
*/
|
|
ARRAY_ATTRIBUTE inline const TYPE &
|
|
operator()(size_t i1, size_t i2, size_t i3, size_t i4, size_t i5) const {
|
|
return d_data[d_size.index(i1, i2, i3, i4, i5)];
|
|
}
|
|
|
|
/*!
|
|
* Access the desired element as a raw pointer
|
|
* @param i The global index
|
|
*/
|
|
ARRAY_ATTRIBUTE inline TYPE *ptr(size_t i) {
|
|
return i >= d_size.length() ? nullptr : &d_data[i];
|
|
}
|
|
|
|
/*!
|
|
* Access the desired element as a raw pointer
|
|
* @param i The global index
|
|
*/
|
|
ARRAY_ATTRIBUTE inline const TYPE *ptr(size_t i) const {
|
|
return i >= d_size.length() ? nullptr : &d_data[i];
|
|
}
|
|
|
|
//! Get iterator to beginning of data
|
|
inline TYPE *begin() { return d_data; }
|
|
|
|
//! Get iterator to beginning of data
|
|
inline const TYPE *begin() const { return d_data; }
|
|
|
|
//! Get iterator to beginning of data
|
|
inline TYPE *end() { return d_data + d_size.length(); }
|
|
|
|
//! Get iterator to beginning of data
|
|
inline const TYPE *end() const { return d_data + d_size.length(); }
|
|
|
|
//! Return the pointer to the raw data
|
|
inline std::shared_ptr<TYPE> getPtr() { return d_ptr; }
|
|
|
|
//! Return the pointer to the raw data
|
|
inline std::shared_ptr<const TYPE> getPtr() const { return d_ptr; }
|
|
|
|
//! Return the pointer to the raw data
|
|
ARRAY_ATTRIBUTE inline TYPE *data() { return d_data; }
|
|
|
|
//! Return the pointer to the raw data
|
|
ARRAY_ATTRIBUTE inline const TYPE *data() const { return d_data; }
|
|
|
|
public: // Operator overloading
|
|
//! Check if two matrices are equal
|
|
// Equality means the dimensions and data have to be identical
|
|
bool operator==(const Array &rhs) const;
|
|
|
|
//! Check if two matrices are not equal
|
|
inline bool operator!=(const Array &rhs) const {
|
|
return !this->operator==(rhs);
|
|
}
|
|
|
|
//! Add another array
|
|
Array &operator+=(const Array &rhs);
|
|
|
|
//! Subtract another array
|
|
Array &operator-=(const Array &rhs);
|
|
|
|
//! Add a scalar
|
|
Array &operator+=(const TYPE &rhs);
|
|
|
|
//! Subtract a scalar
|
|
Array &operator-=(const TYPE &rhs);
|
|
|
|
public: // Math operations
|
|
//! Concatenates the arrays along the dimension dim.
|
|
static Array cat(const std::vector<Array> &x, int dim = 0);
|
|
|
|
//! Concatenates the arrays along the dimension dim.
|
|
static Array cat(const std::initializer_list<Array> &x, int dim = 0);
|
|
|
|
//! Concatenates the arrays along the dimension dim.
|
|
static Array cat(size_t N_array, const Array *x, int dim);
|
|
|
|
//! Concatenates a given array with the current array
|
|
void cat(const Array &x, int dim = 0);
|
|
|
|
//! Initialize the array with random values (defined from the function table)
|
|
//void rand();
|
|
|
|
//! Return true if NaNs are present
|
|
bool NaNs() const;
|
|
|
|
//! Return the smallest value
|
|
TYPE min() const;
|
|
|
|
//! Return the largest value
|
|
TYPE max() const;
|
|
|
|
//! Return the sum of all elements
|
|
TYPE sum() const;
|
|
|
|
//! Return the mean of all elements
|
|
TYPE mean() const;
|
|
|
|
//! Return the min of all elements in a given direction
|
|
Array min(int dir) const;
|
|
|
|
//! Return the max of all elements in a given direction
|
|
Array max(int dir) const;
|
|
|
|
//! Return the sum of all elements in a given direction
|
|
Array sum(int dir) const;
|
|
|
|
//! Return the smallest value
|
|
TYPE min(const std::vector<size_t> &index) const;
|
|
|
|
//! Return the largest value
|
|
TYPE max(const std::vector<size_t> &index) const;
|
|
|
|
//! Return the sum of all elements
|
|
TYPE sum(const std::vector<size_t> &index) const;
|
|
|
|
//! Return the mean of all elements
|
|
TYPE mean(const std::vector<size_t> &index) const;
|
|
|
|
//! Return the smallest value
|
|
TYPE min(const std::vector<Range<size_t>> &index) const;
|
|
|
|
//! Return the largest value
|
|
TYPE max(const std::vector<Range<size_t>> &index) const;
|
|
|
|
//! Return the sum of all elements
|
|
TYPE sum(const std::vector<Range<size_t>> &index) const;
|
|
|
|
//! Return the mean of all elements
|
|
TYPE mean(const std::vector<Range<size_t>> &index) const;
|
|
|
|
//! Find all elements that match the operator
|
|
std::vector<size_t>
|
|
find(const TYPE &value,
|
|
std::function<bool(const TYPE &, const TYPE &)> compare) const;
|
|
|
|
//! Print an array
|
|
void print(std::ostream &os, const std::string &name = "A",
|
|
const std::string &prefix = "") const;
|
|
|
|
//! Transpose an array
|
|
Array reverseDim() const;
|
|
|
|
/*!
|
|
* @brief Shift dimensions
|
|
* @details Shifts the dimensions of the array by N. When N is positive,
|
|
* shiftDim shifts the dimensions to the left and wraps the
|
|
* N leading dimensions to the end. When N is negative,
|
|
* shiftDim shifts the dimensions to the right and pads with singletons.
|
|
* @param N Desired shift
|
|
*/
|
|
Array shiftDim(int N) const;
|
|
|
|
/*!
|
|
* @brief Permute array dimensions
|
|
* @details Rearranges the dimensions of the array so that they
|
|
* are in the order specified by the vector index.
|
|
* The array produced has the same values as A but the order of the subscripts
|
|
* needed to access any particular element are rearranged as specified.
|
|
* @param index Desired order of the subscripts
|
|
*/
|
|
Array permute(const std::vector<uint8_t> &index) const;
|
|
|
|
//! Replicate an array a given number of times in each direction
|
|
Array repmat(const std::vector<size_t> &N) const;
|
|
|
|
//! Coarsen an array using the given filter
|
|
Array coarsen(const Array &filter) const;
|
|
|
|
//! Coarsen an array using the given filter
|
|
Array coarsen(const std::vector<size_t> &ratio,
|
|
std::function<TYPE(const Array &)> filter) const;
|
|
|
|
/*!
|
|
* Perform a element-wise operation y = f(x)
|
|
* @param[in] fun The function operation
|
|
* @param[in] x The input array
|
|
*/
|
|
static Array transform(std::function<TYPE(const TYPE &)> fun,
|
|
const Array &x);
|
|
|
|
/*!
|
|
* Perform a element-wise operation z = f(x,y)
|
|
* @param[in] fun The function operation
|
|
* @param[in] x The first array
|
|
* @param[in] y The second array
|
|
*/
|
|
static Array transform(std::function<TYPE(const TYPE &, const TYPE &)> fun,
|
|
const Array &x, const Array &y);
|
|
|
|
/*!
|
|
* axpby operation: this = alpha*x + beta*this
|
|
* @param[in] alpha alpha
|
|
* @param[in] x x
|
|
* @param[in] beta beta
|
|
*/
|
|
void axpby(const TYPE &alpha, const Array &x, const TYPE &beta);
|
|
|
|
/*!
|
|
* Linear interpolation
|
|
* @param[in] x Position as a decimal index
|
|
*/
|
|
inline TYPE interp(const std::vector<double> &x) const {
|
|
return interp(x.data());
|
|
}
|
|
|
|
/*!
|
|
* Linear interpolation
|
|
* @param[in] x Position as a decimal index
|
|
*/
|
|
TYPE interp(const double *x) const;
|
|
|
|
/**
|
|
* \fn equals (Array & const rhs, TYPE tol )
|
|
* \brief Determine if two Arrays are equal using an absolute tolerance
|
|
* \param[in] rhs Vector to compare to
|
|
* \param[in] tol Tolerance of comparison
|
|
* \return True iff \f$||\mathit{rhs} - x||_\infty < \mathit{tol}\f$
|
|
*/
|
|
bool equals(const Array &rhs, TYPE tol = 0.000001) const;
|
|
|
|
private:
|
|
bool d_isCopyable; // Can the array be copied
|
|
bool d_isFixedSize; // Can the array be resized
|
|
ArraySize d_size; // Size of each dimension
|
|
TYPE *d_data; // Raw pointer to data in array
|
|
std::shared_ptr<TYPE> d_ptr; // Shared pointer to data in array
|
|
void allocate(const ArraySize &N);
|
|
|
|
private:
|
|
inline void checkSubsetIndex(const std::vector<Range<size_t>> &range) const;
|
|
inline std::vector<Range<size_t>>
|
|
convert(const std::vector<size_t> &index) const;
|
|
static inline void getSubsetArrays(const std::vector<Range<size_t>> &range,
|
|
std::array<size_t, 5> &first,
|
|
std::array<size_t, 5> &last,
|
|
std::array<size_t, 5> &inc,
|
|
std::array<size_t, 5> &N);
|
|
};
|
|
|
|
/********************************************************
|
|
* ostream operator *
|
|
********************************************************/
|
|
inline std::ostream &operator<<(std::ostream &out, const ArraySize &s) {
|
|
out << "[" << s[0];
|
|
for (size_t i = 1; i < s.ndim(); i++)
|
|
out << "," << s[i];
|
|
out << "]";
|
|
return out;
|
|
}
|
|
|
|
/********************************************************
|
|
* Math operations *
|
|
********************************************************/
|
|
template <class TYPE, class FUN, class Allocator>
|
|
inline Array<TYPE, FUN, Allocator>
|
|
operator+(const Array<TYPE, FUN, Allocator> &a,
|
|
const Array<TYPE, FUN, Allocator> &b) {
|
|
Array<TYPE, FUN, Allocator> c;
|
|
const auto &op = [](const TYPE &a, const TYPE &b) { return a + b; };
|
|
FUN::transform(op, a, b, c);
|
|
return c;
|
|
}
|
|
template <class TYPE, class FUN, class Allocator>
|
|
inline Array<TYPE, FUN, Allocator>
|
|
operator-(const Array<TYPE, FUN, Allocator> &a,
|
|
const Array<TYPE, FUN, Allocator> &b) {
|
|
Array<TYPE, FUN, Allocator> c;
|
|
const auto &op = [](const TYPE &a, const TYPE &b) { return a - b; };
|
|
FUN::transform(op, a, b, c);
|
|
return c;
|
|
}
|
|
template <class TYPE, class FUN, class Allocator>
|
|
inline Array<TYPE, FUN, Allocator>
|
|
operator*(const Array<TYPE, FUN, Allocator> &a,
|
|
const Array<TYPE, FUN, Allocator> &b) {
|
|
Array<TYPE, FUN, Allocator> c;
|
|
FUN::multiply(a, b, c);
|
|
return c;
|
|
}
|
|
template <class TYPE, class FUN, class Allocator>
|
|
inline Array<TYPE, FUN, Allocator>
|
|
operator*(const Array<TYPE, FUN, Allocator> &a, const std::vector<TYPE> &b) {
|
|
Array<TYPE, FUN, Allocator> b2, c;
|
|
b2.viewRaw({b.size()}, const_cast<TYPE *>(b.data()));
|
|
FUN::multiply(a, b2, c);
|
|
return c;
|
|
}
|
|
template <class TYPE, class FUN, class Allocator>
|
|
inline Array<TYPE, FUN, Allocator>
|
|
operator*(const TYPE &a, const Array<TYPE, FUN, Allocator> &b) {
|
|
auto c = b;
|
|
c.scale(a);
|
|
return c;
|
|
}
|
|
template <class TYPE, class FUN, class Allocator>
|
|
inline Array<TYPE, FUN, Allocator>
|
|
operator*(const Array<TYPE, FUN, Allocator> &a, const TYPE &b) {
|
|
auto c = a;
|
|
c.scale(b);
|
|
return c;
|
|
}
|
|
|
|
/********************************************************
|
|
* Copy array *
|
|
********************************************************/
|
|
template <class TYPE, class FUN, class Allocator>
|
|
template <class TYPE2>
|
|
inline void Array<TYPE, FUN, Allocator>::copy(const TYPE2 *data) {
|
|
if (std::is_same<TYPE, TYPE2>::value) {
|
|
std::copy(data, data + d_size.length(), d_data);
|
|
} else {
|
|
for (size_t i = 0; i < d_size.length(); i++)
|
|
d_data[i] = static_cast<TYPE>(data[i]);
|
|
}
|
|
}
|
|
template <class TYPE, class FUN, class Allocator>
|
|
template <class TYPE2>
|
|
inline void Array<TYPE, FUN, Allocator>::copyTo(TYPE2 *data) const {
|
|
if (std::is_same<TYPE, TYPE2>::value) {
|
|
std::copy(d_data, d_data + d_size.length(), data);
|
|
} else {
|
|
for (size_t i = 0; i < d_size.length(); i++)
|
|
data[i] = static_cast<TYPE2>(d_data[i]);
|
|
}
|
|
}
|
|
|
|
/********************************************************
|
|
* Convience typedefs *
|
|
* Copy array *
|
|
********************************************************/
|
|
typedef Array<double> DoubleArray;
|
|
typedef Array<int> IntArray;
|
|
|
|
#endif
|