Files
LBPM/common/SpherePack.cpp
Thomas Ramstad 23189f5577 Clang format (#55)
Run clang-format on modules of code
2021-11-08 22:58:37 +01:00

324 lines
11 KiB
C++

/*
Copyright 2013--2018 James E. McClure, Virginia Polytechnic & State University
Copyright Equnior ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
/*
Copyright 2013--2018 James E. McClure, Virginia Polytechnic & State University
Copyright Equnior ASA
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <fstream>
#include <math.h>
#include <time.h>
#include <exception>
#include <stdexcept>
#include "common/Array.h"
#include "common/Utilities.h"
#include "common/MPI.h"
#include "common/Communication.h"
#include "common/Database.h"
#include "common/SpherePack.h"
// Inline function to read line without a return argument
static inline void fgetl(char *str, int num, FILE *stream) {
char *ptr = fgets(str, num, stream);
if (0) {
char *temp = (char *)&ptr;
temp++;
}
}
void WriteLocalSolidID(char *FILENAME, char *ID, int N) {
char value;
ofstream File(FILENAME, ios::binary);
for (int n = 0; n < N; n++) {
value = ID[n];
File.write((char *)&value, sizeof(value));
}
File.close();
}
void WriteLocalSolidDistance(char *FILENAME, double *Distance, int N) {
double value;
ofstream File(FILENAME, ios::binary);
for (int n = 0; n < N; n++) {
value = Distance[n];
File.write((char *)&value, sizeof(value));
}
File.close();
}
void ReadSpherePacking(int nspheres, double *List_cx, double *List_cy,
double *List_cz, double *List_rad) {
// Read in the full sphere pack
//...... READ IN THE SPHERES...................................
cout << "Reading the packing file..." << endl;
FILE *fid = fopen("pack.out", "rb");
INSIST(fid != NULL, "Error opening pack.out");
//.........Trash the header lines..........
char line[100];
fgetl(line, 100, fid);
fgetl(line, 100, fid);
fgetl(line, 100, fid);
fgetl(line, 100, fid);
fgetl(line, 100, fid);
//........read the spheres..................
// We will read until a blank like or end-of-file is reached
int count = 0;
while (!feof(fid) && fgets(line, 100, fid) != NULL) {
char *line2 = line;
List_cx[count] = strtod(line2, &line2);
List_cy[count] = strtod(line2, &line2);
List_cz[count] = strtod(line2, &line2);
List_rad[count] = strtod(line2, &line2);
count++;
}
cout << "Number of spheres extracted is: " << count << endl;
INSIST(count == nspheres,
"Specified number of spheres is probably incorrect!");
// .............................................................
}
void AssignLocalSolidID(char *ID, int nspheres, double *List_cx,
double *List_cy, double *List_cz, double *List_rad,
double Lx, double Ly, double Lz, int Nx, int Ny, int Nz,
int iproc, int jproc, int kproc, int nprocx, int nprocy,
int nprocz) {
// Use sphere lists to determine which nodes are in porespace
// Write out binary file for nodes
char value;
int N = Nx * Ny * Nz; // Domain size, including the halo
double hx, hy, hz;
double x, y, z;
double cx, cy, cz, r;
int imin, imax, jmin, jmax, kmin, kmax;
int p, i, j, k, n;
//............................................
double min_x, min_y, min_z;
// double max_x,max_y,max_z;
//............................................
// Lattice spacing for the entire domain
// It should generally be true that hx=hy=hz
// Otherwise, you will end up with ellipsoids
hx = Lx / (Nx * nprocx - 1);
hy = Ly / (Ny * nprocy - 1);
hz = Lz / (Nz * nprocz - 1);
//............................................
// Get maximum and minimum for this domain
// Halo is included !
min_x = double(iproc * Nx - 1) * hx;
min_y = double(jproc * Ny - 1) * hy;
min_z = double(kproc * Nz - 1) * hz;
// max_x = ((iproc+1)*Nx+1)*hx;
// max_y = ((jproc+1)*Ny+1)*hy;
// max_z = ((kproc+1)*Nz+1)*hz;
//............................................
//............................................
// Pre-initialize local ID
for (n = 0; n < N; n++) {
ID[n] = 1;
}
//............................................
//............................................
// .........Loop over the spheres.............
for (p = 0; p < nspheres; p++) {
// Get the sphere from the list, map to local min
cx = List_cx[p] - min_x;
cy = List_cy[p] - min_y;
cz = List_cz[p] - min_z;
r = List_rad[p];
// Check if
// Range for this sphere in global indexing
imin = int((cx - r) / hx) - 1;
imax = int((cx + r) / hx) + 1;
jmin = int((cy - r) / hy) - 1;
jmax = int((cy + r) / hy) + 1;
kmin = int((cz - r) / hz) - 1;
kmax = int((cz + r) / hz) + 1;
// Obviously we have to do something at the edges
if (imin < 0)
imin = 0;
if (imin > Nx)
imin = Nx;
if (imax < 0)
imax = 0;
if (imax > Nx)
imax = Nx;
if (jmin < 0)
jmin = 0;
if (jmin > Ny)
jmin = Ny;
if (jmax < 0)
jmax = 0;
if (jmax > Ny)
jmax = Ny;
if (kmin < 0)
kmin = 0;
if (kmin > Nz)
kmin = Nz;
if (kmax < 0)
kmax = 0;
if (kmax > Nz)
kmax = Nz;
// Loop over the domain for this sphere (may be null)
for (i = imin; i < imax; i++) {
for (j = jmin; j < jmax; j++) {
for (k = kmin; k < kmax; k++) {
// Initialize ID value to 'fluid (=1)'
x = i * hx;
y = j * hy;
z = k * hz;
value = 1;
// if inside sphere, set to zero
if ((cx - x) * (cx - x) + (cy - y) * (cy - y) +
(cz - z) * (cz - z) <
r * r) {
value = 0;
}
// get the position in the list
n = k * Nx * Ny + j * Nx + i;
if (ID[n] != 0) {
ID[n] = value;
}
}
}
}
}
}
void SignedDistance(double *Distance, int nspheres, double *List_cx,
double *List_cy, double *List_cz, double *List_rad,
double Lx, double Ly, double Lz, int Nx, int Ny, int Nz,
int iproc, int jproc, int kproc, int nprocx, int nprocy,
int nprocz) {
// Use sphere lists to determine which nodes are in porespace
// Write out binary file for nodes
int N = Nx * Ny * Nz; // Domain size, including the halo
double hx, hy, hz;
double x, y, z;
double cx, cy, cz, r;
int imin, imax, jmin, jmax, kmin, kmax;
int p, i, j, k, n;
//............................................
double min_x, min_y, min_z;
double distance;
//............................................
// Lattice spacing for the entire domain
// It should generally be true that hx=hy=hz
// Otherwise, you will end up with ellipsoids
hx = Lx / ((Nx - 2) * nprocx - 1);
hy = Ly / ((Ny - 2) * nprocy - 1);
hz = Lz / ((Nz - 2) * nprocz - 1);
//............................................
// Get maximum and minimum for this domain
// Halo is included !
min_x = double(iproc * (Nx - 2) - 1) * hx;
min_y = double(jproc * (Ny - 2) - 1) * hy;
min_z = double(kproc * (Nz - 2) - 1) * hz;
//............................................
//............................................
// Pre-initialize Distance
for (n = 0; n < N; n++) {
Distance[n] = 100.0;
}
//............................................
//............................................
// .........Loop over the spheres.............
for (p = 0; p < nspheres; p++) {
// Get the sphere from the list, map to local min
cx = List_cx[p] - min_x;
cy = List_cy[p] - min_y;
cz = List_cz[p] - min_z;
r = List_rad[p];
// Check if
// Range for this sphere in global indexing
imin = int((cx - 2 * r) / hx);
imax = int((cx + 2 * r) / hx) + 2;
jmin = int((cy - 2 * r) / hy);
jmax = int((cy + 2 * r) / hy) + 2;
kmin = int((cz - 2 * r) / hz);
kmax = int((cz + 2 * r) / hz) + 2;
// Obviously we have to do something at the edges
if (imin < 0)
imin = 0;
if (imin > Nx)
imin = Nx;
if (imax < 0)
imax = 0;
if (imax > Nx)
imax = Nx;
if (jmin < 0)
jmin = 0;
if (jmin > Ny)
jmin = Ny;
if (jmax < 0)
jmax = 0;
if (jmax > Ny)
jmax = Ny;
if (kmin < 0)
kmin = 0;
if (kmin > Nz)
kmin = Nz;
if (kmax < 0)
kmax = 0;
if (kmax > Nz)
kmax = Nz;
// Loop over the domain for this sphere (may be null)
for (i = imin; i < imax; i++) {
for (j = jmin; j < jmax; j++) {
for (k = kmin; k < kmax; k++) {
// x,y,z is distance in physical units
x = i * hx;
y = j * hy;
z = k * hz;
// if inside sphere, set to zero
// get the position in the list
n = k * Nx * Ny + j * Nx + i;
// Compute the distance
distance = sqrt((cx - x) * (cx - x) + (cy - y) * (cy - y) +
(cz - z) * (cz - z)) -
r;
// Assign the minimum distance
if (distance < Distance[n])
Distance[n] = distance;
}
}
}
}
// Map the distance to lattice units
for (n = 0; n < N; n++)
Distance[n] = Distance[n] / hx;
}