3114 lines
94 KiB
C++
3114 lines
94 KiB
C++
#include <stdio.h>
|
|
#include <math.h>
|
|
|
|
extern "C" void ScaLBL_D3Q19_GreyscaleFE_Pressure(double *dist, double *Den, double *Poros,double *Velocity,
|
|
double *Pressure, double rhoA,double rhoB, int N){
|
|
|
|
int n;
|
|
double ux,uy,uz,u_mag;
|
|
double pressure;
|
|
double porosity;
|
|
double rho0;
|
|
double phi;
|
|
double nA,nB;
|
|
|
|
for (n=0; n<N; n++){
|
|
|
|
// initialize pressure value
|
|
pressure = 0.0;
|
|
pressure +=dist[1*N+n];
|
|
pressure +=dist[2*N+n];
|
|
pressure +=dist[3*N+n];
|
|
pressure +=dist[4*N+n];
|
|
pressure +=dist[5*N+n];
|
|
pressure +=dist[6*N+n];
|
|
pressure +=dist[7*N+n];
|
|
pressure +=dist[8*N+n];
|
|
pressure +=dist[9*N+n];
|
|
pressure +=dist[10*N+n];
|
|
pressure +=dist[11*N+n];
|
|
pressure +=dist[12*N+n];
|
|
pressure +=dist[13*N+n];
|
|
pressure +=dist[14*N+n];
|
|
pressure +=dist[15*N+n];
|
|
pressure +=dist[16*N+n];
|
|
pressure +=dist[17*N+n];
|
|
pressure +=dist[18*N+n];
|
|
|
|
// read the component number densities
|
|
nA = Den[n];
|
|
nB = Den[N + n];
|
|
// compute phase indicator field
|
|
phi=(nA-nB)/(nA+nB);
|
|
// local density
|
|
rho0=rhoA + 0.5*(1.0-phi)*(rhoB-rhoA);
|
|
// read voxel porosity
|
|
porosity = Poros[n];
|
|
// read velocity
|
|
ux = Velocity[0*N+n];
|
|
uy = Velocity[1*N+n];
|
|
uz = Velocity[2*N+n];
|
|
u_mag=sqrt(ux*ux+uy*uy+uz*uz);
|
|
|
|
//Calculate pressure for Incompressible-MRT model
|
|
pressure=0.5/porosity*(pressure-0.5*rho0*u_mag*u_mag/porosity);
|
|
//Update pressure on device
|
|
Pressure[n] = pressure;
|
|
}
|
|
}
|
|
|
|
|
|
extern "C" void ScaLBL_D3Q19_AAeven_GreyscaleFE(double *dist, double *Aq, double *Bq, double *Den,
|
|
double *DenGradA, double *DenGradB, double *SolidForce, int start, int finish, int Np,
|
|
double tauA,double tauB,double tauA_eff,double tauB_eff,double rhoA,double rhoB,double Gsc, double Gx, double Gy, double Gz,
|
|
double *Poros,double *Perm, double *Velocity,double *Pressure){
|
|
|
|
int n;
|
|
double vx,vy,vz,v_mag;
|
|
double ux,uy,uz,u_mag;
|
|
double pressure;//defined for this incompressible model
|
|
// conserved momemnts
|
|
double jx,jy,jz;
|
|
// non-conserved moments
|
|
double m1,m2,m4,m6,m8,m9,m10,m11,m12,m13,m14,m15,m16,m17,m18;
|
|
double fq;
|
|
// currently disable 'GeoFun'
|
|
double GeoFun=0.0;//geometric function from Guo's PRE 66, 036304 (2002)
|
|
double porosity;
|
|
double perm;//voxel permeability
|
|
double c0, c1; //Guo's model parameters
|
|
double Fx, Fy, Fz;//The total body force including Brinkman force and user-specified (Gx,Gy,Gz)
|
|
double tau,tau_eff,rlx_setA,rlx_setB;
|
|
double mu_eff;//effective kinematic viscosity for Darcy term
|
|
double rho0;
|
|
double phi;
|
|
double nx,ny,nz,C;
|
|
double nA,nB;
|
|
double a1,b1,a2,b2,nAB,delta;
|
|
double beta=0.95;
|
|
double nA_gradx,nA_grady,nA_gradz;
|
|
double nB_gradx,nB_grady,nB_gradz;
|
|
double Gff_x,Gff_y,Gff_z;
|
|
double Gfs_x,Gfs_y,Gfs_z;
|
|
|
|
|
|
const double mrt_V1=0.05263157894736842;
|
|
const double mrt_V2=0.012531328320802;
|
|
const double mrt_V3=0.04761904761904762;
|
|
const double mrt_V4=0.004594820384294068;
|
|
const double mrt_V5=0.01587301587301587;
|
|
const double mrt_V6=0.0555555555555555555555555;
|
|
const double mrt_V7=0.02777777777777778;
|
|
const double mrt_V8=0.08333333333333333;
|
|
const double mrt_V9=0.003341687552213868;
|
|
const double mrt_V10=0.003968253968253968;
|
|
const double mrt_V11=0.01388888888888889;
|
|
const double mrt_V12=0.04166666666666666;
|
|
|
|
|
|
for (n=start; n<finish; n++){
|
|
|
|
// read the component number densities
|
|
nA = Den[n];
|
|
nB = Den[Np + n];
|
|
nA_gradx = DenGradA[n+0*Np];
|
|
nA_grady = DenGradA[n+1*Np];
|
|
nA_gradz = DenGradA[n+2*Np];
|
|
nB_gradx = DenGradB[n+0*Np];
|
|
nB_grady = DenGradB[n+1*Np];
|
|
nB_gradz = DenGradB[n+2*Np];
|
|
|
|
// compute phase indicator field
|
|
phi=(nA-nB)/(nA+nB);
|
|
|
|
// local density
|
|
rho0=rhoA + 0.5*(1.0-phi)*(rhoB-rhoA);
|
|
// local relaxation time
|
|
tau=tauA + 0.5*(1.0-phi)*(tauB-tauA);
|
|
rlx_setA = 1.f/tau;
|
|
rlx_setB = 8.f*(2.f-rlx_setA)/(8.f-rlx_setA);
|
|
tau_eff=tauA_eff + 0.5*(1.0-phi)*(tauB_eff-tauA_eff);
|
|
mu_eff = (tau_eff-0.5)/3.f;//kinematic viscosity
|
|
|
|
|
|
//........................................................................
|
|
// READ THE DISTRIBUTIONS
|
|
// (read from opposite array due to previous swap operation)
|
|
//........................................................................
|
|
// q=0
|
|
fq = dist[n];
|
|
m1 = -30.0*fq;
|
|
m2 = 12.0*fq;
|
|
|
|
// q=1
|
|
fq = dist[2*Np+n];
|
|
pressure = fq;
|
|
m1 -= 11.0*fq;
|
|
m2 -= 4.0*fq;
|
|
jx = fq;
|
|
m4 = -4.0*fq;
|
|
m9 = 2.0*fq;
|
|
m10 = -4.0*fq;
|
|
|
|
// f2 = dist[10*Np+n];
|
|
fq = dist[1*Np+n];
|
|
pressure += fq;
|
|
m1 -= 11.0*(fq);
|
|
m2 -= 4.0*(fq);
|
|
jx -= fq;
|
|
m4 += 4.0*(fq);
|
|
m9 += 2.0*(fq);
|
|
m10 -= 4.0*(fq);
|
|
|
|
// q=3
|
|
fq = dist[4*Np+n];
|
|
pressure += fq;
|
|
m1 -= 11.0*fq;
|
|
m2 -= 4.0*fq;
|
|
jy = fq;
|
|
m6 = -4.0*fq;
|
|
m9 -= fq;
|
|
m10 += 2.0*fq;
|
|
m11 = fq;
|
|
m12 = -2.0*fq;
|
|
|
|
// q = 4
|
|
fq = dist[3*Np+n];
|
|
pressure += fq;
|
|
m1 -= 11.0*fq;
|
|
m2 -= 4.0*fq;
|
|
jy -= fq;
|
|
m6 += 4.0*fq;
|
|
m9 -= fq;
|
|
m10 += 2.0*fq;
|
|
m11 += fq;
|
|
m12 -= 2.0*fq;
|
|
|
|
// q=5
|
|
fq = dist[6*Np+n];
|
|
pressure += fq;
|
|
m1 -= 11.0*fq;
|
|
m2 -= 4.0*fq;
|
|
jz = fq;
|
|
m8 = -4.0*fq;
|
|
m9 -= fq;
|
|
m10 += 2.0*fq;
|
|
m11 -= fq;
|
|
m12 += 2.0*fq;
|
|
|
|
// q = 6
|
|
fq = dist[5*Np+n];
|
|
pressure += fq;
|
|
m1 -= 11.0*fq;
|
|
m2 -= 4.0*fq;
|
|
jz -= fq;
|
|
m8 += 4.0*fq;
|
|
m9 -= fq;
|
|
m10 += 2.0*fq;
|
|
m11 -= fq;
|
|
m12 += 2.0*fq;
|
|
|
|
// q=7
|
|
fq = dist[8*Np+n];
|
|
pressure += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx += fq;
|
|
m4 += fq;
|
|
jy += fq;
|
|
m6 += fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 += fq;
|
|
m12 += fq;
|
|
m13 = fq;
|
|
m16 = fq;
|
|
m17 = -fq;
|
|
|
|
// q = 8
|
|
fq = dist[7*Np+n];
|
|
pressure += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx -= fq;
|
|
m4 -= fq;
|
|
jy -= fq;
|
|
m6 -= fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 += fq;
|
|
m12 += fq;
|
|
m13 += fq;
|
|
m16 -= fq;
|
|
m17 += fq;
|
|
|
|
// q=9
|
|
fq = dist[10*Np+n];
|
|
pressure += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx += fq;
|
|
m4 += fq;
|
|
jy -= fq;
|
|
m6 -= fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 += fq;
|
|
m12 += fq;
|
|
m13 -= fq;
|
|
m16 += fq;
|
|
m17 += fq;
|
|
|
|
// q = 10
|
|
fq = dist[9*Np+n];
|
|
pressure += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx -= fq;
|
|
m4 -= fq;
|
|
jy += fq;
|
|
m6 += fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 += fq;
|
|
m12 += fq;
|
|
m13 -= fq;
|
|
m16 -= fq;
|
|
m17 -= fq;
|
|
|
|
// q=11
|
|
fq = dist[12*Np+n];
|
|
pressure += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx += fq;
|
|
m4 += fq;
|
|
jz += fq;
|
|
m8 += fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 -= fq;
|
|
m12 -= fq;
|
|
m15 = fq;
|
|
m16 -= fq;
|
|
m18 = fq;
|
|
|
|
// q=12
|
|
fq = dist[11*Np+n];
|
|
pressure += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx -= fq;
|
|
m4 -= fq;
|
|
jz -= fq;
|
|
m8 -= fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 -= fq;
|
|
m12 -= fq;
|
|
m15 += fq;
|
|
m16 += fq;
|
|
m18 -= fq;
|
|
|
|
// q=13
|
|
fq = dist[14*Np+n];
|
|
pressure += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx += fq;
|
|
m4 += fq;
|
|
jz -= fq;
|
|
m8 -= fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 -= fq;
|
|
m12 -= fq;
|
|
m15 -= fq;
|
|
m16 -= fq;
|
|
m18 -= fq;
|
|
|
|
// q=14
|
|
fq = dist[13*Np+n];
|
|
pressure += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx -= fq;
|
|
m4 -= fq;
|
|
jz += fq;
|
|
m8 += fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 -= fq;
|
|
m12 -= fq;
|
|
m15 -= fq;
|
|
m16 += fq;
|
|
m18 += fq;
|
|
|
|
// q=15
|
|
fq = dist[16*Np+n];
|
|
pressure += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jy += fq;
|
|
m6 += fq;
|
|
jz += fq;
|
|
m8 += fq;
|
|
m9 -= 2.0*fq;
|
|
m10 -= 2.0*fq;
|
|
m14 = fq;
|
|
m17 += fq;
|
|
m18 -= fq;
|
|
|
|
// q=16
|
|
fq = dist[15*Np+n];
|
|
pressure += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jy -= fq;
|
|
m6 -= fq;
|
|
jz -= fq;
|
|
m8 -= fq;
|
|
m9 -= 2.0*fq;
|
|
m10 -= 2.0*fq;
|
|
m14 += fq;
|
|
m17 -= fq;
|
|
m18 += fq;
|
|
|
|
// q=17
|
|
fq = dist[18*Np+n];
|
|
pressure += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jy += fq;
|
|
m6 += fq;
|
|
jz -= fq;
|
|
m8 -= fq;
|
|
m9 -= 2.0*fq;
|
|
m10 -= 2.0*fq;
|
|
m14 -= fq;
|
|
m17 += fq;
|
|
m18 += fq;
|
|
|
|
// q=18
|
|
fq = dist[17*Np+n];
|
|
pressure += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jy -= fq;
|
|
m6 -= fq;
|
|
jz += fq;
|
|
m8 += fq;
|
|
m9 -= 2.0*fq;
|
|
m10 -= 2.0*fq;
|
|
m14 -= fq;
|
|
m17 -= fq;
|
|
m18 -= fq;
|
|
//---------------------------------------------------------------------//
|
|
|
|
//---------------- Calculate SC fluid-fluid and fluid-solid forces ---------------//
|
|
// fluid-fluid force
|
|
// Gff_x = -Gsc*nA*nB_gradx*int(phi>0.0)-Gsc*nB*nA_gradx*int(phi<0.0);
|
|
// Gff_y = -Gsc*nA*nB_grady*int(phi>0.0)-Gsc*nB*nA_grady*int(phi<0.0);
|
|
// Gff_z = -Gsc*nA*nB_gradz*int(phi>0.0)-Gsc*nB*nA_gradz*int(phi<0.0);
|
|
Gff_x = -Gsc*(nA*nB_gradx+nB*nA_gradx);
|
|
Gff_y = -Gsc*(nA*nB_grady+nB*nA_grady);
|
|
Gff_z = -Gsc*(nA*nB_gradz+nB*nA_gradz);
|
|
// fluid-solid force
|
|
Gfs_x = (nA-nB)*SolidForce[n+0*Np];
|
|
Gfs_y = (nA-nB)*SolidForce[n+1*Np];
|
|
Gfs_z = (nA-nB)*SolidForce[n+2*Np];
|
|
|
|
porosity = Poros[n];
|
|
// use local saturation as an estimation of effective relperm values
|
|
perm = Perm[n]*nA/(nA+nB)*int(phi>0.0)+Perm[n]*nB/(nA+nB)*int(phi<0.0);
|
|
|
|
c0 = 0.5*(1.0+porosity*0.5*mu_eff/perm);
|
|
if (porosity==1.0) c0 = 0.5;//i.e. apparent pore nodes
|
|
//GeoFun = 1.75/sqrt(150.0*porosity*porosity*porosity);
|
|
c1 = porosity*0.5*GeoFun/sqrt(perm);
|
|
if (porosity==1.0) c1 = 0.0;//i.e. apparent pore nodes
|
|
|
|
vx = jx/rho0+0.5*(porosity*Gx+Gff_x+Gfs_x);
|
|
vy = jy/rho0+0.5*(porosity*Gy+Gff_y+Gfs_y);
|
|
vz = jz/rho0+0.5*(porosity*Gz+Gff_z+Gfs_z);
|
|
v_mag=sqrt(vx*vx+vy*vy+vz*vz);
|
|
ux = vx/(c0+sqrt(c0*c0+c1*v_mag));
|
|
uy = vy/(c0+sqrt(c0*c0+c1*v_mag));
|
|
uz = vz/(c0+sqrt(c0*c0+c1*v_mag));
|
|
u_mag=sqrt(ux*ux+uy*uy+uz*uz);
|
|
|
|
//Update the total force to include linear (Darcy) and nonlinear (Forchheimer) drags due to the porous medium
|
|
Fx = rho0*(-porosity*mu_eff/perm*ux - porosity*GeoFun/sqrt(perm)*u_mag*ux + porosity*Gx + Gff_x + Gfs_x);
|
|
Fy = rho0*(-porosity*mu_eff/perm*uy - porosity*GeoFun/sqrt(perm)*u_mag*uy + porosity*Gy + Gff_y + Gfs_y);
|
|
Fz = rho0*(-porosity*mu_eff/perm*uz - porosity*GeoFun/sqrt(perm)*u_mag*uz + porosity*Gz + Gff_z + Gfs_z);
|
|
if (porosity==1.0){
|
|
Fx=rho0*(Gx + Gff_x + Gfs_x);
|
|
Fy=rho0*(Gy + Gff_y + Gfs_y);
|
|
Fz=rho0*(Gz + Gff_z + Gfs_z);
|
|
}
|
|
|
|
//Calculate pressure for Incompressible-MRT model
|
|
pressure=0.5/porosity*(pressure-0.5*rho0*u_mag*u_mag/porosity);
|
|
|
|
// //..............carry out relaxation process...............................................
|
|
// m1 = m1 + rlx_setA*((-30*rho0+19*(ux*ux+uy*uy+uz*uz)/porosity + 57*pressure*porosity) - m1)
|
|
// + (1-0.5*rlx_setA)*38*(Fx*ux+Fy*uy+Fz*uz)/porosity;
|
|
// m2 = m2 + rlx_setA*((12*rho0 - 5.5*(ux*ux+uy*uy+uz*uz)/porosity-27*pressure*porosity) - m2)
|
|
// + (1-0.5*rlx_setA)*11*(-Fx*ux-Fy*uy-Fz*uz)/porosity;
|
|
// jx = jx + Fx;
|
|
// m4 = m4 + rlx_setB*((-0.6666666666666666*ux*rho0) - m4)
|
|
// + (1-0.5*rlx_setB)*(-0.6666666666666666*Fx);
|
|
// jy = jy + Fy;
|
|
// m6 = m6 + rlx_setB*((-0.6666666666666666*uy*rho0) - m6)
|
|
// + (1-0.5*rlx_setB)*(-0.6666666666666666*Fy);
|
|
// jz = jz + Fz;
|
|
// m8 = m8 + rlx_setB*((-0.6666666666666666*uz*rho0) - m8)
|
|
// + (1-0.5*rlx_setB)*(-0.6666666666666666*Fz);
|
|
// m9 = m9 + rlx_setA*((rho0*(2*ux*ux-uy*uy-uz*uz)/porosity) - m9)
|
|
// + (1-0.5*rlx_setA)*(4*Fx*ux-2*Fy*uy-2*Fz*uz)/porosity;
|
|
// m10 = m10 + rlx_setA*(-0.5*rho0*((2*ux*ux-uy*uy-uz*uz)/porosity)- m10)
|
|
// + (1-0.5*rlx_setA)*(-2*Fx*ux+Fy*uy+Fz*uz)/porosity;
|
|
// m11 = m11 + rlx_setA*((rho0*(uy*uy-uz*uz)/porosity) - m11)
|
|
// + (1-0.5*rlx_setA)*(2*Fy*uy-2*Fz*uz)/porosity;
|
|
// m12 = m12 + rlx_setA*(-0.5*(rho0*(uy*uy-uz*uz)/porosity)- m12)
|
|
// + (1-0.5*rlx_setA)*(-Fy*uy+Fz*uz)/porosity;
|
|
// m13 = m13 + rlx_setA*((rho0*ux*uy/porosity) - m13)
|
|
// + (1-0.5*rlx_setA)*(Fy*ux+Fx*uy)/porosity;
|
|
// m14 = m14 + rlx_setA*((rho0*uy*uz/porosity) - m14)
|
|
// + (1-0.5*rlx_setA)*(Fz*uy+Fy*uz)/porosity;
|
|
// m15 = m15 + rlx_setA*((rho0*ux*uz/porosity) - m15)
|
|
// + (1-0.5*rlx_setA)*(Fz*ux+Fx*uz)/porosity;
|
|
// m16 = m16 + rlx_setB*( - m16);
|
|
// m17 = m17 + rlx_setB*( - m17);
|
|
// m18 = m18 + rlx_setB*( - m18);
|
|
// //.......................................................................................................
|
|
|
|
//-------------------- IMRT collison where body force has NO higher-order terms -------------//
|
|
//..............carry out relaxation process...............................................
|
|
m1 = m1 + rlx_setA*((-30*rho0+19*(ux*ux+uy*uy+uz*uz)/porosity + 57*pressure*porosity) - m1);
|
|
m2 = m2 + rlx_setA*((12*rho0 - 5.5*(ux*ux+uy*uy+uz*uz)/porosity-27*pressure*porosity) - m2);
|
|
jx = jx + Fx;
|
|
m4 = m4 + rlx_setB*((-0.6666666666666666*ux*rho0) - m4)
|
|
+ (1-0.5*rlx_setB)*(-0.6666666666666666*Fx);
|
|
jy = jy + Fy;
|
|
m6 = m6 + rlx_setB*((-0.6666666666666666*uy*rho0) - m6)
|
|
+ (1-0.5*rlx_setB)*(-0.6666666666666666*Fy);
|
|
jz = jz + Fz;
|
|
m8 = m8 + rlx_setB*((-0.6666666666666666*uz*rho0) - m8)
|
|
+ (1-0.5*rlx_setB)*(-0.6666666666666666*Fz);
|
|
m9 = m9 + rlx_setA*((rho0*(2*ux*ux-uy*uy-uz*uz)/porosity) - m9);
|
|
m10 = m10 + rlx_setA*(-0.5*rho0*((2*ux*ux-uy*uy-uz*uz)/porosity)- m10);
|
|
m11 = m11 + rlx_setA*((rho0*(uy*uy-uz*uz)/porosity) - m11);
|
|
m12 = m12 + rlx_setA*(-0.5*(rho0*(uy*uy-uz*uz)/porosity)- m12);
|
|
m13 = m13 + rlx_setA*((rho0*ux*uy/porosity) - m13);
|
|
m14 = m14 + rlx_setA*((rho0*uy*uz/porosity) - m14);
|
|
m15 = m15 + rlx_setA*((rho0*ux*uz/porosity) - m15);
|
|
m16 = m16 + rlx_setB*( - m16);
|
|
m17 = m17 + rlx_setB*( - m17);
|
|
m18 = m18 + rlx_setB*( - m18);
|
|
//.......................................................................................................
|
|
|
|
//.................inverse transformation......................................................
|
|
// q=0
|
|
fq = mrt_V1*rho0-mrt_V2*m1+mrt_V3*m2;
|
|
dist[n] = fq;
|
|
|
|
// q = 1
|
|
fq = mrt_V1*rho0-mrt_V4*m1-mrt_V5*m2+0.1*(jx-m4)+mrt_V6*(m9-m10);
|
|
dist[1*Np+n] = fq;
|
|
|
|
// q=2
|
|
fq = mrt_V1*rho0-mrt_V4*m1-mrt_V5*m2+0.1*(m4-jx)+mrt_V6*(m9-m10);
|
|
dist[2*Np+n] = fq;
|
|
|
|
// q = 3
|
|
fq = mrt_V1*rho0-mrt_V4*m1-mrt_V5*m2+0.1*(jy-m6)+mrt_V7*(m10-m9)+mrt_V8*(m11-m12);
|
|
dist[3*Np+n] = fq;
|
|
|
|
// q = 4
|
|
fq = mrt_V1*rho0-mrt_V4*m1-mrt_V5*m2+0.1*(m6-jy)+mrt_V7*(m10-m9)+mrt_V8*(m11-m12);
|
|
dist[4*Np+n] = fq;
|
|
|
|
// q = 5
|
|
fq = mrt_V1*rho0-mrt_V4*m1-mrt_V5*m2+0.1*(jz-m8)+mrt_V7*(m10-m9)+mrt_V8*(m12-m11);
|
|
dist[5*Np+n] = fq;
|
|
|
|
// q = 6
|
|
fq = mrt_V1*rho0-mrt_V4*m1-mrt_V5*m2+0.1*(m8-jz)+mrt_V7*(m10-m9)+mrt_V8*(m12-m11);
|
|
dist[6*Np+n] = fq;
|
|
|
|
// q = 7
|
|
fq = mrt_V1*rho0+mrt_V9*m1+mrt_V10*m2+0.1*(jx+jy)+0.025*(m4+m6)+mrt_V7*m9+mrt_V11*m10+mrt_V8*m11+mrt_V12*m12+0.25*m13+0.125*(m16-m17);
|
|
dist[7*Np+n] = fq;
|
|
|
|
// q = 8
|
|
fq = mrt_V1*rho0+mrt_V9*m1+mrt_V10*m2-0.1*(jx+jy)-0.025*(m4+m6) +mrt_V7*m9+mrt_V11*m10+mrt_V8*m11+mrt_V12*m12+0.25*m13+0.125*(m17-m16);
|
|
dist[8*Np+n] = fq;
|
|
|
|
// q = 9
|
|
fq = mrt_V1*rho0+mrt_V9*m1+mrt_V10*m2+0.1*(jx-jy)+0.025*(m4-m6)+mrt_V7*m9+mrt_V11*m10+mrt_V8*m11+mrt_V12*m12-0.25*m13+0.125*(m16+m17);
|
|
dist[9*Np+n] = fq;
|
|
|
|
// q = 10
|
|
fq = mrt_V1*rho0+mrt_V9*m1+mrt_V10*m2+0.1*(jy-jx)+0.025*(m6-m4)+mrt_V7*m9+mrt_V11*m10+mrt_V8*m11+mrt_V12*m12-0.25*m13-0.125*(m16+m17);
|
|
dist[10*Np+n] = fq;
|
|
|
|
// q = 11
|
|
fq = mrt_V1*rho0+mrt_V9*m1+mrt_V10*m2+0.1*(jx+jz)+0.025*(m4+m8)+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11-mrt_V12*m12+0.25*m15+0.125*(m18-m16);
|
|
dist[11*Np+n] = fq;
|
|
|
|
// q = 12
|
|
fq = mrt_V1*rho0+mrt_V9*m1+mrt_V10*m2-0.1*(jx+jz)-0.025*(m4+m8)+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11-mrt_V12*m12+0.25*m15+0.125*(m16-m18);
|
|
dist[12*Np+n] = fq;
|
|
|
|
// q = 13
|
|
fq = mrt_V1*rho0+mrt_V9*m1+mrt_V10*m2+0.1*(jx-jz)+0.025*(m4-m8)+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11-mrt_V12*m12-0.25*m15-0.125*(m16+m18);
|
|
dist[13*Np+n] = fq;
|
|
|
|
// q= 14
|
|
fq = mrt_V1*rho0+mrt_V9*m1+mrt_V10*m2+0.1*(jz-jx)+0.025*(m8-m4)+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11-mrt_V12*m12-0.25*m15+0.125*(m16+m18);
|
|
dist[14*Np+n] = fq;
|
|
|
|
// q = 15
|
|
fq = mrt_V1*rho0+mrt_V9*m1+mrt_V10*m2+0.1*(jy+jz)+0.025*(m6+m8)-mrt_V6*m9-mrt_V7*m10+0.25*m14+0.125*(m17-m18);
|
|
dist[15*Np+n] = fq;
|
|
|
|
// q = 16
|
|
fq = mrt_V1*rho0+mrt_V9*m1+mrt_V10*m2-0.1*(jy+jz)-0.025*(m6+m8)-mrt_V6*m9-mrt_V7*m10+0.25*m14+0.125*(m18-m17);
|
|
dist[16*Np+n] = fq;
|
|
|
|
// q = 17
|
|
fq = mrt_V1*rho0+mrt_V9*m1+mrt_V10*m2+0.1*(jy-jz)+0.025*(m6-m8)-mrt_V6*m9-mrt_V7*m10-0.25*m14+0.125*(m17+m18);
|
|
dist[17*Np+n] = fq;
|
|
|
|
// q = 18
|
|
fq = mrt_V1*rho0+mrt_V9*m1+mrt_V10*m2+0.1*(jz-jy)+0.025*(m8-m6)-mrt_V6*m9-mrt_V7*m10-0.25*m14-0.125*(m17+m18);
|
|
dist[18*Np+n] = fq;
|
|
//........................................................................
|
|
|
|
//Update velocity on device
|
|
Velocity[0*Np+n] = ux;
|
|
Velocity[1*Np+n] = uy;
|
|
Velocity[2*Np+n] = uz;
|
|
//Update pressure on device
|
|
Pressure[n] = pressure;
|
|
|
|
//-----------------------Mass transport------------------------//
|
|
// Calculate the color gradient
|
|
nx = (2*nB*nA_gradx-2*nA*nB_gradx)/(nA+nB)/(nA+nB);
|
|
ny = (2*nB*nA_grady-2*nA*nB_grady)/(nA+nB)/(nA+nB);
|
|
nz = (2*nB*nA_gradz-2*nA*nB_gradz)/(nA+nB)/(nA+nB);
|
|
//...........Normalize the Color Gradient.................................
|
|
C = sqrt(nx*nx+ny*ny+nz*nz);
|
|
double ColorMag = C;
|
|
if (C==0.0) ColorMag=1.0;
|
|
nx = nx/ColorMag;
|
|
ny = ny/ColorMag;
|
|
nz = nz/ColorMag;
|
|
if (C == 0.0) nx = ny = nz = 0.0;
|
|
|
|
// Instantiate mass transport distributions
|
|
// Stationary value - distribution 0
|
|
nAB = 1.0/(nA+nB);
|
|
Aq[n] = 0.3333333333333333*nA;
|
|
Bq[n] = 0.3333333333333333*nB;
|
|
|
|
//...............................................
|
|
// q = 0,2,4
|
|
// Cq = {1,0,0}, {0,1,0}, {0,0,1}
|
|
delta = beta*nA*nB*nAB*0.1111111111111111*nx;
|
|
if (!(nA*nB*nAB>0)) delta=0;
|
|
a1 = nA*(0.1111111111111111*(1+4.5*ux))+delta;
|
|
b1 = nB*(0.1111111111111111*(1+4.5*ux))-delta;
|
|
a2 = nA*(0.1111111111111111*(1-4.5*ux))-delta;
|
|
b2 = nB*(0.1111111111111111*(1-4.5*ux))+delta;
|
|
|
|
Aq[1*Np+n] = a1;
|
|
Bq[1*Np+n] = b1;
|
|
Aq[2*Np+n] = a2;
|
|
Bq[2*Np+n] = b2;
|
|
|
|
//...............................................
|
|
// q = 2
|
|
// Cq = {0,1,0}
|
|
delta = beta*nA*nB*nAB*0.1111111111111111*ny;
|
|
if (!(nA*nB*nAB>0)) delta=0;
|
|
a1 = nA*(0.1111111111111111*(1+4.5*uy))+delta;
|
|
b1 = nB*(0.1111111111111111*(1+4.5*uy))-delta;
|
|
a2 = nA*(0.1111111111111111*(1-4.5*uy))-delta;
|
|
b2 = nB*(0.1111111111111111*(1-4.5*uy))+delta;
|
|
|
|
Aq[3*Np+n] = a1;
|
|
Bq[3*Np+n] = b1;
|
|
Aq[4*Np+n] = a2;
|
|
Bq[4*Np+n] = b2;
|
|
//...............................................
|
|
// q = 4
|
|
// Cq = {0,0,1}
|
|
delta = beta*nA*nB*nAB*0.1111111111111111*nz;
|
|
if (!(nA*nB*nAB>0)) delta=0;
|
|
a1 = nA*(0.1111111111111111*(1+4.5*uz))+delta;
|
|
b1 = nB*(0.1111111111111111*(1+4.5*uz))-delta;
|
|
a2 = nA*(0.1111111111111111*(1-4.5*uz))-delta;
|
|
b2 = nB*(0.1111111111111111*(1-4.5*uz))+delta;
|
|
|
|
Aq[5*Np+n] = a1;
|
|
Bq[5*Np+n] = b1;
|
|
Aq[6*Np+n] = a2;
|
|
Bq[6*Np+n] = b2;
|
|
//...............................................
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_D3Q19_AAodd_GreyscaleFE(int *neighborList, double *dist, double *Aq, double *Bq, double *Den,
|
|
double *DenGradA, double *DenGradB, double *SolidForce, int start, int finish, int Np,
|
|
double tauA,double tauB,double tauA_eff,double tauB_eff,double rhoA,double rhoB,double Gsc, double Gx, double Gy, double Gz,
|
|
double *Poros,double *Perm, double *Velocity,double *Pressure){
|
|
|
|
int n, nread, nr1,nr2,nr3,nr4,nr5,nr6;
|
|
double vx,vy,vz,v_mag;
|
|
double ux,uy,uz,u_mag;
|
|
double pressure;//defined for this incompressible model
|
|
// conserved momemnts
|
|
double jx,jy,jz;
|
|
// non-conserved moments
|
|
double m1,m2,m4,m6,m8,m9,m10,m11,m12,m13,m14,m15,m16,m17,m18;
|
|
double fq;
|
|
// currently disable 'GeoFun'
|
|
double GeoFun=0.0;//geometric function from Guo's PRE 66, 036304 (2002)
|
|
double porosity;
|
|
double perm;//voxel permeability
|
|
double c0, c1; //Guo's model parameters
|
|
double Fx, Fy, Fz;//The total body force including Brinkman force and user-specified (Gx,Gy,Gz)
|
|
double tau,tau_eff,rlx_setA,rlx_setB;
|
|
double mu_eff;//effective kinematic viscosity for Darcy term
|
|
double rho0;
|
|
double phi;
|
|
double nx,ny,nz,C;
|
|
double nA,nB;
|
|
double a1,b1,a2,b2,nAB,delta;
|
|
double beta=0.95;
|
|
double nA_gradx,nA_grady,nA_gradz;
|
|
double nB_gradx,nB_grady,nB_gradz;
|
|
double Gff_x,Gff_y,Gff_z;
|
|
double Gfs_x,Gfs_y,Gfs_z;
|
|
|
|
const double mrt_V1=0.05263157894736842;
|
|
const double mrt_V2=0.012531328320802;
|
|
const double mrt_V3=0.04761904761904762;
|
|
const double mrt_V4=0.004594820384294068;
|
|
const double mrt_V5=0.01587301587301587;
|
|
const double mrt_V6=0.0555555555555555555555555;
|
|
const double mrt_V7=0.02777777777777778;
|
|
const double mrt_V8=0.08333333333333333;
|
|
const double mrt_V9=0.003341687552213868;
|
|
const double mrt_V10=0.003968253968253968;
|
|
const double mrt_V11=0.01388888888888889;
|
|
const double mrt_V12=0.04166666666666666;
|
|
|
|
for (n=start; n<finish; n++){
|
|
|
|
// read the component number densities
|
|
nA = Den[n];
|
|
nB = Den[Np + n];
|
|
nA_gradx = DenGradA[n+0*Np];
|
|
nA_grady = DenGradA[n+1*Np];
|
|
nA_gradz = DenGradA[n+2*Np];
|
|
nB_gradx = DenGradB[n+0*Np];
|
|
nB_grady = DenGradB[n+1*Np];
|
|
nB_gradz = DenGradB[n+2*Np];
|
|
|
|
// compute phase indicator field
|
|
phi=(nA-nB)/(nA+nB);
|
|
|
|
// local density
|
|
rho0=rhoA + 0.5*(1.0-phi)*(rhoB-rhoA);
|
|
// local relaxation time
|
|
tau=tauA + 0.5*(1.0-phi)*(tauB-tauA);
|
|
rlx_setA = 1.f/tau;
|
|
rlx_setB = 8.f*(2.f-rlx_setA)/(8.f-rlx_setA);
|
|
tau_eff=tauA_eff + 0.5*(1.0-phi)*(tauB_eff-tauA_eff);
|
|
mu_eff = (tau_eff-0.5)/3.f;//kinematic viscosity
|
|
|
|
//........................................................................
|
|
// READ THE DISTRIBUTIONS
|
|
// (read from opposite array due to previous swap operation)
|
|
//........................................................................
|
|
// q=0
|
|
fq = dist[n];
|
|
m1 = -30.0*fq;
|
|
m2 = 12.0*fq;
|
|
|
|
// q=1
|
|
nr1 = neighborList[n]; // neighbor 2 ( > 10Np => odd part of dist)
|
|
fq = dist[nr1]; // reading the f1 data into register fq
|
|
pressure = fq;
|
|
m1 -= 11.0*fq;
|
|
m2 -= 4.0*fq;
|
|
jx = fq;
|
|
m4 = -4.0*fq;
|
|
m9 = 2.0*fq;
|
|
m10 = -4.0*fq;
|
|
|
|
// q=2
|
|
nr2 = neighborList[n+Np]; // neighbor 1 ( < 10Np => even part of dist)
|
|
fq = dist[nr2]; // reading the f2 data into register fq
|
|
pressure += fq;
|
|
m1 -= 11.0*(fq);
|
|
m2 -= 4.0*(fq);
|
|
jx -= fq;
|
|
m4 += 4.0*(fq);
|
|
m9 += 2.0*(fq);
|
|
m10 -= 4.0*(fq);
|
|
|
|
// q=3
|
|
nr3 = neighborList[n+2*Np]; // neighbor 4
|
|
fq = dist[nr3];
|
|
pressure += fq;
|
|
m1 -= 11.0*fq;
|
|
m2 -= 4.0*fq;
|
|
jy = fq;
|
|
m6 = -4.0*fq;
|
|
m9 -= fq;
|
|
m10 += 2.0*fq;
|
|
m11 = fq;
|
|
m12 = -2.0*fq;
|
|
|
|
// q = 4
|
|
nr4 = neighborList[n+3*Np]; // neighbor 3
|
|
fq = dist[nr4];
|
|
pressure += fq;
|
|
m1 -= 11.0*fq;
|
|
m2 -= 4.0*fq;
|
|
jy -= fq;
|
|
m6 += 4.0*fq;
|
|
m9 -= fq;
|
|
m10 += 2.0*fq;
|
|
m11 += fq;
|
|
m12 -= 2.0*fq;
|
|
|
|
// q=5
|
|
nr5 = neighborList[n+4*Np];
|
|
fq = dist[nr5];
|
|
pressure += fq;
|
|
m1 -= 11.0*fq;
|
|
m2 -= 4.0*fq;
|
|
jz = fq;
|
|
m8 = -4.0*fq;
|
|
m9 -= fq;
|
|
m10 += 2.0*fq;
|
|
m11 -= fq;
|
|
m12 += 2.0*fq;
|
|
|
|
// q = 6
|
|
nr6 = neighborList[n+5*Np];
|
|
fq = dist[nr6];
|
|
pressure += fq;
|
|
m1 -= 11.0*fq;
|
|
m2 -= 4.0*fq;
|
|
jz -= fq;
|
|
m8 += 4.0*fq;
|
|
m9 -= fq;
|
|
m10 += 2.0*fq;
|
|
m11 -= fq;
|
|
m12 += 2.0*fq;
|
|
|
|
// q=7
|
|
nread = neighborList[n+6*Np];
|
|
fq = dist[nread];
|
|
pressure += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx += fq;
|
|
m4 += fq;
|
|
jy += fq;
|
|
m6 += fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 += fq;
|
|
m12 += fq;
|
|
m13 = fq;
|
|
m16 = fq;
|
|
m17 = -fq;
|
|
|
|
// q = 8
|
|
nread = neighborList[n+7*Np];
|
|
fq = dist[nread];
|
|
pressure += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx -= fq;
|
|
m4 -= fq;
|
|
jy -= fq;
|
|
m6 -= fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 += fq;
|
|
m12 += fq;
|
|
m13 += fq;
|
|
m16 -= fq;
|
|
m17 += fq;
|
|
|
|
// q=9
|
|
nread = neighborList[n+8*Np];
|
|
fq = dist[nread];
|
|
pressure += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx += fq;
|
|
m4 += fq;
|
|
jy -= fq;
|
|
m6 -= fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 += fq;
|
|
m12 += fq;
|
|
m13 -= fq;
|
|
m16 += fq;
|
|
m17 += fq;
|
|
|
|
// q = 10
|
|
nread = neighborList[n+9*Np];
|
|
fq = dist[nread];
|
|
pressure += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx -= fq;
|
|
m4 -= fq;
|
|
jy += fq;
|
|
m6 += fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 += fq;
|
|
m12 += fq;
|
|
m13 -= fq;
|
|
m16 -= fq;
|
|
m17 -= fq;
|
|
|
|
// q=11
|
|
nread = neighborList[n+10*Np];
|
|
fq = dist[nread];
|
|
pressure += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx += fq;
|
|
m4 += fq;
|
|
jz += fq;
|
|
m8 += fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 -= fq;
|
|
m12 -= fq;
|
|
m15 = fq;
|
|
m16 -= fq;
|
|
m18 = fq;
|
|
|
|
// q=12
|
|
nread = neighborList[n+11*Np];
|
|
fq = dist[nread];
|
|
pressure += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx -= fq;
|
|
m4 -= fq;
|
|
jz -= fq;
|
|
m8 -= fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 -= fq;
|
|
m12 -= fq;
|
|
m15 += fq;
|
|
m16 += fq;
|
|
m18 -= fq;
|
|
|
|
// q=13
|
|
nread = neighborList[n+12*Np];
|
|
fq = dist[nread];
|
|
pressure += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx += fq;
|
|
m4 += fq;
|
|
jz -= fq;
|
|
m8 -= fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 -= fq;
|
|
m12 -= fq;
|
|
m15 -= fq;
|
|
m16 -= fq;
|
|
m18 -= fq;
|
|
|
|
// q=14
|
|
nread = neighborList[n+13*Np];
|
|
fq = dist[nread];
|
|
pressure += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx -= fq;
|
|
m4 -= fq;
|
|
jz += fq;
|
|
m8 += fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 -= fq;
|
|
m12 -= fq;
|
|
m15 -= fq;
|
|
m16 += fq;
|
|
m18 += fq;
|
|
|
|
// q=15
|
|
nread = neighborList[n+14*Np];
|
|
fq = dist[nread];
|
|
pressure += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jy += fq;
|
|
m6 += fq;
|
|
jz += fq;
|
|
m8 += fq;
|
|
m9 -= 2.0*fq;
|
|
m10 -= 2.0*fq;
|
|
m14 = fq;
|
|
m17 += fq;
|
|
m18 -= fq;
|
|
|
|
// q=16
|
|
nread = neighborList[n+15*Np];
|
|
fq = dist[nread];
|
|
pressure += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jy -= fq;
|
|
m6 -= fq;
|
|
jz -= fq;
|
|
m8 -= fq;
|
|
m9 -= 2.0*fq;
|
|
m10 -= 2.0*fq;
|
|
m14 += fq;
|
|
m17 -= fq;
|
|
m18 += fq;
|
|
|
|
// q=17
|
|
nread = neighborList[n+16*Np];
|
|
fq = dist[nread];
|
|
pressure += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jy += fq;
|
|
m6 += fq;
|
|
jz -= fq;
|
|
m8 -= fq;
|
|
m9 -= 2.0*fq;
|
|
m10 -= 2.0*fq;
|
|
m14 -= fq;
|
|
m17 += fq;
|
|
m18 += fq;
|
|
|
|
// q=18
|
|
nread = neighborList[n+17*Np];
|
|
fq = dist[nread];
|
|
pressure += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jy -= fq;
|
|
m6 -= fq;
|
|
jz += fq;
|
|
m8 += fq;
|
|
m9 -= 2.0*fq;
|
|
m10 -= 2.0*fq;
|
|
m14 -= fq;
|
|
m17 -= fq;
|
|
m18 -= fq;
|
|
//---------------------------------------------------------------------//
|
|
|
|
//---------------- Calculate SC fluid-fluid and fluid-solid forces ---------------//
|
|
// fluid-fluid force
|
|
// Gff_x = -Gsc*nA*nB_gradx*int(phi>0.0)-Gsc*nB*nA_gradx*int(phi<0.0);
|
|
// Gff_y = -Gsc*nA*nB_grady*int(phi>0.0)-Gsc*nB*nA_grady*int(phi<0.0);
|
|
// Gff_z = -Gsc*nA*nB_gradz*int(phi>0.0)-Gsc*nB*nA_gradz*int(phi<0.0);
|
|
Gff_x = -Gsc*(nA*nB_gradx+nB*nA_gradx);
|
|
Gff_y = -Gsc*(nA*nB_grady+nB*nA_grady);
|
|
Gff_z = -Gsc*(nA*nB_gradz+nB*nA_gradz);
|
|
// fluid-solid force
|
|
Gfs_x = (nA-nB)*SolidForce[n+0*Np];
|
|
Gfs_y = (nA-nB)*SolidForce[n+1*Np];
|
|
Gfs_z = (nA-nB)*SolidForce[n+2*Np];
|
|
|
|
porosity = Poros[n];
|
|
// use local saturation as an estimation of effective relperm values
|
|
perm = Perm[n]*nA/(nA+nB)*int(phi>0.0)+Perm[n]*nB/(nA+nB)*int(phi<0.0);
|
|
|
|
c0 = 0.5*(1.0+porosity*0.5*mu_eff/perm);
|
|
if (porosity==1.0) c0 = 0.5;//i.e. apparent pore nodes
|
|
//GeoFun = 1.75/sqrt(150.0*porosity*porosity*porosity);
|
|
c1 = porosity*0.5*GeoFun/sqrt(perm);
|
|
if (porosity==1.0) c1 = 0.0;//i.e. apparent pore nodes
|
|
|
|
vx = jx/rho0+0.5*(porosity*Gx+Gff_x+Gfs_x);
|
|
vy = jy/rho0+0.5*(porosity*Gy+Gff_y+Gfs_y);
|
|
vz = jz/rho0+0.5*(porosity*Gz+Gff_z+Gfs_z);
|
|
v_mag=sqrt(vx*vx+vy*vy+vz*vz);
|
|
ux = vx/(c0+sqrt(c0*c0+c1*v_mag));
|
|
uy = vy/(c0+sqrt(c0*c0+c1*v_mag));
|
|
uz = vz/(c0+sqrt(c0*c0+c1*v_mag));
|
|
u_mag=sqrt(ux*ux+uy*uy+uz*uz);
|
|
|
|
//Update the total force to include linear (Darcy) and nonlinear (Forchheimer) drags due to the porous medium
|
|
Fx = rho0*(-porosity*mu_eff/perm*ux - porosity*GeoFun/sqrt(perm)*u_mag*ux + porosity*Gx + Gff_x + Gfs_x);
|
|
Fy = rho0*(-porosity*mu_eff/perm*uy - porosity*GeoFun/sqrt(perm)*u_mag*uy + porosity*Gy + Gff_y + Gfs_y);
|
|
Fz = rho0*(-porosity*mu_eff/perm*uz - porosity*GeoFun/sqrt(perm)*u_mag*uz + porosity*Gz + Gff_z + Gfs_z);
|
|
if (porosity==1.0){
|
|
Fx=rho0*(Gx + Gff_x + Gfs_x);
|
|
Fy=rho0*(Gy + Gff_y + Gfs_y);
|
|
Fz=rho0*(Gz + Gff_z + Gfs_z);
|
|
}
|
|
|
|
//Calculate pressure for Incompressible-MRT model
|
|
pressure=0.5/porosity*(pressure-0.5*rho0*u_mag*u_mag/porosity);
|
|
|
|
// //..............carry out relaxation process...............................................
|
|
// m1 = m1 + rlx_setA*((-30*rho0+19*(ux*ux+uy*uy+uz*uz)/porosity + 57*pressure*porosity) - m1)
|
|
// + (1-0.5*rlx_setA)*38*(Fx*ux+Fy*uy+Fz*uz)/porosity;
|
|
// m2 = m2 + rlx_setA*((12*rho0 - 5.5*(ux*ux+uy*uy+uz*uz)/porosity-27*pressure*porosity) - m2)
|
|
// + (1-0.5*rlx_setA)*11*(-Fx*ux-Fy*uy-Fz*uz)/porosity;
|
|
// jx = jx + Fx;
|
|
// m4 = m4 + rlx_setB*((-0.6666666666666666*ux*rho0) - m4)
|
|
// + (1-0.5*rlx_setB)*(-0.6666666666666666*Fx);
|
|
// jy = jy + Fy;
|
|
// m6 = m6 + rlx_setB*((-0.6666666666666666*uy*rho0) - m6)
|
|
// + (1-0.5*rlx_setB)*(-0.6666666666666666*Fy);
|
|
// jz = jz + Fz;
|
|
// m8 = m8 + rlx_setB*((-0.6666666666666666*uz*rho0) - m8)
|
|
// + (1-0.5*rlx_setB)*(-0.6666666666666666*Fz);
|
|
// m9 = m9 + rlx_setA*((rho0*(2*ux*ux-uy*uy-uz*uz)/porosity) - m9)
|
|
// + (1-0.5*rlx_setA)*(4*Fx*ux-2*Fy*uy-2*Fz*uz)/porosity;
|
|
// m10 = m10 + rlx_setA*(-0.5*rho0*((2*ux*ux-uy*uy-uz*uz)/porosity)- m10)
|
|
// + (1-0.5*rlx_setA)*(-2*Fx*ux+Fy*uy+Fz*uz)/porosity;
|
|
// m11 = m11 + rlx_setA*((rho0*(uy*uy-uz*uz)/porosity) - m11)
|
|
// + (1-0.5*rlx_setA)*(2*Fy*uy-2*Fz*uz)/porosity;
|
|
// m12 = m12 + rlx_setA*(-0.5*(rho0*(uy*uy-uz*uz)/porosity)- m12)
|
|
// + (1-0.5*rlx_setA)*(-Fy*uy+Fz*uz)/porosity;
|
|
// m13 = m13 + rlx_setA*((rho0*ux*uy/porosity) - m13)
|
|
// + (1-0.5*rlx_setA)*(Fy*ux+Fx*uy)/porosity;
|
|
// m14 = m14 + rlx_setA*((rho0*uy*uz/porosity) - m14)
|
|
// + (1-0.5*rlx_setA)*(Fz*uy+Fy*uz)/porosity;
|
|
// m15 = m15 + rlx_setA*((rho0*ux*uz/porosity) - m15)
|
|
// + (1-0.5*rlx_setA)*(Fz*ux+Fx*uz)/porosity;
|
|
// m16 = m16 + rlx_setB*( - m16);
|
|
// m17 = m17 + rlx_setB*( - m17);
|
|
// m18 = m18 + rlx_setB*( - m18);
|
|
// //.......................................................................................................
|
|
|
|
//-------------------- IMRT collison where body force has NO higher-order terms -------------//
|
|
//..............carry out relaxation process...............................................
|
|
m1 = m1 + rlx_setA*((-30*rho0+19*(ux*ux+uy*uy+uz*uz)/porosity + 57*pressure*porosity) - m1);
|
|
m2 = m2 + rlx_setA*((12*rho0 - 5.5*(ux*ux+uy*uy+uz*uz)/porosity-27*pressure*porosity) - m2);
|
|
jx = jx + Fx;
|
|
m4 = m4 + rlx_setB*((-0.6666666666666666*ux*rho0) - m4)
|
|
+ (1-0.5*rlx_setB)*(-0.6666666666666666*Fx);
|
|
jy = jy + Fy;
|
|
m6 = m6 + rlx_setB*((-0.6666666666666666*uy*rho0) - m6)
|
|
+ (1-0.5*rlx_setB)*(-0.6666666666666666*Fy);
|
|
jz = jz + Fz;
|
|
m8 = m8 + rlx_setB*((-0.6666666666666666*uz*rho0) - m8)
|
|
+ (1-0.5*rlx_setB)*(-0.6666666666666666*Fz);
|
|
m9 = m9 + rlx_setA*((rho0*(2*ux*ux-uy*uy-uz*uz)/porosity) - m9);
|
|
m10 = m10 + rlx_setA*(-0.5*rho0*((2*ux*ux-uy*uy-uz*uz)/porosity)- m10);
|
|
m11 = m11 + rlx_setA*((rho0*(uy*uy-uz*uz)/porosity) - m11);
|
|
m12 = m12 + rlx_setA*(-0.5*(rho0*(uy*uy-uz*uz)/porosity)- m12);
|
|
m13 = m13 + rlx_setA*((rho0*ux*uy/porosity) - m13);
|
|
m14 = m14 + rlx_setA*((rho0*uy*uz/porosity) - m14);
|
|
m15 = m15 + rlx_setA*((rho0*ux*uz/porosity) - m15);
|
|
m16 = m16 + rlx_setB*( - m16);
|
|
m17 = m17 + rlx_setB*( - m17);
|
|
m18 = m18 + rlx_setB*( - m18);
|
|
//.......................................................................................................
|
|
|
|
|
|
//.................inverse transformation......................................................
|
|
// q=0
|
|
fq = mrt_V1*rho0-mrt_V2*m1+mrt_V3*m2;
|
|
dist[n] = fq;
|
|
|
|
// q = 1
|
|
fq = mrt_V1*rho0-mrt_V4*m1-mrt_V5*m2+0.1*(jx-m4)+mrt_V6*(m9-m10);
|
|
//nread = neighborList[n+Np];
|
|
dist[nr2] = fq;
|
|
|
|
// q=2
|
|
fq = mrt_V1*rho0-mrt_V4*m1-mrt_V5*m2+0.1*(m4-jx)+mrt_V6*(m9-m10);
|
|
//nread = neighborList[n];
|
|
dist[nr1] = fq;
|
|
|
|
// q = 3
|
|
fq = mrt_V1*rho0-mrt_V4*m1-mrt_V5*m2+0.1*(jy-m6)+mrt_V7*(m10-m9)+mrt_V8*(m11-m12);
|
|
//nread = neighborList[n+3*Np];
|
|
dist[nr4] = fq;
|
|
|
|
// q = 4
|
|
fq = mrt_V1*rho0-mrt_V4*m1-mrt_V5*m2+0.1*(m6-jy)+mrt_V7*(m10-m9)+mrt_V8*(m11-m12);
|
|
//nread = neighborList[n+2*Np];
|
|
dist[nr3] = fq;
|
|
|
|
// q = 5
|
|
fq = mrt_V1*rho0-mrt_V4*m1-mrt_V5*m2+0.1*(jz-m8)+mrt_V7*(m10-m9)+mrt_V8*(m12-m11);
|
|
//nread = neighborList[n+5*Np];
|
|
dist[nr6] = fq;
|
|
|
|
// q = 6
|
|
fq = mrt_V1*rho0-mrt_V4*m1-mrt_V5*m2+0.1*(m8-jz)+mrt_V7*(m10-m9)+mrt_V8*(m12-m11);
|
|
//nread = neighborList[n+4*Np];
|
|
dist[nr5] = fq;
|
|
|
|
// q = 7
|
|
fq = mrt_V1*rho0+mrt_V9*m1+mrt_V10*m2+0.1*(jx+jy)+0.025*(m4+m6)+mrt_V7*m9+mrt_V11*m10+mrt_V8*m11+mrt_V12*m12+0.25*m13+0.125*(m16-m17);
|
|
nread = neighborList[n+7*Np];
|
|
dist[nread] = fq;
|
|
|
|
// q = 8
|
|
fq = mrt_V1*rho0+mrt_V9*m1+mrt_V10*m2-0.1*(jx+jy)-0.025*(m4+m6) +mrt_V7*m9+mrt_V11*m10+mrt_V8*m11+mrt_V12*m12+0.25*m13+0.125*(m17-m16);
|
|
nread = neighborList[n+6*Np];
|
|
dist[nread] = fq;
|
|
|
|
// q = 9
|
|
fq = mrt_V1*rho0+mrt_V9*m1+mrt_V10*m2+0.1*(jx-jy)+0.025*(m4-m6)+mrt_V7*m9+mrt_V11*m10+mrt_V8*m11+mrt_V12*m12-0.25*m13+0.125*(m16+m17);
|
|
nread = neighborList[n+9*Np];
|
|
dist[nread] = fq;
|
|
|
|
// q = 10
|
|
fq = mrt_V1*rho0+mrt_V9*m1+mrt_V10*m2+0.1*(jy-jx)+0.025*(m6-m4)+mrt_V7*m9+mrt_V11*m10+mrt_V8*m11+mrt_V12*m12-0.25*m13-0.125*(m16+m17);
|
|
nread = neighborList[n+8*Np];
|
|
dist[nread] = fq;
|
|
|
|
// q = 11
|
|
fq = mrt_V1*rho0+mrt_V9*m1+mrt_V10*m2+0.1*(jx+jz)+0.025*(m4+m8)+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11-mrt_V12*m12+0.25*m15+0.125*(m18-m16);
|
|
nread = neighborList[n+11*Np];
|
|
dist[nread] = fq;
|
|
|
|
// q = 12
|
|
fq = mrt_V1*rho0+mrt_V9*m1+mrt_V10*m2-0.1*(jx+jz)-0.025*(m4+m8)+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11-mrt_V12*m12+0.25*m15+0.125*(m16-m18);
|
|
nread = neighborList[n+10*Np];
|
|
dist[nread]= fq;
|
|
|
|
// q = 13
|
|
fq = mrt_V1*rho0+mrt_V9*m1+mrt_V10*m2+0.1*(jx-jz)+0.025*(m4-m8)+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11-mrt_V12*m12-0.25*m15-0.125*(m16+m18);
|
|
nread = neighborList[n+13*Np];
|
|
dist[nread] = fq;
|
|
|
|
// q= 14
|
|
fq = mrt_V1*rho0+mrt_V9*m1+mrt_V10*m2+0.1*(jz-jx)+0.025*(m8-m4)+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11-mrt_V12*m12-0.25*m15+0.125*(m16+m18);
|
|
nread = neighborList[n+12*Np];
|
|
dist[nread] = fq;
|
|
|
|
// q = 15
|
|
fq = mrt_V1*rho0+mrt_V9*m1+mrt_V10*m2+0.1*(jy+jz)+0.025*(m6+m8)-mrt_V6*m9-mrt_V7*m10+0.25*m14+0.125*(m17-m18);
|
|
nread = neighborList[n+15*Np];
|
|
dist[nread] = fq;
|
|
|
|
// q = 16
|
|
fq = mrt_V1*rho0+mrt_V9*m1+mrt_V10*m2-0.1*(jy+jz)-0.025*(m6+m8)-mrt_V6*m9-mrt_V7*m10+0.25*m14+0.125*(m18-m17);
|
|
nread = neighborList[n+14*Np];
|
|
dist[nread] = fq;
|
|
|
|
// q = 17
|
|
fq = mrt_V1*rho0+mrt_V9*m1+mrt_V10*m2+0.1*(jy-jz)+0.025*(m6-m8)-mrt_V6*m9-mrt_V7*m10-0.25*m14+0.125*(m17+m18);
|
|
nread = neighborList[n+17*Np];
|
|
dist[nread] = fq;
|
|
|
|
// q = 18
|
|
fq = mrt_V1*rho0+mrt_V9*m1+mrt_V10*m2+0.1*(jz-jy)+0.025*(m8-m6)-mrt_V6*m9-mrt_V7*m10-0.25*m14-0.125*(m17+m18);
|
|
nread = neighborList[n+16*Np];
|
|
dist[nread] = fq;
|
|
//........................................................................
|
|
|
|
//Update velocity on device
|
|
Velocity[0*Np+n] = ux;
|
|
Velocity[1*Np+n] = uy;
|
|
Velocity[2*Np+n] = uz;
|
|
//Update pressure on device
|
|
Pressure[n] = pressure;
|
|
|
|
//-----------------------Mass transport------------------------//
|
|
// Calculate the color gradient
|
|
nx = (2*nB*nA_gradx-2*nA*nB_gradx)/(nA+nB)/(nA+nB);
|
|
ny = (2*nB*nA_grady-2*nA*nB_grady)/(nA+nB)/(nA+nB);
|
|
nz = (2*nB*nA_gradz-2*nA*nB_gradz)/(nA+nB)/(nA+nB);
|
|
//...........Normalize the Color Gradient.................................
|
|
C = sqrt(nx*nx+ny*ny+nz*nz);
|
|
double ColorMag = C;
|
|
if (C==0.0) ColorMag=1.0;
|
|
nx = nx/ColorMag;
|
|
ny = ny/ColorMag;
|
|
nz = nz/ColorMag;
|
|
if (C == 0.0) nx = ny = nz = 0.0;
|
|
|
|
// Instantiate mass transport distributions
|
|
// Stationary value - distribution 0
|
|
nAB = 1.0/(nA+nB);
|
|
Aq[n] = 0.3333333333333333*nA;
|
|
Bq[n] = 0.3333333333333333*nB;
|
|
|
|
//...............................................
|
|
// q = 0,2,4
|
|
// Cq = {1,0,0}, {0,1,0}, {0,0,1}
|
|
delta = beta*nA*nB*nAB*0.1111111111111111*nx;
|
|
if (!(nA*nB*nAB>0)) delta=0;
|
|
a1 = nA*(0.1111111111111111*(1+4.5*ux))+delta;
|
|
b1 = nB*(0.1111111111111111*(1+4.5*ux))-delta;
|
|
a2 = nA*(0.1111111111111111*(1-4.5*ux))-delta;
|
|
b2 = nB*(0.1111111111111111*(1-4.5*ux))+delta;
|
|
|
|
// q = 1
|
|
//nread = neighborList[n+Np];
|
|
Aq[nr2] = a1;
|
|
Bq[nr2] = b1;
|
|
// q=2
|
|
//nread = neighborList[n];
|
|
Aq[nr1] = a2;
|
|
Bq[nr1] = b2;
|
|
|
|
//...............................................
|
|
// Cq = {0,1,0}
|
|
delta = beta*nA*nB*nAB*0.1111111111111111*ny;
|
|
if (!(nA*nB*nAB>0)) delta=0;
|
|
a1 = nA*(0.1111111111111111*(1+4.5*uy))+delta;
|
|
b1 = nB*(0.1111111111111111*(1+4.5*uy))-delta;
|
|
a2 = nA*(0.1111111111111111*(1-4.5*uy))-delta;
|
|
b2 = nB*(0.1111111111111111*(1-4.5*uy))+delta;
|
|
|
|
// q = 3
|
|
//nread = neighborList[n+3*Np];
|
|
Aq[nr4] = a1;
|
|
Bq[nr4] = b1;
|
|
// q = 4
|
|
//nread = neighborList[n+2*Np];
|
|
Aq[nr3] = a2;
|
|
Bq[nr3] = b2;
|
|
|
|
//...............................................
|
|
// q = 4
|
|
// Cq = {0,0,1}
|
|
delta = beta*nA*nB*nAB*0.1111111111111111*nz;
|
|
if (!(nA*nB*nAB>0)) delta=0;
|
|
a1 = nA*(0.1111111111111111*(1+4.5*uz))+delta;
|
|
b1 = nB*(0.1111111111111111*(1+4.5*uz))-delta;
|
|
a2 = nA*(0.1111111111111111*(1-4.5*uz))-delta;
|
|
b2 = nB*(0.1111111111111111*(1-4.5*uz))+delta;
|
|
|
|
// q = 5
|
|
//nread = neighborList[n+5*Np];
|
|
Aq[nr6] = a1;
|
|
Bq[nr6] = b1;
|
|
// q = 6
|
|
//nread = neighborList[n+4*Np];
|
|
Aq[nr5] = a2;
|
|
Bq[nr5] = b2;
|
|
//...............................................
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_D3Q19_AAodd_GreyscaleFEChem(int *neighborList, double *dist, double *Cq, double *Phi, double *SolidForce, int start, int finish, int Np,
|
|
double tauA,double tauB,double tauA_eff,double tauB_eff,double rhoA,double rhoB,double gamma,double kappaA,double kappaB,double lambdaA,double lambdaB,
|
|
double Gx, double Gy, double Gz,
|
|
double *Poros,double *Perm, double *Velocity,double *Pressure,double *PressureGrad,double *PressTensorGrad,double *PhiLap){
|
|
|
|
int n, nread, nr1,nr2,nr3,nr4,nr5,nr6;
|
|
double vx,vy,vz,v_mag;
|
|
double ux,uy,uz,u_mag;
|
|
double pressure;//defined for this incompressible model
|
|
// conserved momemnts
|
|
double jx,jy,jz;
|
|
// non-conserved moments
|
|
double m1,m2,m4,m6,m8,m9,m10,m11,m12,m13,m14,m15,m16,m17,m18;
|
|
double fq;
|
|
// currently disable 'GeoFun'
|
|
double GeoFun=0.0;//geometric function from Guo's PRE 66, 036304 (2002)
|
|
double porosity;
|
|
double perm;//voxel permeability
|
|
double c0, c1; //Guo's model parameters
|
|
double Fx, Fy, Fz;//The total body force including Brinkman force and user-specified (Gx,Gy,Gz)
|
|
double tau,tau_eff,rlx_setA,rlx_setB;
|
|
double mu_eff;//effective kinematic viscosity for Darcy term
|
|
double rho,rho0;
|
|
double phi;
|
|
double phi_lap;//laplacian of phase field
|
|
double nA,nB;
|
|
double Gfs_x,Gfs_y,Gfs_z;
|
|
double Gff_x,Gff_y,Gff_z;
|
|
double chem;
|
|
double rlx_phi;
|
|
double a1,a2;//PDF of phase field
|
|
// *---------------------------------Pressure Tensor Gradient------------------------------------*//
|
|
double Pxx_x,Pyy_y,Pzz_z;
|
|
double Pxy_x,Pxy_y;
|
|
double Pyz_y,Pyz_z;
|
|
double Pxz_x,Pxz_z;
|
|
double px,py,pz; //pressure gradient
|
|
|
|
const double mrt_V1=0.05263157894736842;
|
|
const double mrt_V2=0.012531328320802;
|
|
const double mrt_V3=0.04761904761904762;
|
|
const double mrt_V4=0.004594820384294068;
|
|
const double mrt_V5=0.01587301587301587;
|
|
const double mrt_V6=0.0555555555555555555555555;
|
|
const double mrt_V7=0.02777777777777778;
|
|
const double mrt_V8=0.08333333333333333;
|
|
const double mrt_V9=0.003341687552213868;
|
|
const double mrt_V10=0.003968253968253968;
|
|
const double mrt_V11=0.01388888888888889;
|
|
const double mrt_V12=0.04166666666666666;
|
|
|
|
for (n=start; n<finish; n++){
|
|
|
|
// read phase field
|
|
phi = Phi[n];
|
|
nA = 0.5*(1.0+phi);
|
|
nB = 0.5*(1.0-phi);
|
|
// load laplacian of phase field
|
|
phi_lap = PhiLap[n];
|
|
// Load voxel porosity and perm
|
|
porosity = Poros[n];
|
|
// use local saturation as an estimation of effective relperm values
|
|
perm = Perm[n]*nA/(nA+nB)*int(phi>0.0)+Perm[n]*nB/(nA+nB)*int(phi<0.0);
|
|
|
|
//Load pressure gradient
|
|
px=PressureGrad[0*Np+n];
|
|
py=PressureGrad[1*Np+n];
|
|
pz=PressureGrad[2*Np+n];
|
|
|
|
//Load pressure tensor gradient
|
|
//For reference full list of PressTensorGrad
|
|
//PressTensorGrad[n+0*Np] = Pxx_x
|
|
//PressTensorGrad[n+1*Np] = Pxx_y
|
|
//PressTensorGrad[n+2*Np] = Pxx_z
|
|
//PressTensorGrad[n+3*Np] = Pyy_x
|
|
//PressTensorGrad[n+4*Np] = Pyy_y
|
|
//PressTensorGrad[n+5*Np] = Pyy_z
|
|
//PressTensorGrad[n+6*Np] = Pzz_x
|
|
//PressTensorGrad[n+7*Np] = Pzz_y
|
|
//PressTensorGrad[n+8*Np] = Pzz_z
|
|
//PressTensorGrad[n+9*Np] = Pxy_x
|
|
//PressTensorGrad[n+10*Np] = Pxy_y
|
|
//PressTensorGrad[n+11*Np] = Pxy_z
|
|
//PressTensorGrad[n+12*Np] = Pyz_x
|
|
//PressTensorGrad[n+13*Np] = Pyz_y
|
|
//PressTensorGrad[n+14*Np] = Pyz_z
|
|
//PressTensorGrad[n+15*Np] = Pxz_x
|
|
//PressTensorGrad[n+16*Np] = Pxz_y
|
|
//PressTensorGrad[n+17*Np] = Pxz_z
|
|
Pxx_x = PressTensorGrad[0*Np+n];
|
|
Pyy_y = PressTensorGrad[4*Np+n];
|
|
Pzz_z = PressTensorGrad[8*Np+n];
|
|
Pxy_x = PressTensorGrad[9*Np+n];
|
|
Pxz_x = PressTensorGrad[15*Np+n];
|
|
Pxy_y = PressTensorGrad[10*Np+n];
|
|
Pyz_y = PressTensorGrad[13*Np+n];
|
|
Pyz_z = PressTensorGrad[14*Np+n];
|
|
Pxz_z = PressTensorGrad[17*Np+n];
|
|
//............Compute the fluid-fluid force (gfx,gfy,gfz)...................................
|
|
//TODO double check if you need porosity as a fre-factor
|
|
Gff_x = porosity*px-(Pxx_x+Pxy_y+Pxz_z);
|
|
Gff_y = porosity*py-(Pxy_x+Pyy_y+Pyz_z);
|
|
Gff_z = porosity*pz-(Pxz_x+Pyz_y+Pzz_z);
|
|
// fluid-solid force
|
|
Gfs_x = (nA-nB)*SolidForce[n+0*Np];
|
|
Gfs_y = (nA-nB)*SolidForce[n+1*Np];
|
|
Gfs_z = (nA-nB)*SolidForce[n+2*Np];
|
|
|
|
// local density
|
|
rho0=rhoA + 0.5*(1.0-phi)*(rhoB-rhoA);
|
|
// local relaxation time
|
|
tau=tauA + 0.5*(1.0-phi)*(tauB-tauA);
|
|
rlx_setA = 1.f/tau;
|
|
rlx_setB = 8.f*(2.f-rlx_setA)/(8.f-rlx_setA);
|
|
tau_eff=tauA_eff + 0.5*(1.0-phi)*(tauB_eff-tauA_eff);
|
|
mu_eff = (tau_eff-0.5)/3.f;//kinematic viscosity
|
|
|
|
//........................................................................
|
|
// READ THE DISTRIBUTIONS
|
|
// (read from opposite array due to previous swap operation)
|
|
//........................................................................
|
|
// q=0
|
|
fq = dist[n];
|
|
rho = fq;
|
|
m1 = -30.0*fq;
|
|
m2 = 12.0*fq;
|
|
|
|
// q=1
|
|
nr1 = neighborList[n]; // neighbor 2 ( > 10Np => odd part of dist)
|
|
fq = dist[nr1]; // reading the f1 data into register fq
|
|
rho += fq;
|
|
m1 -= 11.0*fq;
|
|
m2 -= 4.0*fq;
|
|
jx = fq;
|
|
m4 = -4.0*fq;
|
|
m9 = 2.0*fq;
|
|
m10 = -4.0*fq;
|
|
|
|
// q=2
|
|
nr2 = neighborList[n+Np]; // neighbor 1 ( < 10Np => even part of dist)
|
|
fq = dist[nr2]; // reading the f2 data into register fq
|
|
rho += fq;
|
|
m1 -= 11.0*(fq);
|
|
m2 -= 4.0*(fq);
|
|
jx -= fq;
|
|
m4 += 4.0*(fq);
|
|
m9 += 2.0*(fq);
|
|
m10 -= 4.0*(fq);
|
|
|
|
// q=3
|
|
nr3 = neighborList[n+2*Np]; // neighbor 4
|
|
fq = dist[nr3];
|
|
rho += fq;
|
|
m1 -= 11.0*fq;
|
|
m2 -= 4.0*fq;
|
|
jy = fq;
|
|
m6 = -4.0*fq;
|
|
m9 -= fq;
|
|
m10 += 2.0*fq;
|
|
m11 = fq;
|
|
m12 = -2.0*fq;
|
|
|
|
// q = 4
|
|
nr4 = neighborList[n+3*Np]; // neighbor 3
|
|
fq = dist[nr4];
|
|
rho += fq;
|
|
m1 -= 11.0*fq;
|
|
m2 -= 4.0*fq;
|
|
jy -= fq;
|
|
m6 += 4.0*fq;
|
|
m9 -= fq;
|
|
m10 += 2.0*fq;
|
|
m11 += fq;
|
|
m12 -= 2.0*fq;
|
|
|
|
// q=5
|
|
nr5 = neighborList[n+4*Np];
|
|
fq = dist[nr5];
|
|
rho += fq;
|
|
m1 -= 11.0*fq;
|
|
m2 -= 4.0*fq;
|
|
jz = fq;
|
|
m8 = -4.0*fq;
|
|
m9 -= fq;
|
|
m10 += 2.0*fq;
|
|
m11 -= fq;
|
|
m12 += 2.0*fq;
|
|
|
|
// q = 6
|
|
nr6 = neighborList[n+5*Np];
|
|
fq = dist[nr6];
|
|
rho += fq;
|
|
m1 -= 11.0*fq;
|
|
m2 -= 4.0*fq;
|
|
jz -= fq;
|
|
m8 += 4.0*fq;
|
|
m9 -= fq;
|
|
m10 += 2.0*fq;
|
|
m11 -= fq;
|
|
m12 += 2.0*fq;
|
|
|
|
// q=7
|
|
nread = neighborList[n+6*Np];
|
|
fq = dist[nread];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx += fq;
|
|
m4 += fq;
|
|
jy += fq;
|
|
m6 += fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 += fq;
|
|
m12 += fq;
|
|
m13 = fq;
|
|
m16 = fq;
|
|
m17 = -fq;
|
|
|
|
// q = 8
|
|
nread = neighborList[n+7*Np];
|
|
fq = dist[nread];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx -= fq;
|
|
m4 -= fq;
|
|
jy -= fq;
|
|
m6 -= fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 += fq;
|
|
m12 += fq;
|
|
m13 += fq;
|
|
m16 -= fq;
|
|
m17 += fq;
|
|
|
|
// q=9
|
|
nread = neighborList[n+8*Np];
|
|
fq = dist[nread];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx += fq;
|
|
m4 += fq;
|
|
jy -= fq;
|
|
m6 -= fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 += fq;
|
|
m12 += fq;
|
|
m13 -= fq;
|
|
m16 += fq;
|
|
m17 += fq;
|
|
|
|
// q = 10
|
|
nread = neighborList[n+9*Np];
|
|
fq = dist[nread];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx -= fq;
|
|
m4 -= fq;
|
|
jy += fq;
|
|
m6 += fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 += fq;
|
|
m12 += fq;
|
|
m13 -= fq;
|
|
m16 -= fq;
|
|
m17 -= fq;
|
|
|
|
// q=11
|
|
nread = neighborList[n+10*Np];
|
|
fq = dist[nread];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx += fq;
|
|
m4 += fq;
|
|
jz += fq;
|
|
m8 += fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 -= fq;
|
|
m12 -= fq;
|
|
m15 = fq;
|
|
m16 -= fq;
|
|
m18 = fq;
|
|
|
|
// q=12
|
|
nread = neighborList[n+11*Np];
|
|
fq = dist[nread];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx -= fq;
|
|
m4 -= fq;
|
|
jz -= fq;
|
|
m8 -= fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 -= fq;
|
|
m12 -= fq;
|
|
m15 += fq;
|
|
m16 += fq;
|
|
m18 -= fq;
|
|
|
|
// q=13
|
|
nread = neighborList[n+12*Np];
|
|
fq = dist[nread];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx += fq;
|
|
m4 += fq;
|
|
jz -= fq;
|
|
m8 -= fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 -= fq;
|
|
m12 -= fq;
|
|
m15 -= fq;
|
|
m16 -= fq;
|
|
m18 -= fq;
|
|
|
|
// q=14
|
|
nread = neighborList[n+13*Np];
|
|
fq = dist[nread];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx -= fq;
|
|
m4 -= fq;
|
|
jz += fq;
|
|
m8 += fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 -= fq;
|
|
m12 -= fq;
|
|
m15 -= fq;
|
|
m16 += fq;
|
|
m18 += fq;
|
|
|
|
// q=15
|
|
nread = neighborList[n+14*Np];
|
|
fq = dist[nread];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jy += fq;
|
|
m6 += fq;
|
|
jz += fq;
|
|
m8 += fq;
|
|
m9 -= 2.0*fq;
|
|
m10 -= 2.0*fq;
|
|
m14 = fq;
|
|
m17 += fq;
|
|
m18 -= fq;
|
|
|
|
// q=16
|
|
nread = neighborList[n+15*Np];
|
|
fq = dist[nread];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jy -= fq;
|
|
m6 -= fq;
|
|
jz -= fq;
|
|
m8 -= fq;
|
|
m9 -= 2.0*fq;
|
|
m10 -= 2.0*fq;
|
|
m14 += fq;
|
|
m17 -= fq;
|
|
m18 += fq;
|
|
|
|
// q=17
|
|
nread = neighborList[n+16*Np];
|
|
fq = dist[nread];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jy += fq;
|
|
m6 += fq;
|
|
jz -= fq;
|
|
m8 -= fq;
|
|
m9 -= 2.0*fq;
|
|
m10 -= 2.0*fq;
|
|
m14 -= fq;
|
|
m17 += fq;
|
|
m18 += fq;
|
|
|
|
// q=18
|
|
nread = neighborList[n+17*Np];
|
|
fq = dist[nread];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jy -= fq;
|
|
m6 -= fq;
|
|
jz += fq;
|
|
m8 += fq;
|
|
m9 -= 2.0*fq;
|
|
m10 -= 2.0*fq;
|
|
m14 -= fq;
|
|
m17 -= fq;
|
|
m18 -= fq;
|
|
//---------------------------------------------------------------------//
|
|
|
|
c0 = 0.5*(1.0+porosity*0.5*mu_eff/perm);
|
|
if (porosity==1.0) c0 = 0.5;//i.e. apparent pore nodes
|
|
//GeoFun = 1.75/sqrt(150.0*porosity*porosity*porosity);
|
|
c1 = porosity*0.5*GeoFun/sqrt(perm);
|
|
if (porosity==1.0) c1 = 0.0;//i.e. apparent pore nodes
|
|
|
|
vx = jx/rho0+0.5*(porosity*Gx+Gff_x+Gfs_x);
|
|
vy = jy/rho0+0.5*(porosity*Gy+Gff_y+Gfs_y);
|
|
vz = jz/rho0+0.5*(porosity*Gz+Gff_z+Gfs_z);
|
|
v_mag=sqrt(vx*vx+vy*vy+vz*vz);
|
|
ux = vx/(c0+sqrt(c0*c0+c1*v_mag));
|
|
uy = vy/(c0+sqrt(c0*c0+c1*v_mag));
|
|
uz = vz/(c0+sqrt(c0*c0+c1*v_mag));
|
|
u_mag=sqrt(ux*ux+uy*uy+uz*uz);
|
|
|
|
//Update the total force to include linear (Darcy) and nonlinear (Forchheimer) drags due to the porous medium
|
|
Fx = rho0*(-porosity*mu_eff/perm*ux - porosity*GeoFun/sqrt(perm)*u_mag*ux + porosity*Gx + Gff_x + Gfs_x);
|
|
Fy = rho0*(-porosity*mu_eff/perm*uy - porosity*GeoFun/sqrt(perm)*u_mag*uy + porosity*Gy + Gff_y + Gfs_y);
|
|
Fz = rho0*(-porosity*mu_eff/perm*uz - porosity*GeoFun/sqrt(perm)*u_mag*uz + porosity*Gz + Gff_z + Gfs_z);
|
|
if (porosity==1.0){
|
|
Fx=rho0*(Gx + Gff_x + Gfs_x);
|
|
Fy=rho0*(Gy + Gff_y + Gfs_y);
|
|
Fz=rho0*(Gz + Gff_z + Gfs_z);
|
|
}
|
|
|
|
//Calculate pressure for Incompressible-MRT model
|
|
//pressure=0.5/porosity*(pressure-0.5*rho0*u_mag*u_mag/porosity);
|
|
pressure=rho/3.0;
|
|
|
|
//-------------------- IMRT collison where body force has NO higher-order terms -------------//
|
|
//..............carry out relaxation process...............................................
|
|
m1 = m1 + rlx_setA*((19*(jx*jx+jy*jy+jz*jz)/rho0 - 11*rho) - m1);
|
|
m2 = m2 + rlx_setA*((3*rho - 5.5*(jx*jx+jy*jy+jz*jz)/rho0)- m2);
|
|
jx = jx + Fx;
|
|
m4 = m4 + rlx_setB*((-0.6666666666666666*jx)- m4)
|
|
+ (1-0.5*rlx_setB)*(-0.6666666666666666*Fx);
|
|
jy = jy + Fy;
|
|
m6 = m6 + rlx_setB*((-0.6666666666666666*jy)- m6)
|
|
+ (1-0.5*rlx_setB)*(-0.6666666666666666*Fy);
|
|
jz = jz + Fz;
|
|
m8 = m8 + rlx_setB*((-0.6666666666666666*jz)- m8)
|
|
+ (1-0.5*rlx_setB)*(-0.6666666666666666*Fz);
|
|
m9 = m9 + rlx_setA*(((2*jx*jx-jy*jy-jz*jz)/rho0) - m9);
|
|
m10 = m10 + rlx_setA*( - m10);
|
|
m11 = m11 + rlx_setA*(((jy*jy-jz*jz)/rho0) - m11);
|
|
m12 = m12 + rlx_setA*( - m12);
|
|
m13 = m13 + rlx_setA*( (jx*jy/rho0) - m13);
|
|
m14 = m14 + rlx_setA*( (jy*jz/rho0) - m14);
|
|
m15 = m15 + rlx_setA*( (jx*jz/rho0) - m15);
|
|
m16 = m16 + rlx_setB*( - m16);
|
|
m17 = m17 + rlx_setB*( - m17);
|
|
m18 = m18 + rlx_setB*( - m18);
|
|
//.......................................................................................................
|
|
|
|
|
|
//.................inverse transformation......................................................
|
|
// q=0
|
|
fq = mrt_V1*rho-mrt_V2*m1+mrt_V3*m2;
|
|
dist[n] = fq;
|
|
|
|
// q = 1
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(jx-m4)+mrt_V6*(m9-m10);
|
|
//nread = neighborList[n+Np];
|
|
dist[nr2] = fq;
|
|
|
|
// q=2
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(m4-jx)+mrt_V6*(m9-m10);
|
|
//nread = neighborList[n];
|
|
dist[nr1] = fq;
|
|
|
|
// q = 3
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(jy-m6)+mrt_V7*(m10-m9)+mrt_V8*(m11-m12);
|
|
//nread = neighborList[n+3*Np];
|
|
dist[nr4] = fq;
|
|
|
|
// q = 4
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(m6-jy)+mrt_V7*(m10-m9)+mrt_V8*(m11-m12);
|
|
//nread = neighborList[n+2*Np];
|
|
dist[nr3] = fq;
|
|
|
|
// q = 5
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(jz-m8)+mrt_V7*(m10-m9)+mrt_V8*(m12-m11);
|
|
//nread = neighborList[n+5*Np];
|
|
dist[nr6] = fq;
|
|
|
|
// q = 6
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(m8-jz)+mrt_V7*(m10-m9)+mrt_V8*(m12-m11);
|
|
//nread = neighborList[n+4*Np];
|
|
dist[nr5] = fq;
|
|
|
|
// q = 7
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jx+jy)+0.025*(m4+m6)+mrt_V7*m9+mrt_V11*m10+mrt_V8*m11+mrt_V12*m12+0.25*m13+0.125*(m16-m17);
|
|
nread = neighborList[n+7*Np];
|
|
dist[nread] = fq;
|
|
|
|
// q = 8
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2-0.1*(jx+jy)-0.025*(m4+m6) +mrt_V7*m9+mrt_V11*m10+mrt_V8*m11+mrt_V12*m12+0.25*m13+0.125*(m17-m16);
|
|
nread = neighborList[n+6*Np];
|
|
dist[nread] = fq;
|
|
|
|
// q = 9
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jx-jy)+0.025*(m4-m6)+mrt_V7*m9+mrt_V11*m10+mrt_V8*m11+mrt_V12*m12-0.25*m13+0.125*(m16+m17);
|
|
nread = neighborList[n+9*Np];
|
|
dist[nread] = fq;
|
|
|
|
// q = 10
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jy-jx)+0.025*(m6-m4)+mrt_V7*m9+mrt_V11*m10+mrt_V8*m11+mrt_V12*m12-0.25*m13-0.125*(m16+m17);
|
|
nread = neighborList[n+8*Np];
|
|
dist[nread] = fq;
|
|
|
|
// q = 11
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jx+jz)+0.025*(m4+m8)+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11-mrt_V12*m12+0.25*m15+0.125*(m18-m16);
|
|
nread = neighborList[n+11*Np];
|
|
dist[nread] = fq;
|
|
|
|
// q = 12
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2-0.1*(jx+jz)-0.025*(m4+m8)+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11-mrt_V12*m12+0.25*m15+0.125*(m16-m18);
|
|
nread = neighborList[n+10*Np];
|
|
dist[nread]= fq;
|
|
|
|
// q = 13
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jx-jz)+0.025*(m4-m8)+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11-mrt_V12*m12-0.25*m15-0.125*(m16+m18);
|
|
nread = neighborList[n+13*Np];
|
|
dist[nread] = fq;
|
|
|
|
// q= 14
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jz-jx)+0.025*(m8-m4)+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11-mrt_V12*m12-0.25*m15+0.125*(m16+m18);
|
|
nread = neighborList[n+12*Np];
|
|
dist[nread] = fq;
|
|
|
|
// q = 15
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jy+jz)+0.025*(m6+m8)-mrt_V6*m9-mrt_V7*m10+0.25*m14+0.125*(m17-m18);
|
|
nread = neighborList[n+15*Np];
|
|
dist[nread] = fq;
|
|
|
|
// q = 16
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2-0.1*(jy+jz)-0.025*(m6+m8)-mrt_V6*m9-mrt_V7*m10+0.25*m14+0.125*(m18-m17);
|
|
nread = neighborList[n+14*Np];
|
|
dist[nread] = fq;
|
|
|
|
// q = 17
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jy-jz)+0.025*(m6-m8)-mrt_V6*m9-mrt_V7*m10-0.25*m14+0.125*(m17+m18);
|
|
nread = neighborList[n+17*Np];
|
|
dist[nread] = fq;
|
|
|
|
// q = 18
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jz-jy)+0.025*(m8-m6)-mrt_V6*m9-mrt_V7*m10-0.25*m14-0.125*(m17+m18);
|
|
nread = neighborList[n+16*Np];
|
|
dist[nread] = fq;
|
|
//........................................................................
|
|
|
|
//Update velocity on device
|
|
Velocity[0*Np+n] = ux;
|
|
Velocity[1*Np+n] = uy;
|
|
Velocity[2*Np+n] = uz;
|
|
//Update pressure on device
|
|
Pressure[n] = pressure;
|
|
|
|
//-----------------------Mass transport------------------------//
|
|
// calcuale chemical potential
|
|
chem = 0.125*(lambdaA+lambdaB)*(-phi+phi*phi*phi)-0.25*(kappaA+kappaB)*phi_lap;
|
|
//rlx_phi = 3.f-sqrt(3.f);
|
|
rlx_phi = 1.0;
|
|
|
|
//...............................................
|
|
// q = 0,2,4
|
|
// Cq = {1,0,0}, {0,1,0}, {0,0,1}
|
|
//a1 = Cq[nr2];
|
|
//a2 = Cq[nr1];
|
|
//a1 = (1.0-rlx_phi)*a1+rlx_phi*(0.1111111111111111*4.5*(gamma*chem+phi*ux));
|
|
//a2 = (1.0-rlx_phi)*a2+rlx_phi*(0.1111111111111111*4.5*(gamma*chem-phi*ux));
|
|
a1 = 0.1111111111111111*4.5*(gamma*chem+phi*ux);
|
|
a2 = 0.1111111111111111*4.5*(gamma*chem-phi*ux);
|
|
|
|
// q = 1
|
|
//nread = neighborList[n+Np];
|
|
Cq[nr2] = a1;
|
|
// q=2
|
|
//nread = neighborList[n];
|
|
Cq[nr1] = a2;
|
|
|
|
//...............................................
|
|
// Cq = {0,1,0}
|
|
//a1 = Cq[nr4];
|
|
//a2 = Cq[nr3];
|
|
//a1 = (1.0-rlx_phi)*a1+rlx_phi*(0.1111111111111111*4.5*(gamma*chem+phi*uy));
|
|
//a2 = (1.0-rlx_phi)*a2+rlx_phi*(0.1111111111111111*4.5*(gamma*chem-phi*uy));
|
|
a1 = 0.1111111111111111*4.5*(gamma*chem+phi*uy);
|
|
a2 = 0.1111111111111111*4.5*(gamma*chem-phi*uy);
|
|
|
|
// q = 3
|
|
//nread = neighborList[n+3*Np];
|
|
Cq[nr4] = a1;
|
|
// q = 4
|
|
//nread = neighborList[n+2*Np];
|
|
Cq[nr3] = a2;
|
|
|
|
//...............................................
|
|
// q = 4
|
|
// Cq = {0,0,1}
|
|
//a1 = Cq[nr6];
|
|
//a2 = Cq[nr5];
|
|
//a1 = (1.0-rlx_phi)*a1+rlx_phi*(0.1111111111111111*4.5*(gamma*chem+phi*uz));
|
|
//a2 = (1.0-rlx_phi)*a2+rlx_phi*(0.1111111111111111*4.5*(gamma*chem-phi*uz));
|
|
a1 = 0.1111111111111111*4.5*(gamma*chem+phi*uz);
|
|
a2 = 0.1111111111111111*4.5*(gamma*chem-phi*uz);
|
|
|
|
// q = 5
|
|
//nread = neighborList[n+5*Np];
|
|
Cq[nr6] = a1;
|
|
// q = 6
|
|
//nread = neighborList[n+4*Np];
|
|
Cq[nr5] = a2;
|
|
//...............................................
|
|
|
|
// Instantiate mass transport distributions
|
|
// Stationary value - distribution 0
|
|
//a1=Cq[n];
|
|
//Cq[n] = (1.0-rlx_phi)*a1+rlx_phi*(phi-3.0*gamma*chem);
|
|
Cq[n] = phi-3.0*gamma*chem;
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_D3Q19_AAeven_GreyscaleFEChem(double *dist, double *Cq, double *Phi, double *SolidForce, int start, int finish, int Np,
|
|
double tauA,double tauB,double tauA_eff,double tauB_eff,double rhoA,double rhoB,double gamma,double kappaA,double kappaB,double lambdaA,double lambdaB,
|
|
double Gx, double Gy, double Gz,
|
|
double *Poros,double *Perm, double *Velocity,double *Pressure,double *PressureGrad,double *PressTensorGrad,double *PhiLap){
|
|
|
|
int n;
|
|
double vx,vy,vz,v_mag;
|
|
double ux,uy,uz,u_mag;
|
|
double pressure;//defined for this incompressible model
|
|
// conserved momemnts
|
|
double jx,jy,jz;
|
|
// non-conserved moments
|
|
double m1,m2,m4,m6,m8,m9,m10,m11,m12,m13,m14,m15,m16,m17,m18;
|
|
double fq;
|
|
// currently disable 'GeoFun'
|
|
double GeoFun=0.0;//geometric function from Guo's PRE 66, 036304 (2002)
|
|
double porosity;
|
|
double perm;//voxel permeability
|
|
double c0, c1; //Guo's model parameters
|
|
double Fx, Fy, Fz;//The total body force including Brinkman force and user-specified (Gx,Gy,Gz)
|
|
double tau,tau_eff,rlx_setA,rlx_setB;
|
|
double mu_eff;//effective kinematic viscosity for Darcy term
|
|
double rho,rho0;
|
|
double phi;
|
|
double phi_lap;//laplacian of phase field
|
|
double nA,nB;
|
|
double Gfs_x,Gfs_y,Gfs_z;
|
|
double Gff_x,Gff_y,Gff_z;
|
|
double chem;
|
|
double rlx_phi;
|
|
double a1,a2;//PDF of phase field
|
|
// *---------------------------------Pressure Tensor Gradient------------------------------------*//
|
|
double Pxx_x,Pyy_y,Pzz_z;
|
|
double Pxy_x,Pxy_y;
|
|
double Pyz_y,Pyz_z;
|
|
double Pxz_x,Pxz_z;
|
|
double px,py,pz; //pressure gradient
|
|
|
|
|
|
const double mrt_V1=0.05263157894736842;
|
|
const double mrt_V2=0.012531328320802;
|
|
const double mrt_V3=0.04761904761904762;
|
|
const double mrt_V4=0.004594820384294068;
|
|
const double mrt_V5=0.01587301587301587;
|
|
const double mrt_V6=0.0555555555555555555555555;
|
|
const double mrt_V7=0.02777777777777778;
|
|
const double mrt_V8=0.08333333333333333;
|
|
const double mrt_V9=0.003341687552213868;
|
|
const double mrt_V10=0.003968253968253968;
|
|
const double mrt_V11=0.01388888888888889;
|
|
const double mrt_V12=0.04166666666666666;
|
|
|
|
|
|
for (n=start; n<finish; n++){
|
|
|
|
// read phase field
|
|
phi = Phi[n];
|
|
nA = 0.5*(1.0+phi);
|
|
nB = 0.5*(1.0-phi);
|
|
// load laplacian of phase field
|
|
phi_lap = PhiLap[n];
|
|
// Load voxel porosity and perm
|
|
porosity = Poros[n];
|
|
// use local saturation as an estimation of effective relperm values
|
|
perm = Perm[n]*nA/(nA+nB)*int(phi>0.0)+Perm[n]*nB/(nA+nB)*int(phi<0.0);
|
|
|
|
//Load pressure gradient
|
|
px=PressureGrad[0*Np+n];
|
|
py=PressureGrad[1*Np+n];
|
|
pz=PressureGrad[2*Np+n];
|
|
|
|
//Load pressure tensor gradient
|
|
//For reference full list of PressTensorGrad
|
|
//PressTensorGrad[n+0*Np] = Pxx_x
|
|
//PressTensorGrad[n+1*Np] = Pxx_y
|
|
//PressTensorGrad[n+2*Np] = Pxx_z
|
|
//PressTensorGrad[n+3*Np] = Pyy_x
|
|
//PressTensorGrad[n+4*Np] = Pyy_y
|
|
//PressTensorGrad[n+5*Np] = Pyy_z
|
|
//PressTensorGrad[n+6*Np] = Pzz_x
|
|
//PressTensorGrad[n+7*Np] = Pzz_y
|
|
//PressTensorGrad[n+8*Np] = Pzz_z
|
|
//PressTensorGrad[n+9*Np] = Pxy_x
|
|
//PressTensorGrad[n+10*Np] = Pxy_y
|
|
//PressTensorGrad[n+11*Np] = Pxy_z
|
|
//PressTensorGrad[n+12*Np] = Pyz_x
|
|
//PressTensorGrad[n+13*Np] = Pyz_y
|
|
//PressTensorGrad[n+14*Np] = Pyz_z
|
|
//PressTensorGrad[n+15*Np] = Pxz_x
|
|
//PressTensorGrad[n+16*Np] = Pxz_y
|
|
//PressTensorGrad[n+17*Np] = Pxz_z
|
|
Pxx_x = PressTensorGrad[0*Np+n];
|
|
Pyy_y = PressTensorGrad[4*Np+n];
|
|
Pzz_z = PressTensorGrad[8*Np+n];
|
|
Pxy_x = PressTensorGrad[9*Np+n];
|
|
Pxz_x = PressTensorGrad[15*Np+n];
|
|
Pxy_y = PressTensorGrad[10*Np+n];
|
|
Pyz_y = PressTensorGrad[13*Np+n];
|
|
Pyz_z = PressTensorGrad[14*Np+n];
|
|
Pxz_z = PressTensorGrad[17*Np+n];
|
|
//............Compute the fluid-fluid force (gfx,gfy,gfz)...................................
|
|
//TODO double check if you need porosity as a fre-factor
|
|
Gff_x = porosity*px-(Pxx_x+Pxy_y+Pxz_z);
|
|
Gff_y = porosity*py-(Pxy_x+Pyy_y+Pyz_z);
|
|
Gff_z = porosity*pz-(Pxz_x+Pyz_y+Pzz_z);
|
|
// fluid-solid force
|
|
Gfs_x = (nA-nB)*SolidForce[n+0*Np];
|
|
Gfs_y = (nA-nB)*SolidForce[n+1*Np];
|
|
Gfs_z = (nA-nB)*SolidForce[n+2*Np];
|
|
|
|
// local density
|
|
rho0=rhoA + 0.5*(1.0-phi)*(rhoB-rhoA);
|
|
// local relaxation time
|
|
tau=tauA + 0.5*(1.0-phi)*(tauB-tauA);
|
|
rlx_setA = 1.f/tau;
|
|
rlx_setB = 8.f*(2.f-rlx_setA)/(8.f-rlx_setA);
|
|
tau_eff=tauA_eff + 0.5*(1.0-phi)*(tauB_eff-tauA_eff);
|
|
mu_eff = (tau_eff-0.5)/3.f;//kinematic viscosity
|
|
|
|
|
|
//........................................................................
|
|
// READ THE DISTRIBUTIONS
|
|
// (read from opposite array due to previous swap operation)
|
|
//........................................................................
|
|
// q=0
|
|
fq = dist[n];
|
|
rho = fq;
|
|
m1 = -30.0*fq;
|
|
m2 = 12.0*fq;
|
|
|
|
// q=1
|
|
fq = dist[2*Np+n];
|
|
rho += fq;
|
|
m1 -= 11.0*fq;
|
|
m2 -= 4.0*fq;
|
|
jx = fq;
|
|
m4 = -4.0*fq;
|
|
m9 = 2.0*fq;
|
|
m10 = -4.0*fq;
|
|
|
|
// f2 = dist[10*Np+n];
|
|
fq = dist[1*Np+n];
|
|
rho += fq;
|
|
m1 -= 11.0*(fq);
|
|
m2 -= 4.0*(fq);
|
|
jx -= fq;
|
|
m4 += 4.0*(fq);
|
|
m9 += 2.0*(fq);
|
|
m10 -= 4.0*(fq);
|
|
|
|
// q=3
|
|
fq = dist[4*Np+n];
|
|
rho += fq;
|
|
m1 -= 11.0*fq;
|
|
m2 -= 4.0*fq;
|
|
jy = fq;
|
|
m6 = -4.0*fq;
|
|
m9 -= fq;
|
|
m10 += 2.0*fq;
|
|
m11 = fq;
|
|
m12 = -2.0*fq;
|
|
|
|
// q = 4
|
|
fq = dist[3*Np+n];
|
|
rho += fq;
|
|
m1 -= 11.0*fq;
|
|
m2 -= 4.0*fq;
|
|
jy -= fq;
|
|
m6 += 4.0*fq;
|
|
m9 -= fq;
|
|
m10 += 2.0*fq;
|
|
m11 += fq;
|
|
m12 -= 2.0*fq;
|
|
|
|
// q=5
|
|
fq = dist[6*Np+n];
|
|
rho += fq;
|
|
m1 -= 11.0*fq;
|
|
m2 -= 4.0*fq;
|
|
jz = fq;
|
|
m8 = -4.0*fq;
|
|
m9 -= fq;
|
|
m10 += 2.0*fq;
|
|
m11 -= fq;
|
|
m12 += 2.0*fq;
|
|
|
|
// q = 6
|
|
fq = dist[5*Np+n];
|
|
rho += fq;
|
|
m1 -= 11.0*fq;
|
|
m2 -= 4.0*fq;
|
|
jz -= fq;
|
|
m8 += 4.0*fq;
|
|
m9 -= fq;
|
|
m10 += 2.0*fq;
|
|
m11 -= fq;
|
|
m12 += 2.0*fq;
|
|
|
|
// q=7
|
|
fq = dist[8*Np+n];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx += fq;
|
|
m4 += fq;
|
|
jy += fq;
|
|
m6 += fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 += fq;
|
|
m12 += fq;
|
|
m13 = fq;
|
|
m16 = fq;
|
|
m17 = -fq;
|
|
|
|
// q = 8
|
|
fq = dist[7*Np+n];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx -= fq;
|
|
m4 -= fq;
|
|
jy -= fq;
|
|
m6 -= fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 += fq;
|
|
m12 += fq;
|
|
m13 += fq;
|
|
m16 -= fq;
|
|
m17 += fq;
|
|
|
|
// q=9
|
|
fq = dist[10*Np+n];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx += fq;
|
|
m4 += fq;
|
|
jy -= fq;
|
|
m6 -= fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 += fq;
|
|
m12 += fq;
|
|
m13 -= fq;
|
|
m16 += fq;
|
|
m17 += fq;
|
|
|
|
// q = 10
|
|
fq = dist[9*Np+n];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx -= fq;
|
|
m4 -= fq;
|
|
jy += fq;
|
|
m6 += fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 += fq;
|
|
m12 += fq;
|
|
m13 -= fq;
|
|
m16 -= fq;
|
|
m17 -= fq;
|
|
|
|
// q=11
|
|
fq = dist[12*Np+n];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx += fq;
|
|
m4 += fq;
|
|
jz += fq;
|
|
m8 += fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 -= fq;
|
|
m12 -= fq;
|
|
m15 = fq;
|
|
m16 -= fq;
|
|
m18 = fq;
|
|
|
|
// q=12
|
|
fq = dist[11*Np+n];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx -= fq;
|
|
m4 -= fq;
|
|
jz -= fq;
|
|
m8 -= fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 -= fq;
|
|
m12 -= fq;
|
|
m15 += fq;
|
|
m16 += fq;
|
|
m18 -= fq;
|
|
|
|
// q=13
|
|
fq = dist[14*Np+n];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx += fq;
|
|
m4 += fq;
|
|
jz -= fq;
|
|
m8 -= fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 -= fq;
|
|
m12 -= fq;
|
|
m15 -= fq;
|
|
m16 -= fq;
|
|
m18 -= fq;
|
|
|
|
// q=14
|
|
fq = dist[13*Np+n];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jx -= fq;
|
|
m4 -= fq;
|
|
jz += fq;
|
|
m8 += fq;
|
|
m9 += fq;
|
|
m10 += fq;
|
|
m11 -= fq;
|
|
m12 -= fq;
|
|
m15 -= fq;
|
|
m16 += fq;
|
|
m18 += fq;
|
|
|
|
// q=15
|
|
fq = dist[16*Np+n];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jy += fq;
|
|
m6 += fq;
|
|
jz += fq;
|
|
m8 += fq;
|
|
m9 -= 2.0*fq;
|
|
m10 -= 2.0*fq;
|
|
m14 = fq;
|
|
m17 += fq;
|
|
m18 -= fq;
|
|
|
|
// q=16
|
|
fq = dist[15*Np+n];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jy -= fq;
|
|
m6 -= fq;
|
|
jz -= fq;
|
|
m8 -= fq;
|
|
m9 -= 2.0*fq;
|
|
m10 -= 2.0*fq;
|
|
m14 += fq;
|
|
m17 -= fq;
|
|
m18 += fq;
|
|
|
|
// q=17
|
|
fq = dist[18*Np+n];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jy += fq;
|
|
m6 += fq;
|
|
jz -= fq;
|
|
m8 -= fq;
|
|
m9 -= 2.0*fq;
|
|
m10 -= 2.0*fq;
|
|
m14 -= fq;
|
|
m17 += fq;
|
|
m18 += fq;
|
|
|
|
// q=18
|
|
fq = dist[17*Np+n];
|
|
rho += fq;
|
|
m1 += 8.0*fq;
|
|
m2 += fq;
|
|
jy -= fq;
|
|
m6 -= fq;
|
|
jz += fq;
|
|
m8 += fq;
|
|
m9 -= 2.0*fq;
|
|
m10 -= 2.0*fq;
|
|
m14 -= fq;
|
|
m17 -= fq;
|
|
m18 -= fq;
|
|
//---------------------------------------------------------------------//
|
|
|
|
c0 = 0.5*(1.0+porosity*0.5*mu_eff/perm);
|
|
if (porosity==1.0) c0 = 0.5;//i.e. apparent pore nodes
|
|
//GeoFun = 1.75/sqrt(150.0*porosity*porosity*porosity);
|
|
c1 = porosity*0.5*GeoFun/sqrt(perm);
|
|
if (porosity==1.0) c1 = 0.0;//i.e. apparent pore nodes
|
|
|
|
vx = jx/rho0+0.5*(porosity*Gx+Gff_x+Gfs_x);
|
|
vy = jy/rho0+0.5*(porosity*Gy+Gff_y+Gfs_y);
|
|
vz = jz/rho0+0.5*(porosity*Gz+Gff_z+Gfs_z);
|
|
v_mag=sqrt(vx*vx+vy*vy+vz*vz);
|
|
ux = vx/(c0+sqrt(c0*c0+c1*v_mag));
|
|
uy = vy/(c0+sqrt(c0*c0+c1*v_mag));
|
|
uz = vz/(c0+sqrt(c0*c0+c1*v_mag));
|
|
u_mag=sqrt(ux*ux+uy*uy+uz*uz);
|
|
|
|
//Update the total force to include linear (Darcy) and nonlinear (Forchheimer) drags due to the porous medium
|
|
Fx = rho0*(-porosity*mu_eff/perm*ux - porosity*GeoFun/sqrt(perm)*u_mag*ux + porosity*Gx + Gff_x + Gfs_x);
|
|
Fy = rho0*(-porosity*mu_eff/perm*uy - porosity*GeoFun/sqrt(perm)*u_mag*uy + porosity*Gy + Gff_y + Gfs_y);
|
|
Fz = rho0*(-porosity*mu_eff/perm*uz - porosity*GeoFun/sqrt(perm)*u_mag*uz + porosity*Gz + Gff_z + Gfs_z);
|
|
if (porosity==1.0){
|
|
Fx=rho0*(Gx + Gff_x + Gfs_x);
|
|
Fy=rho0*(Gy + Gff_y + Gfs_y);
|
|
Fz=rho0*(Gz + Gff_z + Gfs_z);
|
|
}
|
|
|
|
//Calculate pressure for Incompressible-MRT model
|
|
//pressure=0.5/porosity*(pressure-0.5*rho0*u_mag*u_mag/porosity);
|
|
pressure=rho/3.0;
|
|
|
|
//-------------------- IMRT collison where body force has NO higher-order terms -------------//
|
|
//..............carry out relaxation process...............................................
|
|
m1 = m1 + rlx_setA*((19*(jx*jx+jy*jy+jz*jz)/rho0 - 11*rho) - m1);
|
|
m2 = m2 + rlx_setA*((3*rho - 5.5*(jx*jx+jy*jy+jz*jz)/rho0)- m2);
|
|
jx = jx + Fx;
|
|
m4 = m4 + rlx_setB*((-0.6666666666666666*jx)- m4)
|
|
+ (1-0.5*rlx_setB)*(-0.6666666666666666*Fx);
|
|
jy = jy + Fy;
|
|
m6 = m6 + rlx_setB*((-0.6666666666666666*jy)- m6)
|
|
+ (1-0.5*rlx_setB)*(-0.6666666666666666*Fy);
|
|
jz = jz + Fz;
|
|
m8 = m8 + rlx_setB*((-0.6666666666666666*jz)- m8)
|
|
+ (1-0.5*rlx_setB)*(-0.6666666666666666*Fz);
|
|
m9 = m9 + rlx_setA*(((2*jx*jx-jy*jy-jz*jz)/rho0) - m9);
|
|
m10 = m10 + rlx_setA*( - m10);
|
|
m11 = m11 + rlx_setA*(((jy*jy-jz*jz)/rho0) - m11);
|
|
m12 = m12 + rlx_setA*( - m12);
|
|
m13 = m13 + rlx_setA*( (jx*jy/rho0) - m13);
|
|
m14 = m14 + rlx_setA*( (jy*jz/rho0) - m14);
|
|
m15 = m15 + rlx_setA*( (jx*jz/rho0) - m15);
|
|
m16 = m16 + rlx_setB*( - m16);
|
|
m17 = m17 + rlx_setB*( - m17);
|
|
m18 = m18 + rlx_setB*( - m18);
|
|
//.......................................................................................................
|
|
|
|
//.................inverse transformation......................................................
|
|
// q=0
|
|
fq = mrt_V1*rho-mrt_V2*m1+mrt_V3*m2;
|
|
dist[n] = fq;
|
|
|
|
// q = 1
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(jx-m4)+mrt_V6*(m9-m10);
|
|
dist[1*Np+n] = fq;
|
|
|
|
// q=2
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(m4-jx)+mrt_V6*(m9-m10);
|
|
dist[2*Np+n] = fq;
|
|
|
|
// q = 3
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(jy-m6)+mrt_V7*(m10-m9)+mrt_V8*(m11-m12);
|
|
dist[3*Np+n] = fq;
|
|
|
|
// q = 4
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(m6-jy)+mrt_V7*(m10-m9)+mrt_V8*(m11-m12);
|
|
dist[4*Np+n] = fq;
|
|
|
|
// q = 5
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(jz-m8)+mrt_V7*(m10-m9)+mrt_V8*(m12-m11);
|
|
dist[5*Np+n] = fq;
|
|
|
|
// q = 6
|
|
fq = mrt_V1*rho-mrt_V4*m1-mrt_V5*m2+0.1*(m8-jz)+mrt_V7*(m10-m9)+mrt_V8*(m12-m11);
|
|
dist[6*Np+n] = fq;
|
|
|
|
// q = 7
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jx+jy)+0.025*(m4+m6)+mrt_V7*m9+mrt_V11*m10+mrt_V8*m11+mrt_V12*m12+0.25*m13+0.125*(m16-m17);
|
|
dist[7*Np+n] = fq;
|
|
|
|
// q = 8
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2-0.1*(jx+jy)-0.025*(m4+m6) +mrt_V7*m9+mrt_V11*m10+mrt_V8*m11+mrt_V12*m12+0.25*m13+0.125*(m17-m16);
|
|
dist[8*Np+n] = fq;
|
|
|
|
// q = 9
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jx-jy)+0.025*(m4-m6)+mrt_V7*m9+mrt_V11*m10+mrt_V8*m11+mrt_V12*m12-0.25*m13+0.125*(m16+m17);
|
|
dist[9*Np+n] = fq;
|
|
|
|
// q = 10
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jy-jx)+0.025*(m6-m4)+mrt_V7*m9+mrt_V11*m10+mrt_V8*m11+mrt_V12*m12-0.25*m13-0.125*(m16+m17);
|
|
dist[10*Np+n] = fq;
|
|
|
|
// q = 11
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jx+jz)+0.025*(m4+m8)+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11-mrt_V12*m12+0.25*m15+0.125*(m18-m16);
|
|
dist[11*Np+n] = fq;
|
|
|
|
// q = 12
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2-0.1*(jx+jz)-0.025*(m4+m8)+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11-mrt_V12*m12+0.25*m15+0.125*(m16-m18);
|
|
dist[12*Np+n] = fq;
|
|
|
|
// q = 13
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jx-jz)+0.025*(m4-m8)+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11-mrt_V12*m12-0.25*m15-0.125*(m16+m18);
|
|
dist[13*Np+n] = fq;
|
|
|
|
// q= 14
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jz-jx)+0.025*(m8-m4)+mrt_V7*m9+mrt_V11*m10-mrt_V8*m11-mrt_V12*m12-0.25*m15+0.125*(m16+m18);
|
|
dist[14*Np+n] = fq;
|
|
|
|
// q = 15
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jy+jz)+0.025*(m6+m8)-mrt_V6*m9-mrt_V7*m10+0.25*m14+0.125*(m17-m18);
|
|
dist[15*Np+n] = fq;
|
|
|
|
// q = 16
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2-0.1*(jy+jz)-0.025*(m6+m8)-mrt_V6*m9-mrt_V7*m10+0.25*m14+0.125*(m18-m17);
|
|
dist[16*Np+n] = fq;
|
|
|
|
// q = 17
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jy-jz)+0.025*(m6-m8)-mrt_V6*m9-mrt_V7*m10-0.25*m14+0.125*(m17+m18);
|
|
dist[17*Np+n] = fq;
|
|
|
|
// q = 18
|
|
fq = mrt_V1*rho+mrt_V9*m1+mrt_V10*m2+0.1*(jz-jy)+0.025*(m8-m6)-mrt_V6*m9-mrt_V7*m10-0.25*m14-0.125*(m17+m18);
|
|
dist[18*Np+n] = fq;
|
|
//........................................................................
|
|
|
|
//Update velocity on device
|
|
Velocity[0*Np+n] = ux;
|
|
Velocity[1*Np+n] = uy;
|
|
Velocity[2*Np+n] = uz;
|
|
//Update pressure on device
|
|
Pressure[n] = pressure;
|
|
|
|
//-----------------------Mass transport------------------------//
|
|
// calcuale chemical potential
|
|
chem = 0.125*(lambdaA+lambdaB)*(-phi+phi*phi*phi)-0.25*(kappaA+kappaB)*phi_lap;
|
|
//rlx_phi = 3.f-sqrt(3.f);
|
|
rlx_phi = 1.0;
|
|
|
|
//...............................................
|
|
// q = 0,2,4
|
|
// Cq = {1,0,0}, {0,1,0}, {0,0,1}
|
|
//a1 = Cq[1*Np+n];
|
|
//a2 = Cq[2*Np+n];
|
|
//a1 = (1.0-rlx_phi)*a1+rlx_phi*(0.1111111111111111*4.5*(gamma*chem+phi*ux));
|
|
//a2 = (1.0-rlx_phi)*a2+rlx_phi*(0.1111111111111111*4.5*(gamma*chem-phi*ux));
|
|
a1 = 0.1111111111111111*4.5*(gamma*chem+phi*ux);
|
|
a2 = 0.1111111111111111*4.5*(gamma*chem-phi*ux);
|
|
|
|
Cq[1*Np+n] = a1;
|
|
Cq[2*Np+n] = a2;
|
|
|
|
//...............................................
|
|
// q = 2
|
|
// Cq = {0,1,0}
|
|
//a1 = Cq[3*Np+n];
|
|
//a2 = Cq[4*Np+n];
|
|
//a1 = (1.0-rlx_phi)*a1+rlx_phi*(0.1111111111111111*4.5*(gamma*chem+phi*uy));
|
|
//a2 = (1.0-rlx_phi)*a2+rlx_phi*(0.1111111111111111*4.5*(gamma*chem-phi*uy));
|
|
a1 = 0.1111111111111111*4.5*(gamma*chem+phi*uy);
|
|
a2 = 0.1111111111111111*4.5*(gamma*chem-phi*uy);
|
|
|
|
Cq[3*Np+n] = a1;
|
|
Cq[4*Np+n] = a2;
|
|
//...............................................
|
|
// q = 4
|
|
// Cq = {0,0,1}
|
|
//a1 = Cq[5*Np+n];
|
|
//a2 = Cq[6*Np+n];
|
|
//a1 = (1.0-rlx_phi)*a1+rlx_phi*(0.1111111111111111*4.5*(gamma*chem+phi*uz));
|
|
//a2 = (1.0-rlx_phi)*a2+rlx_phi*(0.1111111111111111*4.5*(gamma*chem-phi*uz));
|
|
a1 = 0.1111111111111111*4.5*(gamma*chem+phi*uz);
|
|
a2 = 0.1111111111111111*4.5*(gamma*chem-phi*uz);
|
|
|
|
Cq[5*Np+n] = a1;
|
|
Cq[6*Np+n] = a2;
|
|
//...............................................
|
|
|
|
// Instantiate mass transport distributions
|
|
// Stationary value - distribution 0
|
|
//a1=Cq[n];
|
|
//Cq[n] = (1.0-rlx_phi)*a1+rlx_phi*(phi-3.0*gamma*chem);
|
|
Cq[n] = phi-3.0*gamma*chem;
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_D3Q19_GreyscaleFE_IMRT_Init(double *dist, double *Den, double rhoA, double rhoB, int Np){
|
|
int n;
|
|
double phi;
|
|
double nA,nB;
|
|
double Den0;
|
|
for (n=0; n<Np; n++){
|
|
nA = Den[n];
|
|
nB = Den[n+Np];
|
|
phi = (nA-nB)/(nA+nB);
|
|
Den0 = 0.5*(1.f+phi)*rhoA + 0.5*(1.f-phi)*rhoB;
|
|
|
|
dist[n] = Den0 - 0.6666666666666667;
|
|
dist[Np+n] = 0.055555555555555555; //double(100*n)+1.f;
|
|
dist[2*Np+n] = 0.055555555555555555; //double(100*n)+2.f;
|
|
dist[3*Np+n] = 0.055555555555555555; //double(100*n)+3.f;
|
|
dist[4*Np+n] = 0.055555555555555555; //double(100*n)+4.f;
|
|
dist[5*Np+n] = 0.055555555555555555; //double(100*n)+5.f;
|
|
dist[6*Np+n] = 0.055555555555555555; //double(100*n)+6.f;
|
|
dist[7*Np+n] = 0.0277777777777778; //double(100*n)+7.f;
|
|
dist[8*Np+n] = 0.0277777777777778; //double(100*n)+8.f;
|
|
dist[9*Np+n] = 0.0277777777777778; //double(100*n)+9.f;
|
|
dist[10*Np+n] = 0.0277777777777778; //double(100*n)+10.f;
|
|
dist[11*Np+n] = 0.0277777777777778; //double(100*n)+11.f;
|
|
dist[12*Np+n] = 0.0277777777777778; //double(100*n)+12.f;
|
|
dist[13*Np+n] = 0.0277777777777778; //double(100*n)+13.f;
|
|
dist[14*Np+n] = 0.0277777777777778; //double(100*n)+14.f;
|
|
dist[15*Np+n] = 0.0277777777777778; //double(100*n)+15.f;
|
|
dist[16*Np+n] = 0.0277777777777778; //double(100*n)+16.f;
|
|
dist[17*Np+n] = 0.0277777777777778; //double(100*n)+17.f;
|
|
dist[18*Np+n] = 0.0277777777777778; //double(100*n)+18.f;
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_D3Q7_GreyscaleFE_Init(double *Phi, double *Cq, double *PhiLap, double gamma, double kappaA, double kappaB, double lambdaA, double lambdaB, int start, int finish, int Np){
|
|
int idx;
|
|
//double nA,nB;
|
|
double phi;
|
|
double phi_lap;//laplacian of the phase field
|
|
double chem;//chemical potential
|
|
for (idx=start; idx<finish; idx++){
|
|
phi = Phi[idx];
|
|
phi_lap = PhiLap[idx];
|
|
chem = 0.125*(lambdaA+lambdaB)*(-phi+phi*phi*phi)-0.25*(kappaA+kappaB)*phi_lap;
|
|
|
|
Cq[1*Np+idx]=0.5*gamma*chem;
|
|
Cq[2*Np+idx]=0.5*gamma*chem;
|
|
Cq[3*Np+idx]=0.5*gamma*chem;
|
|
Cq[4*Np+idx]=0.5*gamma*chem;
|
|
Cq[5*Np+idx]=0.5*gamma*chem;
|
|
Cq[6*Np+idx]=0.5*gamma*chem;
|
|
|
|
Cq[0*Np+idx]= phi - 3.0*gamma*chem;
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_D3Q7_AAodd_GreyscaleFEDensity(int *neighborList, double *Aq, double *Bq, double *Den, double *Phi, int start, int finish, int Np){
|
|
int n,nread;
|
|
double fq,nA,nB;
|
|
|
|
for (n=start; n<finish; n++){
|
|
//..........Compute the number density for each component ............
|
|
// q=0
|
|
fq = Aq[n];
|
|
nA = fq;
|
|
fq = Bq[n];
|
|
nB = fq;
|
|
|
|
// q=1
|
|
nread = neighborList[n];
|
|
fq = Aq[nread];
|
|
nA += fq;
|
|
fq = Bq[nread];
|
|
nB += fq;
|
|
|
|
// q=2
|
|
nread = neighborList[n+Np];
|
|
fq = Aq[nread];
|
|
nA += fq;
|
|
fq = Bq[nread];
|
|
nB += fq;
|
|
|
|
// q=3
|
|
nread = neighborList[n+2*Np];
|
|
fq = Aq[nread];
|
|
nA += fq;
|
|
fq = Bq[nread];
|
|
nB += fq;
|
|
|
|
// q = 4
|
|
nread = neighborList[n+3*Np];
|
|
fq = Aq[nread];
|
|
nA += fq;
|
|
fq = Bq[nread];
|
|
nB += fq;
|
|
|
|
// q=5
|
|
nread = neighborList[n+4*Np];
|
|
fq = Aq[nread];
|
|
nA += fq;
|
|
fq = Bq[nread];
|
|
nB += fq;
|
|
|
|
// q = 6
|
|
nread = neighborList[n+5*Np];
|
|
fq = Aq[nread];
|
|
nA += fq;
|
|
fq = Bq[nread];
|
|
nB += fq;
|
|
|
|
// save the number densities
|
|
Den[n] = nA;
|
|
Den[Np+n] = nB;
|
|
// save the phase field
|
|
Phi[n] = nA-nB;
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_D3Q7_AAeven_GreyscaleFEDensity(double *Aq, double *Bq, double *Den, double *Phi, int start, int finish, int Np){
|
|
int n;
|
|
double fq,nA,nB;
|
|
|
|
for (n=start; n<finish; n++){
|
|
// compute number density for each component
|
|
// q=0
|
|
fq = Aq[n];
|
|
nA = fq;
|
|
fq = Bq[n];
|
|
nB = fq;
|
|
|
|
// q=1
|
|
fq = Aq[2*Np+n];
|
|
nA += fq;
|
|
fq = Bq[2*Np+n];
|
|
nB += fq;
|
|
|
|
// q=2
|
|
fq = Aq[1*Np+n];
|
|
nA += fq;
|
|
fq = Bq[1*Np+n];
|
|
nB += fq;
|
|
|
|
// q=3
|
|
fq = Aq[4*Np+n];
|
|
nA += fq;
|
|
fq = Bq[4*Np+n];
|
|
nB += fq;
|
|
|
|
// q = 4
|
|
fq = Aq[3*Np+n];
|
|
nA += fq;
|
|
fq = Bq[3*Np+n];
|
|
nB += fq;
|
|
|
|
// q=5
|
|
fq = Aq[6*Np+n];
|
|
nA += fq;
|
|
fq = Bq[6*Np+n];
|
|
nB += fq;
|
|
|
|
// q = 6
|
|
fq = Aq[5*Np+n];
|
|
nA += fq;
|
|
fq = Bq[5*Np+n];
|
|
nB += fq;
|
|
|
|
// save the number densities
|
|
Den[n] = nA;
|
|
Den[Np+n] = nB;
|
|
// save the phase field
|
|
Phi[n] = nA-nB;
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_D3Q7_AAodd_GreyscaleFEPhi(int *neighborList, double *Cq, double *Phi, int start, int finish, int Np){
|
|
int n,nread;
|
|
double fq,phi;
|
|
|
|
for (n=start; n<finish; n++){
|
|
//..........Compute the number density for each component ............
|
|
// q=0
|
|
fq = Cq[n];
|
|
phi = fq;
|
|
|
|
// q=1
|
|
nread = neighborList[n];
|
|
fq = Cq[nread];
|
|
phi += fq;
|
|
|
|
// q=2
|
|
nread = neighborList[n+Np];
|
|
fq = Cq[nread];
|
|
phi += fq;
|
|
|
|
// q=3
|
|
nread = neighborList[n+2*Np];
|
|
fq = Cq[nread];
|
|
phi += fq;
|
|
|
|
// q = 4
|
|
nread = neighborList[n+3*Np];
|
|
fq = Cq[nread];
|
|
phi += fq;
|
|
|
|
// q=5
|
|
nread = neighborList[n+4*Np];
|
|
fq = Cq[nread];
|
|
phi += fq;
|
|
|
|
// q = 6
|
|
nread = neighborList[n+5*Np];
|
|
fq = Cq[nread];
|
|
phi += fq;
|
|
|
|
// save the phase field
|
|
Phi[n] = phi;
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_D3Q7_AAeven_GreyscaleFEPhi(double *Cq, double *Phi, int start, int finish, int Np){
|
|
int n;
|
|
double fq,phi;
|
|
|
|
for (n=start; n<finish; n++){
|
|
// compute number density for each component
|
|
// q=0
|
|
fq = Cq[n];
|
|
phi = fq;
|
|
|
|
// q=1
|
|
fq = Cq[2*Np+n];
|
|
phi += fq;
|
|
|
|
// q=2
|
|
fq = Cq[1*Np+n];
|
|
phi += fq;
|
|
|
|
// q=3
|
|
fq = Cq[4*Np+n];
|
|
phi += fq;
|
|
|
|
// q = 4
|
|
fq = Cq[3*Np+n];
|
|
phi += fq;
|
|
|
|
// q=5
|
|
fq = Cq[6*Np+n];
|
|
phi += fq;
|
|
|
|
// q = 6
|
|
fq = Cq[5*Np+n];
|
|
phi += fq;
|
|
|
|
// save the phase field
|
|
Phi[n] = phi;
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_D3Q19_GreyscaleFE_Gradient(int *neighborList, double *Den, double *DenGrad, int start, int finish, int Np){
|
|
|
|
int n,nn;
|
|
// distributions
|
|
double m1,m2,m3,m4,m5,m6,m7,m8,m9;
|
|
double m10,m11,m12,m13,m14,m15,m16,m17,m18;
|
|
double nx,ny,nz;
|
|
|
|
for (n=start; n<finish; n++){
|
|
// nn = neighborList[n+Np]%Np;
|
|
// m1 = Den[nn]*int(n!=nn);
|
|
// nn = neighborList[n]%Np;
|
|
// m2 = Den[nn]*int(n!=nn);
|
|
// nn = neighborList[n+3*Np]%Np;
|
|
// m3 = Den[nn]*int(n!=nn);
|
|
// nn = neighborList[n+2*Np]%Np;
|
|
// m4 = Den[nn]*int(n!=nn);
|
|
// nn = neighborList[n+5*Np]%Np;
|
|
// m5 = Den[nn]*int(n!=nn);
|
|
// nn = neighborList[n+4*Np]%Np;
|
|
// m6 = Den[nn]*int(n!=nn);
|
|
// nn = neighborList[n+7*Np]%Np;
|
|
// m7 = Den[nn]*int(n!=nn);
|
|
// nn = neighborList[n+6*Np]%Np;
|
|
// m8 = Den[nn]*int(n!=nn);
|
|
// nn = neighborList[n+9*Np]%Np;
|
|
// m9 = Den[nn]*int(n!=nn);
|
|
// nn = neighborList[n+8*Np]%Np;
|
|
// m10 = Den[nn]*int(n!=nn);
|
|
// nn = neighborList[n+11*Np]%Np;
|
|
// m11 = Den[nn]*int(n!=nn);
|
|
// nn = neighborList[n+10*Np]%Np;
|
|
// m12 = Den[nn]*int(n!=nn);
|
|
// nn = neighborList[n+13*Np]%Np;
|
|
// m13 = Den[nn]*int(n!=nn);
|
|
// nn = neighborList[n+12*Np]%Np;
|
|
// m14 = Den[nn]*int(n!=nn);
|
|
// nn = neighborList[n+15*Np]%Np;
|
|
// m15 = Den[nn]*int(n!=nn);
|
|
// nn = neighborList[n+14*Np]%Np;
|
|
// m16 = Den[nn]*int(n!=nn);
|
|
// nn = neighborList[n+17*Np]%Np;
|
|
// m17 = Den[nn]*int(n!=nn);
|
|
// nn = neighborList[n+16*Np]%Np;
|
|
// m18 = Den[nn]*int(n!=nn);
|
|
|
|
nn = neighborList[n+Np]%Np;
|
|
m1 = Den[nn];
|
|
nn = neighborList[n]%Np;
|
|
m2 = Den[nn];
|
|
nn = neighborList[n+3*Np]%Np;
|
|
m3 = Den[nn];
|
|
nn = neighborList[n+2*Np]%Np;
|
|
m4 = Den[nn];
|
|
nn = neighborList[n+5*Np]%Np;
|
|
m5 = Den[nn];
|
|
nn = neighborList[n+4*Np]%Np;
|
|
m6 = Den[nn];
|
|
nn = neighborList[n+7*Np]%Np;
|
|
m7 = Den[nn];
|
|
nn = neighborList[n+6*Np]%Np;
|
|
m8 = Den[nn];
|
|
nn = neighborList[n+9*Np]%Np;
|
|
m9 = Den[nn];
|
|
nn = neighborList[n+8*Np]%Np;
|
|
m10 = Den[nn];
|
|
nn = neighborList[n+11*Np]%Np;
|
|
m11 = Den[nn];
|
|
nn = neighborList[n+10*Np]%Np;
|
|
m12 = Den[nn];
|
|
nn = neighborList[n+13*Np]%Np;
|
|
m13 = Den[nn];
|
|
nn = neighborList[n+12*Np]%Np;
|
|
m14 = Den[nn];
|
|
nn = neighborList[n+15*Np]%Np;
|
|
m15 = Den[nn];
|
|
nn = neighborList[n+14*Np]%Np;
|
|
m16 = Den[nn];
|
|
nn = neighborList[n+17*Np]%Np;
|
|
m17 = Den[nn];
|
|
nn = neighborList[n+16*Np]%Np;
|
|
m18 = Den[nn];
|
|
|
|
//............Compute the Color Gradient...................................
|
|
nx = 1.f/6.f*(m1-m2+0.5*(m7-m8+m9-m10+m11-m12+m13-m14));
|
|
ny = 1.f/6.f*(m3-m4+0.5*(m7-m8-m9+m10+m15-m16+m17-m18));
|
|
nz = 1.f/6.f*(m5-m6+0.5*(m11-m12-m13+m14+m15-m16-m17+m18));
|
|
|
|
DenGrad[n] = nx;
|
|
DenGrad[Np+n] = ny;
|
|
DenGrad[2*Np+n] = nz;
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_D3Q19_GreyscaleFE_Laplacian(int *neighborList, double *Den, double *DenLap, int start, int finish, int Np){
|
|
|
|
int n,nn;
|
|
// distributions
|
|
double m1,m2,m3,m4,m5,m6,m7,m8,m9;
|
|
double m10,m11,m12,m13,m14,m15,m16,m17,m18;
|
|
double lap;
|
|
|
|
for (n=start; n<finish; n++){
|
|
// nn = neighborList[n+Np]%Np;
|
|
// m1 = Den[nn]*int(n!=nn);
|
|
// nn = neighborList[n]%Np;
|
|
// m2 = Den[nn]*int(n!=nn);
|
|
// nn = neighborList[n+3*Np]%Np;
|
|
// m3 = Den[nn]*int(n!=nn);
|
|
// nn = neighborList[n+2*Np]%Np;
|
|
// m4 = Den[nn]*int(n!=nn);
|
|
// nn = neighborList[n+5*Np]%Np;
|
|
// m5 = Den[nn]*int(n!=nn);
|
|
// nn = neighborList[n+4*Np]%Np;
|
|
// m6 = Den[nn]*int(n!=nn);
|
|
// nn = neighborList[n+7*Np]%Np;
|
|
// m7 = Den[nn]*int(n!=nn);
|
|
// nn = neighborList[n+6*Np]%Np;
|
|
// m8 = Den[nn]*int(n!=nn);
|
|
// nn = neighborList[n+9*Np]%Np;
|
|
// m9 = Den[nn]*int(n!=nn);
|
|
// nn = neighborList[n+8*Np]%Np;
|
|
// m10 = Den[nn]*int(n!=nn);
|
|
// nn = neighborList[n+11*Np]%Np;
|
|
// m11 = Den[nn]*int(n!=nn);
|
|
// nn = neighborList[n+10*Np]%Np;
|
|
// m12 = Den[nn]*int(n!=nn);
|
|
// nn = neighborList[n+13*Np]%Np;
|
|
// m13 = Den[nn]*int(n!=nn);
|
|
// nn = neighborList[n+12*Np]%Np;
|
|
// m14 = Den[nn]*int(n!=nn);
|
|
// nn = neighborList[n+15*Np]%Np;
|
|
// m15 = Den[nn]*int(n!=nn);
|
|
// nn = neighborList[n+14*Np]%Np;
|
|
// m16 = Den[nn]*int(n!=nn);
|
|
// nn = neighborList[n+17*Np]%Np;
|
|
// m17 = Den[nn]*int(n!=nn);
|
|
// nn = neighborList[n+16*Np]%Np;
|
|
// m18 = Den[nn]*int(n!=nn);
|
|
|
|
nn = neighborList[n+Np]%Np;
|
|
m1 = Den[nn];
|
|
nn = neighborList[n]%Np;
|
|
m2 = Den[nn];
|
|
nn = neighborList[n+3*Np]%Np;
|
|
m3 = Den[nn];
|
|
nn = neighborList[n+2*Np]%Np;
|
|
m4 = Den[nn];
|
|
nn = neighborList[n+5*Np]%Np;
|
|
m5 = Den[nn];
|
|
nn = neighborList[n+4*Np]%Np;
|
|
m6 = Den[nn];
|
|
nn = neighborList[n+7*Np]%Np;
|
|
m7 = Den[nn];
|
|
nn = neighborList[n+6*Np]%Np;
|
|
m8 = Den[nn];
|
|
nn = neighborList[n+9*Np]%Np;
|
|
m9 = Den[nn];
|
|
nn = neighborList[n+8*Np]%Np;
|
|
m10 = Den[nn];
|
|
nn = neighborList[n+11*Np]%Np;
|
|
m11 = Den[nn];
|
|
nn = neighborList[n+10*Np]%Np;
|
|
m12 = Den[nn];
|
|
nn = neighborList[n+13*Np]%Np;
|
|
m13 = Den[nn];
|
|
nn = neighborList[n+12*Np]%Np;
|
|
m14 = Den[nn];
|
|
nn = neighborList[n+15*Np]%Np;
|
|
m15 = Den[nn];
|
|
nn = neighborList[n+14*Np]%Np;
|
|
m16 = Den[nn];
|
|
nn = neighborList[n+17*Np]%Np;
|
|
m17 = Den[nn];
|
|
nn = neighborList[n+16*Np]%Np;
|
|
m18 = Den[nn];
|
|
|
|
|
|
lap = 1.f/3.f*(m1+m2+m3+m4+m5+m6-6*Den[n]+0.5*(m7+m8+m9+m10+m11+m12+m13+m14+m15+m16+m17+m18-12*Den[n]));
|
|
DenLap[n] = lap;
|
|
}
|
|
}
|
|
|
|
extern "C" void ScaLBL_D3Q19_GreyscaleFE_PressureTensor(int *neighborList, double *Phi,double *Pressure, double *PressTensor, double *PhiLap,
|
|
double kappaA,double kappaB,double lambdaA,double lambdaB, int start, int finish, int Np){
|
|
//**GreyscaleFE model related parameters:
|
|
//kappaA, kappaB: characterize interfacial tension
|
|
//lambdaA, lambdaB: characterize bulk free energy
|
|
//nA: concentration of liquid 1;
|
|
//nB: concentration of liquid 2;
|
|
//nA = 0.5*(1+phi/chi)
|
|
//nB = 0.5*(1-phi/chi)
|
|
//nA+nB=1
|
|
//chi: a scaling factor, is set to 1.0 for now.
|
|
|
|
int nn,n;
|
|
double m1,m2,m4,m6,m8,m9,m10,m11,m12,m13,m14,m15,m16,m17,m18;
|
|
double m3,m5,m7;
|
|
double nx,ny,nz;//Color gradient
|
|
double phi;//phase field
|
|
double pb;//thermodynamic bulk fluid pressure
|
|
double Lphi;//Laplacian of phase field
|
|
double C;//squared magnitude of the gradient of phase field
|
|
double chi = 1.0;//legacy ELBM parameter, scale the phase field; may be useful in the future;
|
|
double kappa = 0.25*(kappaA+kappaB)/(chi*chi);//the effective surface tension coefficient
|
|
double Pxx,Pyy,Pzz,Pxy,Pyz,Pxz;//Pressure tensor
|
|
double pressure;
|
|
|
|
for (n=start; n<finish; n++){
|
|
|
|
// nn = neighborList[n+Np]%Np;
|
|
// m1 = Phi[nn]*int(n!=nn);
|
|
// nn = neighborList[n]%Np;
|
|
// m2 = Phi[nn]*int(n!=nn);
|
|
// nn = neighborList[n+3*Np]%Np;
|
|
// m3 = Phi[nn]*int(n!=nn);
|
|
// nn = neighborList[n+2*Np]%Np;
|
|
// m4 = Phi[nn]*int(n!=nn);
|
|
// nn = neighborList[n+5*Np]%Np;
|
|
// m5 = Phi[nn]*int(n!=nn);
|
|
// nn = neighborList[n+4*Np]%Np;
|
|
// m6 = Phi[nn]*int(n!=nn);
|
|
// nn = neighborList[n+7*Np]%Np;
|
|
// m7 = Phi[nn]*int(n!=nn);
|
|
// nn = neighborList[n+6*Np]%Np;
|
|
// m8 = Phi[nn]*int(n!=nn);
|
|
// nn = neighborList[n+9*Np]%Np;
|
|
// m9 = Phi[nn]*int(n!=nn);
|
|
// nn = neighborList[n+8*Np]%Np;
|
|
// m10 = Phi[nn]*int(n!=nn);
|
|
// nn = neighborList[n+11*Np]%Np;
|
|
// m11 = Phi[nn]*int(n!=nn);
|
|
// nn = neighborList[n+10*Np]%Np;
|
|
// m12 = Phi[nn]*int(n!=nn);
|
|
// nn = neighborList[n+13*Np]%Np;
|
|
// m13 = Phi[nn]*int(n!=nn);
|
|
// nn = neighborList[n+12*Np]%Np;
|
|
// m14 = Phi[nn]*int(n!=nn);
|
|
// nn = neighborList[n+15*Np]%Np;
|
|
// m15 = Phi[nn]*int(n!=nn);
|
|
// nn = neighborList[n+14*Np]%Np;
|
|
// m16 = Phi[nn]*int(n!=nn);
|
|
// nn = neighborList[n+17*Np]%Np;
|
|
// m17 = Phi[nn]*int(n!=nn);
|
|
// nn = neighborList[n+16*Np]%Np;
|
|
// m18 = Phi[nn]*int(n!=nn);
|
|
|
|
nn = neighborList[n+Np]%Np;
|
|
m1 = Phi[nn];
|
|
nn = neighborList[n]%Np;
|
|
m2 = Phi[nn];
|
|
nn = neighborList[n+3*Np]%Np;
|
|
m3 = Phi[nn];
|
|
nn = neighborList[n+2*Np]%Np;
|
|
m4 = Phi[nn];
|
|
nn = neighborList[n+5*Np]%Np;
|
|
m5 = Phi[nn];
|
|
nn = neighborList[n+4*Np]%Np;
|
|
m6 = Phi[nn];
|
|
nn = neighborList[n+7*Np]%Np;
|
|
m7 = Phi[nn];
|
|
nn = neighborList[n+6*Np]%Np;
|
|
m8 = Phi[nn];
|
|
nn = neighborList[n+9*Np]%Np;
|
|
m9 = Phi[nn];
|
|
nn = neighborList[n+8*Np]%Np;
|
|
m10 = Phi[nn];
|
|
nn = neighborList[n+11*Np]%Np;
|
|
m11 = Phi[nn];
|
|
nn = neighborList[n+10*Np]%Np;
|
|
m12 = Phi[nn];
|
|
nn = neighborList[n+13*Np]%Np;
|
|
m13 = Phi[nn];
|
|
nn = neighborList[n+12*Np]%Np;
|
|
m14 = Phi[nn];
|
|
nn = neighborList[n+15*Np]%Np;
|
|
m15 = Phi[nn];
|
|
nn = neighborList[n+14*Np]%Np;
|
|
m16 = Phi[nn];
|
|
nn = neighborList[n+17*Np]%Np;
|
|
m17 = Phi[nn];
|
|
nn = neighborList[n+16*Np]%Np;
|
|
m18 = Phi[nn];
|
|
|
|
//............Compute the Color Gradient...................................
|
|
nx = 1.f/6.f*(m1-m2+0.5*(m7-m8+m9-m10+m11-m12+m13-m14));
|
|
ny = 1.f/6.f*(m3-m4+0.5*(m7-m8-m9+m10+m15-m16+m17-m18));
|
|
nz = 1.f/6.f*(m5-m6+0.5*(m11-m12-m13+m14+m15-m16-m17+m18));
|
|
C = nx*nx+ny*ny+nz*nz;
|
|
// Laplacian of phase field
|
|
//Lphi = 0.3333333333333333*(m1+m2+m3+m4+m5+m6)+
|
|
// 0.16666666666666666*(m7+m8+m9+m10+m11+m12+m13+m14+m15+m16+m17+m18) - 4.0*phi;
|
|
phi = Phi[n];
|
|
pressure = Pressure[n];
|
|
Lphi = 1.f/3.f*(m1+m2+m3+m4+m5+m6-6*phi+0.5*(m7+m8+m9+m10+m11+m12+m13+m14+m15+m16+m17+m18-12*phi));
|
|
|
|
//bulk pressure p_b
|
|
// pb = pressure - ((1.0-nA)*(1.0-nA)*nA*nA*lambdaA)*0.5 - ((1.0-nB)*(1.0-nB)*nB*nB*lambdaB)*0.5 +
|
|
// (nA - nB)*chi*(((0.5*nA-1.5*nA*nA+nA*nA*nA)*lambdaA)/chi - ((0.5*nB-1.5*nB*nB+nB*nB*nB)*lambdaB)/chi);
|
|
|
|
pb = pressure + (lambdaA+lambdaB)*(-0.03125-0.0625*phi*phi+0.09375*phi*phi*phi*phi);
|
|
|
|
//Pressure tensors
|
|
if (C == 0.0) nx = ny = nz = 0.0;
|
|
Pxx=pb-kappa*phi*Lphi-0.5*kappa*C + kappa*nx*nx ;
|
|
Pyy=pb-kappa*phi*Lphi-0.5*kappa*C + kappa*ny*ny ;
|
|
Pzz=pb-kappa*phi*Lphi-0.5*kappa*C + kappa*nz*nz ;
|
|
Pxy= kappa*nx*ny;
|
|
Pyz= kappa*ny*nz;
|
|
Pxz= kappa*nx*nz;
|
|
|
|
//...Store the Pressure Tensors....................
|
|
PressTensor[n+0*Np] = Pxx;
|
|
PressTensor[n+1*Np] = Pyy;
|
|
PressTensor[n+2*Np] = Pzz;
|
|
PressTensor[n+3*Np] = Pxy;
|
|
PressTensor[n+4*Np] = Pyz;
|
|
PressTensor[n+5*Np] = Pxz;
|
|
//...............................................
|
|
|
|
//...Store the Laplacian of phase field....................
|
|
PhiLap[n]=Lphi;
|
|
}
|
|
}
|
|
|
|
|