Files
LBPM/analysis/FlowAdaptor.cpp
James McClure 3232f939ee update to docx
2021-10-21 20:24:10 -04:00

515 lines
18 KiB
C++

/* Flow adaptor class for multiphase flow methods */
#include "analysis/FlowAdaptor.h"
#include "analysis/distance.h"
#include "analysis/morphology.h"
FlowAdaptor::FlowAdaptor(ScaLBL_ColorModel &M){
Nx = M.Dm->Nx;
Ny = M.Dm->Ny;
Nz = M.Dm->Nz;
timestep=-1;
timestep_previous=-1;
phi.resize(Nx,Ny,Nz); phi.fill(0); // phase indicator field
phi_t.resize(Nx,Ny,Nz); phi_t.fill(0); // time derivative for the phase indicator field
}
FlowAdaptor::~FlowAdaptor(){
}
double FlowAdaptor::ImageInit(ScaLBL_ColorModel &M, std::string Filename){
int rank = M.rank;
int Nx = M.Nx; int Ny = M.Ny; int Nz = M.Nz;
if (rank==0) printf("Re-initializing fluids from file: %s \n", Filename.c_str());
M.Mask->Decomp(Filename);
for (int i=0; i<Nx*Ny*Nz; i++) M.id[i] = M.Mask->id[i]; // save what was read
for (int i=0; i<Nx*Ny*Nz; i++) M.Dm->id[i] = M.Mask->id[i]; // save what was read
double *PhaseLabel;
PhaseLabel = new double[Nx*Ny*Nz];
M.AssignComponentLabels(PhaseLabel);
double Count = 0.0;
double PoreCount = 0.0;
for (int k=1; k<Nz-1; k++){
for (int j=1; j<Ny-1; j++){
for (int i=1; i<Nx-1; i++){
if (M.id[Nx*Ny*k+Nx*j+i] == 2){
PoreCount++;
Count++;
}
else if (M.id[Nx*Ny*k+Nx*j+i] == 1){
PoreCount++;
}
}
}
}
Count=M.Dm->Comm.sumReduce( Count);
PoreCount=M.Dm->Comm.sumReduce( PoreCount);
if (rank==0) printf(" new saturation: %f (%f / %f) \n", Count / PoreCount, Count, PoreCount);
ScaLBL_CopyToDevice(M.Phi, PhaseLabel, Nx*Ny*Nz*sizeof(double));
M.Dm->Comm.barrier();
ScaLBL_D3Q19_Init(M.fq, M.Np);
ScaLBL_PhaseField_Init(M.dvcMap, M.Phi, M.Den, M.Aq, M.Bq, 0, M.ScaLBL_Comm->LastExterior(), M.Np);
ScaLBL_PhaseField_Init(M.dvcMap, M.Phi, M.Den, M.Aq, M.Bq, M.ScaLBL_Comm->FirstInterior(), M.ScaLBL_Comm->LastInterior(), M.Np);
M.Dm->Comm.barrier();
ScaLBL_CopyToHost(M.Averages->Phi.data(),M.Phi,Nx*Ny*Nz*sizeof(double));
double saturation = Count/PoreCount;
return saturation;
}
double FlowAdaptor::UpdateFractionalFlow(ScaLBL_ColorModel &M){
double MASS_FRACTION_CHANGE = 0.006;
double FRACTIONAL_FLOW_EPSILON = 5e-6;
if (M.db->keyExists( "FlowAdaptor" )){
auto flow_db = M.db->getDatabase( "FlowAdaptor" );
MASS_FRACTION_CHANGE = flow_db->getWithDefault<double>( "mass_fraction_factor", 0.006);
FRACTIONAL_FLOW_EPSILON = flow_db->getWithDefault<double>( "fractional_flow_epsilon", 5e-6);
}
int Np = M.Np;
double dA, dB, phi;
double vx,vy,vz;
double mass_a, mass_b, mass_a_global, mass_b_global;
double *Aq_tmp, *Bq_tmp;
double *Vel_x, *Vel_y, *Vel_z, *Phase;
Aq_tmp = new double [7*Np];
Bq_tmp = new double [7*Np];
Phase = new double [Np];
Vel_x = new double [Np];
Vel_y = new double [Np];
Vel_z = new double [Np];
ScaLBL_CopyToHost(Aq_tmp, M.Aq, 7*Np*sizeof(double));
ScaLBL_CopyToHost(Bq_tmp, M.Bq, 7*Np*sizeof(double));
ScaLBL_CopyToHost(Vel_x, &M.Velocity[0], Np*sizeof(double));
ScaLBL_CopyToHost(Vel_y, &M.Velocity[Np], Np*sizeof(double));
ScaLBL_CopyToHost(Vel_z, &M.Velocity[2*Np], Np*sizeof(double));
int Nx = M.Nx; int Ny = M.Ny; int Nz = M.Nz;
mass_a = mass_b = 0.0;
double maxSpeed = 0.0;
double localMaxSpeed = 0.0;
/* compute mass change based on weights */
double sum_weights_A = 0.0;
double sum_weights_B = 0.0;
for (int k=1; k<Nz-1; k++){
for (int j=1; j<Ny-1; j++){
for (int i=1; i<Nx-1; i++){
int n=M.Map(i,j,k);
//double distance = M.Averages->SDs(i,j,k);
if (!(n<0) ){
dA = Aq_tmp[n] + Aq_tmp[n+Np] + Aq_tmp[n+2*Np] + Aq_tmp[n+3*Np] + Aq_tmp[n+4*Np] + Aq_tmp[n+5*Np] + Aq_tmp[n+6*Np];
dB = Bq_tmp[n] + Bq_tmp[n+Np] + Bq_tmp[n+2*Np] + Bq_tmp[n+3*Np] + Bq_tmp[n+4*Np] + Bq_tmp[n+5*Np] + Bq_tmp[n+6*Np];
phi = (dA - dB) / (dA + dB);
Phase[n] = phi;
mass_a += dA;
mass_b += dB;
vx = Vel_x[n];
vy = Vel_y[n];
vz = Vel_z[n];
double local_momentum = sqrt(vx*vx+vy*vy+vz*vz);
double local_weight = (FRACTIONAL_FLOW_EPSILON + local_momentum);
if (phi > 0.0){
sum_weights_A += local_weight*dA;
}
else {
sum_weights_B += local_weight*dB;
}
if ( local_momentum > localMaxSpeed){
localMaxSpeed = local_momentum;
}
}
}
}
}
maxSpeed = M.Dm->Comm.maxReduce(localMaxSpeed);
mass_a_global = M.Dm->Comm.sumReduce(mass_a);
mass_b_global = M.Dm->Comm.sumReduce(mass_b);
double sum_weights_A_global = M.Dm->Comm.sumReduce(sum_weights_A);
double sum_weights_B_global = M.Dm->Comm.sumReduce(sum_weights_B);
sum_weights_A_global /= (FRACTIONAL_FLOW_EPSILON + maxSpeed);
sum_weights_B_global /= (FRACTIONAL_FLOW_EPSILON + maxSpeed);
//double total_momentum_A = sqrt(vax_global*vax_global+vay_global*vay_global+vaz_global*vaz_global);
//double total_momentum_B = sqrt(vbx_global*vbx_global+vby_global*vby_global+vbz_global*vbz_global);
/* compute the total mass change */
double TOTAL_MASS_CHANGE = MASS_FRACTION_CHANGE*(mass_a_global + mass_b_global);
if (fabs(TOTAL_MASS_CHANGE) > 0.1*mass_a_global )
TOTAL_MASS_CHANGE = 0.1*mass_a_global;
if (fabs(TOTAL_MASS_CHANGE) > 0.1*mass_b_global )
TOTAL_MASS_CHANGE = 0.1*mass_b_global;
double MASS_FACTOR_A = TOTAL_MASS_CHANGE / sum_weights_A_global;
double MASS_FACTOR_B = TOTAL_MASS_CHANGE / sum_weights_B_global;
double LOCAL_MASS_CHANGE = 0.0;
for (int k=1; k<Nz-1; k++){
for (int j=1; j<Ny-1; j++){
for (int i=1; i<Nx-1; i++){
int n=M.Map(i,j,k);
if (!(n<0)){
phi = Phase[n];
vx = Vel_x[n];
vy = Vel_y[n];
vz = Vel_z[n];
double local_momentum = sqrt(vx*vx+vy*vy+vz*vz);
double local_weight = (FRACTIONAL_FLOW_EPSILON + local_momentum)/(FRACTIONAL_FLOW_EPSILON + maxSpeed);
/* impose ceiling for spurious currents */
//if (local_momentum > maxSpeed) local_momentum = maxSpeed;
if (phi > 0.0){
LOCAL_MASS_CHANGE = MASS_FACTOR_A*local_weight;
Aq_tmp[n] -= 0.3333333333333333*LOCAL_MASS_CHANGE;
Aq_tmp[n+Np] -= 0.1111111111111111*LOCAL_MASS_CHANGE;
Aq_tmp[n+2*Np] -= 0.1111111111111111*LOCAL_MASS_CHANGE;
Aq_tmp[n+3*Np] -= 0.1111111111111111*LOCAL_MASS_CHANGE;
Aq_tmp[n+4*Np] -= 0.1111111111111111*LOCAL_MASS_CHANGE;
Aq_tmp[n+5*Np] -= 0.1111111111111111*LOCAL_MASS_CHANGE;
Aq_tmp[n+6*Np] -= 0.1111111111111111*LOCAL_MASS_CHANGE;
//DebugMassA[n] = (-1.0)*LOCAL_MASS_CHANGE;
}
else{
LOCAL_MASS_CHANGE = MASS_FACTOR_B*local_weight;
Bq_tmp[n] += 0.3333333333333333*LOCAL_MASS_CHANGE;
Bq_tmp[n+Np] += 0.1111111111111111*LOCAL_MASS_CHANGE;
Bq_tmp[n+2*Np] += 0.1111111111111111*LOCAL_MASS_CHANGE;
Bq_tmp[n+3*Np] += 0.1111111111111111*LOCAL_MASS_CHANGE;
Bq_tmp[n+4*Np] += 0.1111111111111111*LOCAL_MASS_CHANGE;
Bq_tmp[n+5*Np] += 0.1111111111111111*LOCAL_MASS_CHANGE;
Bq_tmp[n+6*Np] += 0.1111111111111111*LOCAL_MASS_CHANGE;
//DebugMassB[n] = LOCAL_MASS_CHANGE;
}
}
}
}
}
if (M.rank == 0) printf("Update Fractional Flow: change mass of fluid B by %f \n",TOTAL_MASS_CHANGE/mass_b_global);
// Need to initialize Aq, Bq, Den, Phi directly
//ScaLBL_CopyToDevice(Phi,phase.data(),7*Np*sizeof(double));
ScaLBL_CopyToDevice(M.Aq, Aq_tmp, 7*Np*sizeof(double));
ScaLBL_CopyToDevice(M.Bq, Bq_tmp, 7*Np*sizeof(double));
return(TOTAL_MASS_CHANGE);
}
void FlowAdaptor::Flatten(ScaLBL_ColorModel &M){
ScaLBL_D3Q19_Init(M.fq, M.Np);
ScaLBL_PhaseField_Init(M.dvcMap, M.Phi, M.Den, M.Aq, M.Bq, 0, M.ScaLBL_Comm->LastExterior(), M.Np);
ScaLBL_PhaseField_Init(M.dvcMap, M.Phi, M.Den, M.Aq, M.Bq, M.ScaLBL_Comm->FirstInterior(), M.ScaLBL_Comm->LastInterior(), M.Np);
}
double FlowAdaptor::MoveInterface(ScaLBL_ColorModel &M){
double INTERFACE_CUTOFF = M.color_db->getWithDefault<double>( "move_interface_cutoff", 0.1 );
double MOVE_INTERFACE_FACTOR = M.color_db->getWithDefault<double>( "move_interface_factor", 10.0 );
ScaLBL_CopyToHost( phi.data(), M.Phi, Nx*Ny*Nz* sizeof( double ) );
/* compute the local derivative of phase indicator field */
double beta = M.beta;
double factor = 0.5/beta;
double total_interface_displacement = 0.0;
double total_interface_sites = 0.0;
for (int n=0; n<Nx*Ny*Nz; n++){
/* compute the distance to the interface */
double value1 = M.Averages->Phi(n);
double dist1 = factor*log((1.0+value1)/(1.0-value1));
double value2 = phi(n);
double dist2 = factor*log((1.0+value2)/(1.0-value2));
phi_t(n) = value2;
if (value1 < INTERFACE_CUTOFF && value1 > -1*INTERFACE_CUTOFF && value2 < INTERFACE_CUTOFF && value2 > -1*INTERFACE_CUTOFF ){
/* time derivative of distance */
double dxdt = 0.125*(dist2-dist1);
/* extrapolate to move the distance further */
double dist3 = dist2 + MOVE_INTERFACE_FACTOR*dxdt;
/* compute the new phase interface */
phi_t(n) = (2.f*(exp(-2.f*beta*(dist3)))/(1.f+exp(-2.f*beta*(dist3))) - 1.f);
total_interface_displacement += fabs(MOVE_INTERFACE_FACTOR*dxdt);
total_interface_sites += 1.0;
}
}
ScaLBL_CopyToDevice( M.Phi, phi_t.data(), Nx*Ny*Nz* sizeof( double ) );
return total_interface_sites;
}
double FlowAdaptor::ShellAggregation(ScaLBL_ColorModel &M, const double target_delta_volume){
const RankInfoStruct rank_info(M.rank,M.nprocx,M.nprocy,M.nprocz);
auto rank = M.rank;
auto Nx = M.Nx; auto Ny = M.Ny; auto Nz = M.Nz;
auto N = Nx*Ny*Nz;
double vF = 0.f;
double vS = 0.f;
double delta_volume;
double WallFactor = 1.0;
bool USE_CONNECTED_NWP = false;
DoubleArray phase(Nx,Ny,Nz);
IntArray phase_label(Nx,Ny,Nz);;
DoubleArray phase_distance(Nx,Ny,Nz);
Array<char> phase_id(Nx,Ny,Nz);
fillHalo<double> fillDouble(M.Dm->Comm,M.Dm->rank_info,{Nx-2,Ny-2,Nz-2},{1,1,1},0,1);
// Basic algorithm to
// 1. Copy phase field to CPU
ScaLBL_CopyToHost(phase.data(), M.Phi, N*sizeof(double));
double count = 0.f;
for (int k=1; k<Nz-1; k++){
for (int j=1; j<Ny-1; j++){
for (int i=1; i<Nx-1; i++){
if (phase(i,j,k) > 0.f && M.Averages->SDs(i,j,k) > 0.f) count+=1.f;
}
}
}
double volume_initial = M.Dm->Comm.sumReduce( count);
double PoreVolume = M.Dm->Volume*M.Dm->Porosity();
/*ensure target isn't an absurdly small fraction of pore volume */
if (volume_initial < target_delta_volume*PoreVolume){
volume_initial = target_delta_volume*PoreVolume;
}
// 2. Identify connected components of phase field -> phase_label
double volume_connected = 0.0;
double second_biggest = 0.0;
if (USE_CONNECTED_NWP){
ComputeGlobalBlobIDs(Nx-2,Ny-2,Nz-2,rank_info,phase,M.Averages->SDs,vF,vS,phase_label,M.Dm->Comm);
M.Dm->Comm.barrier();
// only operate on component "0"ScaLBL_ColorModel &M,
count = 0.0;
for (int k=0; k<Nz; k++){
for (int j=0; j<Ny; j++){
for (int i=0; i<Nx; i++){
int label = phase_label(i,j,k);
if (label == 0 ){
phase_id(i,j,k) = 0;
count += 1.0;
}
else
phase_id(i,j,k) = 1;
if (label == 1 ){
second_biggest += 1.0;
}
}
}
}
volume_connected = M.Dm->Comm.sumReduce( count);
second_biggest = M.Dm->Comm.sumReduce( second_biggest);
}
else {
// use the whole NWP
for (int k=0; k<Nz; k++){
for (int j=0; j<Ny; j++){
for (int i=0; i<Nx; i++){
if (M.Averages->SDs(i,j,k) > 0.f){
if (phase(i,j,k) > 0.f ){
phase_id(i,j,k) = 0;
}
else {
phase_id(i,j,k) = 1;
}
}
else {
phase_id(i,j,k) = 1;
}
}
}
}
}
// 3. Generate a distance map to the largest object -> phase_distance
CalcDist(phase_distance,phase_id,*M.Dm);
double temp,value;
double factor=0.5/M.beta;
for (int k=0; k<Nz; k++){
for (int j=0; j<Ny; j++){
for (int i=0; i<Nx; i++){
if (phase_distance(i,j,k) < 3.f ){
value = phase(i,j,k);
if (value > 1.f) value=1.f;
if (value < -1.f) value=-1.f;
// temp -- distance based on analytical form McClure, Prins et al, Comp. Phys. Comm.
temp = -factor*log((1.0+value)/(1.0-value));
/// use this approximation close to the object
if (fabs(value) < 0.8 && M.Averages->SDs(i,j,k) > 1.f ){
phase_distance(i,j,k) = temp;
}
// erase the original object
phase(i,j,k) = -1.0;
}
}
}
}
if (rank==0) printf("Pathway volume / next largest ganglion %f \n",volume_connected/second_biggest );
if (rank==0) printf("MorphGrow with target volume fraction change %f \n", target_delta_volume/volume_initial);
double target_delta_volume_incremental = target_delta_volume;
if (fabs(target_delta_volume) > 0.01*volume_initial)
target_delta_volume_incremental = 0.01*volume_initial*target_delta_volume/fabs(target_delta_volume);
delta_volume = MorphGrow(M.Averages->SDs,phase_distance,phase_id,M.Averages->Dm, target_delta_volume_incremental, WallFactor);
for (int k=0; k<Nz; k++){
for (int j=0; j<Ny; j++){
for (int i=0; i<Nx; i++){
if (phase_distance(i,j,k) < 0.0 ) phase_id(i,j,k) = 0;
else phase_id(i,j,k) = 1;
//if (phase_distance(i,j,k) < 0.0 ) phase(i,j,k) = 1.0;
}
}
}
CalcDist(phase_distance,phase_id,*M.Dm); // re-calculate distance
// 5. Update phase indicator field based on new distnace
for (int k=0; k<Nz; k++){
for (int j=0; j<Ny; j++){
for (int i=0; i<Nx; i++){
double d = phase_distance(i,j,k);
if (M.Averages->SDs(i,j,k) > 0.f){
if (d < 3.f){
//phase(i,j,k) = -1.0;
phase(i,j,k) = (2.f*(exp(-2.f*M.beta*d))/(1.f+exp(-2.f*M.beta*d))-1.f);
}
}
}
}
}
fillDouble.fill(phase);
count = 0.f;
for (int k=1; k<Nz-1; k++){
for (int j=1; j<Ny-1; j++){
for (int i=1; i<Nx-1; i++){
if (phase(i,j,k) > 0.f && M.Averages->SDs(i,j,k) > 0.f){
count+=1.f;
}
}
}
}
double volume_final= M.Dm->Comm.sumReduce( count);
delta_volume = (volume_final-volume_initial);
if (rank == 0) printf("Shell Aggregation: change fluid volume fraction by %f \n", delta_volume/volume_initial);
if (rank == 0) printf(" new saturation = %f \n", volume_final/(M.Mask->Porosity()*double((Nx-2)*(Ny-2)*(Nz-2)*M.nprocs)));
// 6. copy back to the device
//if (rank==0) printf("MorphInit: copy data back to device\n");
ScaLBL_CopyToDevice(M.Phi,phase.data(),N*sizeof(double));
// 7. Re-initialize phase field and density
ScaLBL_PhaseField_Init(M.dvcMap, M.Phi, M.Den, M.Aq, M.Bq, 0, M.ScaLBL_Comm->LastExterior(), M.Np);
ScaLBL_PhaseField_Init(M.dvcMap, M.Phi, M.Den, M.Aq, M.Bq, M.ScaLBL_Comm->FirstInterior(), M.ScaLBL_Comm->LastInterior(), M.Np);
auto BoundaryCondition = M.BoundaryCondition;
if (BoundaryCondition == 1 || BoundaryCondition == 2 || BoundaryCondition == 3 || BoundaryCondition == 4){
if (M.Dm->kproc()==0){
ScaLBL_SetSlice_z(M.Phi,1.0,Nx,Ny,Nz,0);
ScaLBL_SetSlice_z(M.Phi,1.0,Nx,Ny,Nz,1);
ScaLBL_SetSlice_z(M.Phi,1.0,Nx,Ny,Nz,2);
}
if (M.Dm->kproc() == M.nprocz-1){
ScaLBL_SetSlice_z(M.Phi,-1.0,Nx,Ny,Nz,Nz-1);
ScaLBL_SetSlice_z(M.Phi,-1.0,Nx,Ny,Nz,Nz-2);
ScaLBL_SetSlice_z(M.Phi,-1.0,Nx,Ny,Nz,Nz-3);
}
}
return delta_volume;
}
double FlowAdaptor::SeedPhaseField(ScaLBL_ColorModel &M, const double seed_water_in_oil){
srand(time(NULL));
auto rank = M.rank;
auto Np = M.Np;
double mass_loss =0.f;
double count =0.f;
double *Aq_tmp, *Bq_tmp;
Aq_tmp = new double [7*Np];
Bq_tmp = new double [7*Np];
ScaLBL_CopyToHost(Aq_tmp, M.Aq, 7*Np*sizeof(double));
ScaLBL_CopyToHost(Bq_tmp, M.Bq, 7*Np*sizeof(double));
for (int n=0; n < M.ScaLBL_Comm->LastExterior(); n++){
double random_value = seed_water_in_oil*double(rand())/ RAND_MAX;
double dA = Aq_tmp[n] + Aq_tmp[n+Np] + Aq_tmp[n+2*Np] + Aq_tmp[n+3*Np] + Aq_tmp[n+4*Np] + Aq_tmp[n+5*Np] + Aq_tmp[n+6*Np];
double dB = Bq_tmp[n] + Bq_tmp[n+Np] + Bq_tmp[n+2*Np] + Bq_tmp[n+3*Np] + Bq_tmp[n+4*Np] + Bq_tmp[n+5*Np] + Bq_tmp[n+6*Np];
double phase_id = (dA - dB) / (dA + dB);
if (phase_id > 0.0){
Aq_tmp[n] -= 0.3333333333333333*random_value;
Aq_tmp[n+Np] -= 0.1111111111111111*random_value;
Aq_tmp[n+2*Np] -= 0.1111111111111111*random_value;
Aq_tmp[n+3*Np] -= 0.1111111111111111*random_value;
Aq_tmp[n+4*Np] -= 0.1111111111111111*random_value;
Aq_tmp[n+5*Np] -= 0.1111111111111111*random_value;
Aq_tmp[n+6*Np] -= 0.1111111111111111*random_value;
Bq_tmp[n] += 0.3333333333333333*random_value;
Bq_tmp[n+Np] += 0.1111111111111111*random_value;
Bq_tmp[n+2*Np] += 0.1111111111111111*random_value;
Bq_tmp[n+3*Np] += 0.1111111111111111*random_value;
Bq_tmp[n+4*Np] += 0.1111111111111111*random_value;
Bq_tmp[n+5*Np] += 0.1111111111111111*random_value;
Bq_tmp[n+6*Np] += 0.1111111111111111*random_value;
}
mass_loss += random_value*seed_water_in_oil;
}
for (int n=M.ScaLBL_Comm->FirstInterior(); n < M.ScaLBL_Comm->LastInterior(); n++){
double random_value = seed_water_in_oil*double(rand())/ RAND_MAX;
double dA = Aq_tmp[n] + Aq_tmp[n+Np] + Aq_tmp[n+2*Np] + Aq_tmp[n+3*Np] + Aq_tmp[n+4*Np] + Aq_tmp[n+5*Np] + Aq_tmp[n+6*Np];
double dB = Bq_tmp[n] + Bq_tmp[n+Np] + Bq_tmp[n+2*Np] + Bq_tmp[n+3*Np] + Bq_tmp[n+4*Np] + Bq_tmp[n+5*Np] + Bq_tmp[n+6*Np];
double phase_id = (dA - dB) / (dA + dB);
if (phase_id > 0.0){
Aq_tmp[n] -= 0.3333333333333333*random_value;
Aq_tmp[n+Np] -= 0.1111111111111111*random_value;
Aq_tmp[n+2*Np] -= 0.1111111111111111*random_value;
Aq_tmp[n+3*Np] -= 0.1111111111111111*random_value;
Aq_tmp[n+4*Np] -= 0.1111111111111111*random_value;
Aq_tmp[n+5*Np] -= 0.1111111111111111*random_value;
Aq_tmp[n+6*Np] -= 0.1111111111111111*random_value;
Bq_tmp[n] += 0.3333333333333333*random_value;
Bq_tmp[n+Np] += 0.1111111111111111*random_value;
Bq_tmp[n+2*Np] += 0.1111111111111111*random_value;
Bq_tmp[n+3*Np] += 0.1111111111111111*random_value;
Bq_tmp[n+4*Np] += 0.1111111111111111*random_value;
Bq_tmp[n+5*Np] += 0.1111111111111111*random_value;
Bq_tmp[n+6*Np] += 0.1111111111111111*random_value;
}
mass_loss += random_value*seed_water_in_oil;
}
count= M.Dm->Comm.sumReduce( count);
mass_loss= M.Dm->Comm.sumReduce( mass_loss);
if (rank == 0) printf("Remove mass %f from %f voxels \n",mass_loss,count);
// Need to initialize Aq, Bq, Den, Phi directly
//ScaLBL_CopyToDevice(Phi,phase.data(),7*Np*sizeof(double));
ScaLBL_CopyToDevice(M.Aq, Aq_tmp, 7*Np*sizeof(double));
ScaLBL_CopyToDevice(M.Bq, Bq_tmp, 7*Np*sizeof(double));
return(mass_loss);
}