Files
LBPM/cpu/Ion.cpp

285 lines
7.1 KiB
C++

#include <stdio.h>
extern "C" void ScaLBL_D3Q7_AAodd_IonConcentration(int *neighborList, double *dist, double *Den, int start, int finish, int Np){
int n,nread;
double fq,Ci;
for (n=start; n<finish; n++){
// q=0
fq = dist[n];
Ci = fq;
// q=1
nread = neighborList[n];
fq = dist[nread];
Ci += fq;
// q=2
nread = neighborList[n+Np];
fq = dist[nread];
Ci += fq;
// q=3
nread = neighborList[n+2*Np];
fq = dist[nread];
Ci += fq;
// q=4
nread = neighborList[n+3*Np];
fq = dist[nread];
Ci += fq;
// q=5
nread = neighborList[n+4*Np];
fq = dist[nread];
Ci += fq;
// q=6
nread = neighborList[n+5*Np];
fq = dist[nread];
Ci += fq;
Den[n]=Ci;
}
}
extern "C" void ScaLBL_D3Q7_AAeven_IonConcentration(double *dist, double *Den, int start, int finish, int Np){
int n;
double fq,Ci;
for (n=start; n<finish; n++){
// q=0
fq = dist[n];
Ci = fq;
// q=1
fq = dist[2*Np+n];
Ci += fq;
// q=2
fq = dist[1*Np+n];
Ci += fq;
// q=3
fq = dist[4*Np+n];
Ci += fq;
// q=4
fq = dist[3*Np+n];
Ci += fq;
// q=5
fq = dist[6*Np+n];
Ci += fq;
// q=6
fq = dist[5*Np+n];
Ci += fq;
Den[n]=Ci;
}
}
extern "C" void ScaLBL_D3Q7_AAodd_Ion(int *neighborList, double *dist, double *Den, double *FluxDiffusive, double *FluxAdvective, double *FluxElectrical, double *Velocity, double *ElectricField,
double Di, int zi, double rlx, double Vt, int start, int finish, int Np){
int n;
double Ci;
double ux,uy,uz;
double uEPx,uEPy,uEPz;//electrochemical induced velocity
double Ex,Ey,Ez;//electrical field
double flux_diffusive_x,flux_diffusive_y,flux_diffusive_z;
double f0,f1,f2,f3,f4,f5,f6;
int nr1,nr2,nr3,nr4,nr5,nr6;
for (n=start; n<finish; n++){
//Load data
Ci=Den[n];
Ex=ElectricField[n+0*Np];
Ey=ElectricField[n+1*Np];
Ez=ElectricField[n+2*Np];
ux=Velocity[n+0*Np];
uy=Velocity[n+1*Np];
uz=Velocity[n+2*Np];
uEPx=zi*Di/Vt*Ex;
uEPy=zi*Di/Vt*Ey;
uEPz=zi*Di/Vt*Ez;
// q=0
f0 = dist[n];
// q=1
nr1 = neighborList[n]; // neighbor 2 ( > 10Np => odd part of dist)
f1 = dist[nr1]; // reading the f1 data into register fq
// q=2
nr2 = neighborList[n+Np]; // neighbor 1 ( < 10Np => even part of dist)
f2 = dist[nr2]; // reading the f2 data into register fq
// q=3
nr3 = neighborList[n+2*Np]; // neighbor 4
f3 = dist[nr3];
// q=4
nr4 = neighborList[n+3*Np]; // neighbor 3
f4 = dist[nr4];
// q=5
nr5 = neighborList[n+4*Np];
f5 = dist[nr5];
// q=6
nr6 = neighborList[n+5*Np];
f6 = dist[nr6];
// compute diffusive flux
flux_diffusive_x = (1.0-0.5*rlx)*((f1-f2)-ux*Ci);
flux_diffusive_y = (1.0-0.5*rlx)*((f3-f4)-uy*Ci);
flux_diffusive_z = (1.0-0.5*rlx)*((f5-f6)-uz*Ci);
FluxDiffusive[n+0*Np] = flux_diffusive_x;
FluxDiffusive[n+1*Np] = flux_diffusive_y;
FluxDiffusive[n+2*Np] = flux_diffusive_z;
FluxAdvective[n+0*Np] = ux*Ci;
FluxAdvective[n+1*Np] = uy*Ci;
FluxAdvective[n+2*Np] = uz*Ci;
FluxElectrical[n+0*Np] = uEPx*Ci;
FluxElectrical[n+1*Np] = uEPy*Ci;
FluxElectrical[n+2*Np] = uEPz*Ci;
// q=0
dist[n] = f0*(1.0-rlx)+rlx*0.25*Ci;
// q = 1
dist[nr2] = f1*(1.0-rlx) + rlx*0.125*Ci*(1.0+4.0*(ux+uEPx));
// q=2
dist[nr1] = f2*(1.0-rlx) + rlx*0.125*Ci*(1.0-4.0*(ux+uEPx));
// q = 3
dist[nr4] = f3*(1.0-rlx) + rlx*0.125*Ci*(1.0+4.0*(uy+uEPy));
// q = 4
dist[nr3] = f4*(1.0-rlx) + rlx*0.125*Ci*(1.0-4.0*(uy+uEPy));
// q = 5
dist[nr6] = f5*(1.0-rlx) + rlx*0.125*Ci*(1.0+4.0*(uz+uEPz));
// q = 6
dist[nr5] = f6*(1.0-rlx) + rlx*0.125*Ci*(1.0-4.0*(uz+uEPz));
}
}
extern "C" void ScaLBL_D3Q7_AAeven_Ion(double *dist, double *Den, double *FluxDiffusive, double *FluxAdvective, double *FluxElectrical, double *Velocity, double *ElectricField,
double Di, int zi, double rlx, double Vt, int start, int finish, int Np){
int n;
double Ci;
double ux,uy,uz;
double uEPx,uEPy,uEPz;//electrochemical induced velocity
double Ex,Ey,Ez;//electrical field
double flux_diffusive_x,flux_diffusive_y,flux_diffusive_z;
double f0,f1,f2,f3,f4,f5,f6;
for (n=start; n<finish; n++){
//Load data
Ci=Den[n];
Ex=ElectricField[n+0*Np];
Ey=ElectricField[n+1*Np];
Ez=ElectricField[n+2*Np];
ux=Velocity[n+0*Np];
uy=Velocity[n+1*Np];
uz=Velocity[n+2*Np];
uEPx=zi*Di/Vt*Ex;
uEPy=zi*Di/Vt*Ey;
uEPz=zi*Di/Vt*Ez;
f0 = dist[n];
f1 = dist[2*Np+n];
f2 = dist[1*Np+n];
f3 = dist[4*Np+n];
f4 = dist[3*Np+n];
f5 = dist[6*Np+n];
f6 = dist[5*Np+n];
// compute diffusive flux
flux_diffusive_x = (1.0-0.5*rlx)*((f1-f2)-ux*Ci);
flux_diffusive_y = (1.0-0.5*rlx)*((f3-f4)-uy*Ci);
flux_diffusive_z = (1.0-0.5*rlx)*((f5-f6)-uz*Ci);
FluxDiffusive[n+0*Np] = flux_diffusive_x;
FluxDiffusive[n+1*Np] = flux_diffusive_y;
FluxDiffusive[n+2*Np] = flux_diffusive_z;
FluxAdvective[n+0*Np] = ux*Ci;
FluxAdvective[n+1*Np] = uy*Ci;
FluxAdvective[n+2*Np] = uz*Ci;
FluxElectrical[n+0*Np] = uEPx*Ci;
FluxElectrical[n+1*Np] = uEPy*Ci;
FluxElectrical[n+2*Np] = uEPz*Ci;
// q=0
dist[n] = f0*(1.0-rlx)+rlx*0.25*Ci;
// q = 1
dist[1*Np+n] = f1*(1.0-rlx) + rlx*0.125*Ci*(1.0+4.0*(ux+uEPx));
// q=2
dist[2*Np+n] = f2*(1.0-rlx) + rlx*0.125*Ci*(1.0-4.0*(ux+uEPx));
// q = 3
dist[3*Np+n] = f3*(1.0-rlx) + rlx*0.125*Ci*(1.0+4.0*(uy+uEPy));
// q = 4
dist[4*Np+n] = f4*(1.0-rlx) + rlx*0.125*Ci*(1.0-4.0*(uy+uEPy));
// q = 5
dist[5*Np+n] = f5*(1.0-rlx) + rlx*0.125*Ci*(1.0+4.0*(uz+uEPz));
// q = 6
dist[6*Np+n] = f6*(1.0-rlx) + rlx*0.125*Ci*(1.0-4.0*(uz+uEPz));
}
}
extern "C" void ScaLBL_D3Q7_Ion_Init(double *dist, double *Den, double DenInit, int Np)
{
int n;
for (n=0; n<Np; n++){
dist[0*Np+n] = 0.25*DenInit;
dist[1*Np+n] = 0.125*DenInit;
dist[2*Np+n] = 0.125*DenInit;
dist[3*Np+n] = 0.125*DenInit;
dist[4*Np+n] = 0.125*DenInit;
dist[5*Np+n] = 0.125*DenInit;
dist[6*Np+n] = 0.125*DenInit;
Den[n] = DenInit;
}
}
extern "C" void ScaLBL_D3Q7_Ion_Init_FromFile(double *dist, double *Den, int Np)
{
int n;
double DenInit;
for (n=0; n<Np; n++){
DenInit = Den[n];
dist[0*Np+n] = 0.25*DenInit;
dist[1*Np+n] = 0.125*DenInit;
dist[2*Np+n] = 0.125*DenInit;
dist[3*Np+n] = 0.125*DenInit;
dist[4*Np+n] = 0.125*DenInit;
dist[5*Np+n] = 0.125*DenInit;
dist[6*Np+n] = 0.125*DenInit;
}
}
extern "C" void ScaLBL_D3Q7_Ion_ChargeDensity(double *Den, double *ChargeDensity, int IonValence, int ion_component, int start, int finish, int Np){
int n;
double Ci;//ion concentration of species i
double CD;//charge density
double CD_tmp;
double F = 96485.0;//Faraday's constant; unit[C/mol]; F=e*Na, where Na is the Avogadro constant
for (n=start; n<finish; n++){
Ci = Den[n+ion_component*Np];
CD = ChargeDensity[n];
CD_tmp = F*IonValence*Ci;
ChargeDensity[n] = CD*(ion_component>0) + CD_tmp;
}
}