Files
LBPM/analysis/Minkowski.cpp
2021-01-04 22:16:58 -05:00

295 lines
8.1 KiB
C++

#include "analysis/Minkowski.h"
#include "analysis/pmmc.h"
#include "analysis/analysis.h"
#include "common/Domain.h"
#include "common/Communication.h"
#include "common/Utilities.h"
#include "common/MPI.h"
#include "IO/MeshDatabase.h"
#include "IO/Reader.h"
#include "IO/Writer.h"
#include "ProfilerApp.h"
#include <memory>
#define PI 3.14159265359
// Constructor
Minkowski::Minkowski(std::shared_ptr <Domain> dm):
kstart(0), kfinish(0), isovalue(0), Volume(0),
LOGFILE(NULL), Dm(dm), Vi(0), Vi_global(0)
{
Nx=dm->Nx; Ny=dm->Ny; Nz=dm->Nz;
Volume=double((Nx-2)*(Ny-2)*(Nz-2))*double(Dm->nprocx()*Dm->nprocy()*Dm->nprocz());
id.resize(Nx,Ny,Nz); id.fill(0);
label.resize(Nx,Ny,Nz); label.fill(0);
distance.resize(Nx,Ny,Nz); distance.fill(0);
if (Dm->rank()==0){
LOGFILE = fopen("minkowski.csv","a+");
if (fseek(LOGFILE,0,SEEK_SET) == fseek(LOGFILE,0,SEEK_CUR))
{
// If LOGFILE is empty, write a short header to list the averages
//fprintf(LOGFILE,"--------------------------------------------------------------------------------------\n");
fprintf(LOGFILE,"Vn An Jn Xn\n"); //miknowski measures,
}
}
}
// Destructor
Minkowski::~Minkowski()
{
if ( LOGFILE!=NULL ) { fclose(LOGFILE); }
}
void Minkowski::ComputeScalar(const DoubleArray& Field, const double isovalue)
{
PROFILE_START("ComputeScalar");
Xi = Ji = Ai = 0.0;
DECL object;
int e1,e2,e3;
double s,s1,s2,s3;
double a1,a2,a3;
//double Vx,Vy,Vz,Wx,Wy,Wz,nx,ny,nz,norm;
//int Nx = Field.size(0);
//int Ny = Field.size(1);
//int Nz = Field.size(2);
for (int k=1; k<Nz-1; k++){
for (int j=1; j<Ny-1; j++){
for (int i=1; i<Nx-1; i++){
object.LocalIsosurface(Field,isovalue,i,j,k);
for (int idx=0; idx<object.TriangleCount; idx++){
e1 = object.Face(idx);
e2 = object.halfedge.next(e1);
e3 = object.halfedge.next(e2);
auto P1 = object.vertex.coords(object.halfedge.v1(e1));
auto P2 = object.vertex.coords(object.halfedge.v1(e2));
auto P3 = object.vertex.coords(object.halfedge.v1(e3));
// Surface area
s1 = Distance( P1, P2 );
s2 = Distance( P2, P3 );
s3 = Distance( P1, P3 );
s = 0.5*(s1+s2+s3);
Ai += sqrt(s*(s-s1)*(s-s2)*(s-s3));
// Mean curvature based on half edge angle
a1 = object.EdgeAngle(e1);
a2 = object.EdgeAngle(e2);
a3 = object.EdgeAngle(e3);
Ji += (a1*s1+a2*s2+a3*s3);
//if (0.08333333333333*(a1*s1+a2*s2+a3*s3) < 0.f){
//double intcurv=0.08333333333333*(a1*s1+a2*s2+a3*s3);
//double surfarea=sqrt(s*(s-s1)*(s-s2)*(s-s3));
//printf(" (%i,%i,%i) PQ(%i,%i)={%f,%f,%f} {%f,%f,%f} a=%f l=%f \n",i,j,k,e1,object.halfedge.twin(e1),P1.x,P1.y,P1.z,P2.x,P2.y,P2.z,a1,s1);
// printf(" (%i,%i,%i) QR(%i,%i)={%f,%f,%f} {%f,%f,%f} a=%f l=%f \n",i,j,k,e2,object.halfedge.twin(e2),P2.x,P2.y,P2.z,P3.x,P3.y,P3.z,a2,s2);
// printf(" (%i,%i,%i) RP(%i,%i)={%f,%f,%f} {%f,%f,%f} a=%f l=%f \n",i,j,k,e3,object.halfedge.twin(e3),P3.x,P3.y,P3.z,P1.x,P1.y,P1.z,a3,s3);
//}
// Euler characteristic (half edge rule: one face - 0.5*(three edges))
Xi -= 0.5;
}
// Euler characteristic -- each vertex shared by four cubes
//Xi += 0.25*double(object.VertexCount);
// check if vertices are at corners
for (int idx=0; idx<object.VertexCount; idx++){
/*auto P1 = object.vertex.coords(idx);
if ( remainder(P1.x,1.0)==0.0 && remainder(P1.y,1.0)==0.0 && remainder(P1.z,1.0)==0.0 ){
Xi += 0.125;
}
else
*/
Xi += 0.25;
}
/*double nside_extern = double(npts);
double nside_intern = double(npts)-3.0;
EulerChar=0.0;
if (npts > 0) EulerChar = (0.25*nvert - nside_intern - 0.5*nside_extern + nface); */
}
}
}
// Voxel counting for volume fraction
Vi = 0.f;
for (int k=1; k<Nz-1; k++){
for (int j=1; j<Ny-1; j++){
for (int i=1; i<Nx-1; i++){
if (Field(i,j,k) < isovalue){
Vi += 1.0;
}
}
}
}
// convert X for 2D manifold to 3D object
Xi *= 0.5;
Dm->Comm.barrier();
// Phase averages
Vi_global = Dm->Comm.sumReduce( Vi );
Xi_global = Dm->Comm.sumReduce( Xi );
Ai_global = Dm->Comm.sumReduce( Ai );
Ji_global = Dm->Comm.sumReduce( Ji );
Dm->Comm.barrier();
PROFILE_STOP("ComputeScalar");
}
void Minkowski::MeasureObject(){
/*
* compute the distance to an object
*
* THIS ALGORITHM ASSUMES THAT id() is populated with phase id to distinguish objects
* 0 - labels the object
* 1 - labels the rest of the
*/
//DoubleArray smooth_distance(Nx,Ny,Nz);
for (int k=0; k<Nz; k++){
for (int j=0; j<Ny; j++){
for (int i=0; i<Nx; i++){
distance(i,j,k) =2.0*double(id(i,j,k))-1.0;
}
}
}
CalcDist(distance,id,*Dm);
//Mean3D(distance,smooth_distance);
//Eikonal(distance, id, *Dm, 20, {true, true, true});
ComputeScalar(distance,0.0);
}
void Minkowski::MeasureObject(double factor, const DoubleArray &Phi){
/*
* compute the distance to an object
*
* THIS ALGORITHM ASSUMES THAT id() is populated with phase id to distinguish objects
* 0 - labels the object
* 1 - labels the rest of the
*/
for (int k=0; k<Nz; k++){
for (int j=0; j<Ny; j++){
for (int i=0; i<Nx; i++){
distance(i,j,k) =2.0*double(id(i,j,k))-1.0;
}
}
}
CalcDist(distance,id,*Dm);
for (int k=0; k<Nz; k++){
for (int j=0; j<Ny; j++){
for (int i=0; i<Nx; i++){
double value = Phi(i,j,k);
double dist_value = distance(i,j,k);
if (dist_value < 2.5 && dist_value > -2.5) {
double new_distance = factor*log((1.0+value)/(1.0-value));
if (dist_value*new_distance < 0.0 )
new_distance = (-1.0)*new_distance;
distance(i,j,k) = new_distance;
}
}
}
}
ComputeScalar(distance,0.0);
}
int Minkowski::MeasureConnectedPathway(){
/*
* compute the connected pathway for object with LABEL in id field
* compute the labels for connected components
* compute the distance to the connected pathway
*
* THIS ALGORITHM ASSUMES THAT id() is populated with phase id to distinguish objects
*/
char LABEL = 0;
for (int k=0; k<Nz; k++){
for (int j=0; j<Ny; j++){
for (int i=0; i<Nx; i++){
if (id(i,j,k) == LABEL){
distance(i,j,k) = 1.0;
}
else
distance(i,j,k) = -1.0;
}
}
}
// Extract only the connected part of NWP
double vF=0.0;
n_connected_components = ComputeGlobalBlobIDs(Nx-2,Ny-2,Nz-2,Dm->rank_info,distance,distance,vF,vF,label,Dm->Comm);
// int n_connected_components = ComputeGlobalPhaseComponent(Nx-2,Ny-2,Nz-2,Dm->rank_info,const IntArray &PhaseID, int &VALUE, BlobIDArray &GlobalBlobID, Dm->Comm )
Dm->Comm.barrier();
for (int k=0; k<Nz; k++){
for (int j=0; j<Ny; j++){
for (int i=0; i<Nx; i++){
if ( label(i,j,k) == 0){
id(i,j,k) = 0;
}
else{
id(i,j,k) = 1;
}
}
}
}
MeasureObject();
return n_connected_components;
}
int Minkowski::MeasureConnectedPathway(double factor, const DoubleArray &Phi){
/*
* compute the connected pathway for object with LABEL in id field
* compute the labels for connected components
* compute the distance to the connected pathway
*
* THIS ALGORITHM ASSUMES THAT id() is populated with phase id to distinguish objects
*/
char LABEL = 0;
for (int k=0; k<Nz; k++){
for (int j=0; j<Ny; j++){
for (int i=0; i<Nx; i++){
if (id(i,j,k) == LABEL){
distance(i,j,k) = 1.0;
}
else
distance(i,j,k) = -1.0;
}
}
}
// Extract only the connected part of NWP
double vF=0.0;
n_connected_components = ComputeGlobalBlobIDs(Nx-2,Ny-2,Nz-2,Dm->rank_info,distance,distance,vF,vF,label,Dm->Comm);
// int n_connected_components = ComputeGlobalPhaseComponent(Nx-2,Ny-2,Nz-2,Dm->rank_info,const IntArray &PhaseID, int &VALUE, BlobIDArray &GlobalBlobID, Dm->Comm )
Dm->Comm.barrier();
for (int k=0; k<Nz; k++){
for (int j=0; j<Ny; j++){
for (int i=0; i<Nx; i++){
if ( label(i,j,k) == 0){
id(i,j,k) = 0;
}
else{
id(i,j,k) = 1;
}
}
}
}
MeasureObject(factor,Phi);
return n_connected_components;
}
void Minkowski::PrintAll()
{
if (Dm->rank()==0){
fprintf(LOGFILE,"%.5g %.5g %.5g %.5g\n",Vi_global, Ai_global, Ji_global, Xi_global); // minkowski measures
fflush(LOGFILE);
}
}