273 lines
9.1 KiB
Python
273 lines
9.1 KiB
Python
#!/usr/bin/env python
|
|
|
|
import os
|
|
import numpy as np
|
|
import csv
|
|
|
|
def get_LBM_parameters(csv_file_name,base_name_suffix,image_format,ift=24,Depth=8.8,**kwargs):
|
|
# 'ift': dyne/cm
|
|
# 'Depth': micron
|
|
# Users need to provide the following information
|
|
# 1. surface tension in physical unit
|
|
# 2. physical depth in physical unit
|
|
# 3. experimental file e.g. *.csv
|
|
# 4. Other optional information, which is summarised in a dictionary
|
|
# 'Para', including:
|
|
# Para['D']: characteristic length
|
|
# Para['alpha']: LBM parameters, controlling the surface tension
|
|
# Para['fitting']: LBM parameters, extracted from the bubble test
|
|
|
|
|
|
# Experimental definitions - units are converted in terms of N, m
|
|
micron=1e-6
|
|
cm=1e-2
|
|
dyne=1e-5
|
|
kPa=1e3
|
|
Para={'D':30.0} # characteristic length
|
|
#length=500*micron
|
|
|
|
# LBM related parameters
|
|
# TODO: for parameters like 'alpha', you should find a way to
|
|
# communicate with other functions
|
|
# It cannot be hard-coded here
|
|
Para['alpha'] = 0.01
|
|
Para['fitting'] = 5.796
|
|
# Check users' input arguments
|
|
for key in kwargs:
|
|
if key in Para.keys():
|
|
Para[key]=kwargs[key]
|
|
else:
|
|
print "Error: "+key+" is not a valid input !\n"
|
|
print "Error: LBM pressure boundaries are not set successfully !"
|
|
return
|
|
#end if
|
|
#end for
|
|
IFT = Para['alpha'] * Para['fitting']
|
|
|
|
# 'ift' is the surface tension from the experiment in physical unit
|
|
ift=ift*dyne/cm # This converts the unit of 'ift' to SI unit
|
|
|
|
# Process the experimental data
|
|
# 'EXP_data' : original experimental data
|
|
# It is a recorded numpy array, which means that its component
|
|
# can be accessed by 'EXP_data.sw' or 'EXP_data['sw']'
|
|
# About 'EXP_data' see more information from the function 'read_csv'
|
|
EXP_data = read_csv(csv_file_name)
|
|
# A few notes for the experimental data
|
|
# 'Jwn': mean curvature in physical unit (e.g. 1/[micron])
|
|
# 'pwn': pressure difference in physical (e.g. kPa)
|
|
|
|
# Overall we need to map the measured physical pressures to get the principle radius of curvature R1
|
|
# and associated curvature J1, and similarly R2 and J2 in the model's depth direction
|
|
# J1: principal curvature 1
|
|
# J2: principal curvature 2 along the model's depth direction
|
|
|
|
# 'pc' is the dimensionless mean curvature scaled by the length scale 'D32'
|
|
# 'pc' is extracted from experimentally measured mean curvature 'Jwn'
|
|
pc = Para['D']*micron*EXP_data.Jwn*(1.0/micron)
|
|
|
|
# Alternatively, the dimensionless mean curvature can also be extracted from the
|
|
# experimentally measured pressure difference (i.e. capillary pressure)
|
|
# 'pwn' is the dimensionless mean curvature scaled by the length scale 'D32'
|
|
# pwn = Para['D']*micron*EXP_data.pwn*kPa/ift
|
|
|
|
# Curvature is fixed in the micromodel "depth" direction
|
|
J2 = Para['D']*micron/(Depth*micron/2.0)
|
|
|
|
# infer the curvature in the other direction
|
|
J1 = pc-J2
|
|
|
|
# determine the LBM pressure difference
|
|
dp=(J1+J2)*IFT/Para['D']
|
|
# determine the boundary pressure values for Color.in
|
|
din = 1.0+0.5*dp
|
|
dout = 1.0-0.5*dp
|
|
|
|
# Generate names of segmented image data for Segmented.in file
|
|
# Need the input 'base_name_suffix' (e.g. '_segmented.raw')
|
|
data_name_for_Segmented_in = EXP_data.image_name.copy()
|
|
data_name_for_Segmented_in = data_name_for_Segmented_in.replace(image_format,base_name_suffix)
|
|
|
|
return (data_name_for_Segmented_in,din,dout)
|
|
|
|
#end def
|
|
|
|
def write_Domain_in_file(**kwargs):
|
|
# For most of the parameters in the Color.in file
|
|
# you wouldn't need to worry about them as by default
|
|
# they are all hard-coded here
|
|
Para={'nprocx':1}
|
|
Para['nprocy']=2
|
|
Para['nprocz']=2
|
|
Para['nx']=1
|
|
Para['ny']=2
|
|
Para['nz']=2
|
|
Para['nspheres']=0 # deprecated
|
|
Para['Lx']=10
|
|
Para['Ly']=500
|
|
Para['Lz']=500
|
|
|
|
for key in kwargs:
|
|
if key in Para.keys():
|
|
Para[key]=kwargs[key]
|
|
else:
|
|
print "Error: "+key+" is not a valid input !\n"
|
|
print "Error: Domain.in file is not writen."
|
|
return
|
|
#end if
|
|
#end for
|
|
|
|
# Check if the dompositoin requirement is satisfied
|
|
if (Para['nx']*Para['nprocx']>Para['Lx']) or \
|
|
(Para['ny']*Para['nprocy']>Para['Ly']) or \
|
|
(Para['nz']*Para['nprocz']>Para['Lz']):
|
|
print "Error: The decomposed size does not match the total domain size!"
|
|
return
|
|
#end if
|
|
|
|
# write the Domain.in file
|
|
ParamFile = open("Domain.in","w")
|
|
ParamFile.write("%i " % Para['nprocx'])
|
|
ParamFile.write("%i " % Para['nprocy'])
|
|
ParamFile.write("%i\n" % Para['nprocz'])
|
|
ParamFile.write("%i " % Para['nx'])
|
|
ParamFile.write("%i " % Para['ny'])
|
|
ParamFile.write("%i\n" % Para['nz'])
|
|
ParamFile.write("%i\n" % Para['nspheres'])
|
|
ParamFile.write("%.1f " % Para['Lx'])
|
|
ParamFile.write("%.1f " % Para['Ly'])
|
|
ParamFile.write("%.1f\n" % Para['Lz'])
|
|
ParamFile.close()
|
|
print "A Domain.in file is created."
|
|
#end def
|
|
|
|
|
|
def write_Segment_in_file(**kwargs):
|
|
# For most of the parameters in the Color.in file
|
|
# you wouldn't need to worry about them as by default
|
|
# they are all hard-coded here
|
|
Para={'Seg_data_name':'Micromodel_1_segmented.raw'}
|
|
Para['Nx']=10
|
|
Para['Ny']=500
|
|
Para['Nz']=500
|
|
Para['xStart']=0
|
|
Para['yStart']=0
|
|
Para['zStart']=0
|
|
|
|
for key in kwargs:
|
|
if key in Para.keys():
|
|
Para[key]=kwargs[key]
|
|
else:
|
|
print "Error: "+key+" is not a valid input !\n"
|
|
print "Error: Segmented.in file is not writen."
|
|
return
|
|
#end if
|
|
#end for
|
|
|
|
ParamFile = open("Segmented.in","w")
|
|
ParamFile.write("%s\n" % Para['Seg_data_name'])
|
|
ParamFile.write("%i " % Para['Nx'])
|
|
ParamFile.write("%i " % Para['Ny'])
|
|
ParamFile.write("%i\n" % Para['Nz'])
|
|
ParamFile.write("%i " % Para['xStart'])
|
|
ParamFile.write("%i " % Para['yStart'])
|
|
ParamFile.write("%i\n" % Para['zStart'])
|
|
ParamFile.close()
|
|
print "A Segmented.in file is created."
|
|
#end def
|
|
|
|
def write_Color_in_file(**kwargs):
|
|
# For most of the parameters in the Color.in file
|
|
# you wouldn't need to worry about them as by default
|
|
# they are all hard-coded here
|
|
Para={'tau':0.7}
|
|
Para['alpha']=0.01
|
|
Para['beta']=0.95
|
|
Para['phi_solid']=-1.0
|
|
Para['saturation']=0.0
|
|
Para['Fx']=0.0
|
|
Para['Fy']=0.0
|
|
Para['Fz']=0.0
|
|
Para['Restart']=0
|
|
Para['pBC']=1
|
|
Para['din']=1.001
|
|
Para['dout']=0.999
|
|
Para['maxtime']=100005
|
|
Para['interval']=2000
|
|
Para['tolerance']=1e-5
|
|
|
|
for key in kwargs:
|
|
if key in Para.keys():
|
|
Para[key]=kwargs[key]
|
|
else:
|
|
print "Error: "+key+" is not a valid input !\n"
|
|
print "Error: Color.in file is not writen."
|
|
return
|
|
#end if
|
|
#end for
|
|
|
|
# write the color.in file
|
|
ParamFile = open("Color.in","w")
|
|
ParamFile.write("%f\n" % Para['tau'])
|
|
ParamFile.write("%f " % Para['alpha'])
|
|
ParamFile.write("%f " % Para['beta'])
|
|
ParamFile.write("%f\n" % Para['phi_solid'])
|
|
ParamFile.write("%f\n" % Para['saturation'])
|
|
ParamFile.write("%f " % Para['Fx'])
|
|
ParamFile.write("%f " % Para['Fy'])
|
|
ParamFile.write("%f\n" % Para['Fz'])
|
|
ParamFile.write("%i " % Para['Restart'])
|
|
ParamFile.write("%i " % Para['pBC'])
|
|
ParamFile.write("%f " % Para['din'])
|
|
ParamFile.write("%f\n" % Para['dout'])
|
|
ParamFile.write("%i " % Para['maxtime'])
|
|
ParamFile.write("%i " % Para['interval'])
|
|
ParamFile.write("%e\n" % Para['tolerance'])
|
|
ParamFile.close()
|
|
print "A Color.in file is created."
|
|
#end def
|
|
|
|
def read_csv(csv_file_name):
|
|
#TODO Haven't thought about a better way of doing this
|
|
# Right now I just hard-code the possible variables from the experiment
|
|
# which means users are forced to prepare their *.csv file as listed here
|
|
image_name = []
|
|
sw = []
|
|
Jwn = []
|
|
pwn = []
|
|
with open(csv_file_name,"r") as f:
|
|
for line in f:
|
|
reader=csv.reader(f,delimiter=' ') #Note the header is skipped by default
|
|
for row in reader:
|
|
image_name.append(row[0])
|
|
sw.append(float(row[1]))
|
|
Jwn.append(float(row[2]))
|
|
pwn.append(float(row[3]))
|
|
#end for
|
|
#end for
|
|
#end with
|
|
|
|
# Convter the list to numpy array
|
|
image_name_array = np.asarray(image_name,dtype=str)
|
|
sw_array = np.asarray(sw,dtype=np.float32)
|
|
Jwn_array = np.asarray(Jwn,dtype=np.float32)
|
|
pwn_array = np.asarray(pwn,dtype=np.float32)
|
|
|
|
# Restore the original shape of the experimental data
|
|
experiment_data = np.column_stack((image_name_array,sw_array,Jwn_array,pwn_array))
|
|
# Unfortunately the column stack will cast all float data to strings
|
|
experiment_data = np.core.records.fromrecords(experiment_data,names='image_name,sw,Jwn,pwn')
|
|
dt=experiment_data.dtype.descr
|
|
dt[1] = (dt[1][0],'float32')
|
|
dt[2] = (dt[2][0],'float32')
|
|
dt[3] = (dt[3][0],'float32')
|
|
experiment_data = experiment_data.astype(dt)
|
|
return experiment_data
|
|
#end def
|
|
|
|
|
|
|
|
|
|
|
|
|