260 lines
7.7 KiB
C++
260 lines
7.7 KiB
C++
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include <math.h>
|
|
#include <time.h>
|
|
#include <exception>
|
|
#include <stdexcept>
|
|
|
|
#include "common/Array.h"
|
|
#include "common/Utilities.h"
|
|
#include "common/MPI.h"
|
|
#include "common/Communication.h"
|
|
#include "common/Database.h"
|
|
#include "common/SpherePack.h"
|
|
|
|
// Inline function to read line without a return argument
|
|
static inline void fgetl( char * str, int num, FILE * stream )
|
|
{
|
|
char* ptr = fgets( str, num, stream );
|
|
if ( 0 ) {char *temp = (char *)&ptr; temp++;}
|
|
}
|
|
|
|
void WriteLocalSolidID(char *FILENAME, char *ID, int N)
|
|
{
|
|
char value;
|
|
ofstream File(FILENAME,ios::binary);
|
|
for (int n=0; n<N; n++){
|
|
value = ID[n];
|
|
File.write((char*) &value, sizeof(value));
|
|
}
|
|
File.close();
|
|
}
|
|
|
|
void WriteLocalSolidDistance(char *FILENAME, double *Distance, int N)
|
|
{
|
|
double value;
|
|
ofstream File(FILENAME,ios::binary);
|
|
for (int n=0; n<N; n++){
|
|
value = Distance[n];
|
|
File.write((char*) &value, sizeof(value));
|
|
}
|
|
File.close();
|
|
}
|
|
|
|
void ReadSpherePacking(int nspheres, double *List_cx, double *List_cy, double *List_cz, double *List_rad)
|
|
{
|
|
// Read in the full sphere pack
|
|
//...... READ IN THE SPHERES...................................
|
|
cout << "Reading the packing file..." << endl;
|
|
FILE *fid = fopen("pack.out","rb");
|
|
INSIST(fid!=NULL,"Error opening pack.out");
|
|
//.........Trash the header lines..........
|
|
char line[100];
|
|
fgetl(line, 100, fid);
|
|
fgetl(line, 100, fid);
|
|
fgetl(line, 100, fid);
|
|
fgetl(line, 100, fid);
|
|
fgetl(line, 100, fid);
|
|
//........read the spheres..................
|
|
// We will read until a blank like or end-of-file is reached
|
|
int count = 0;
|
|
while ( !feof(fid) && fgets(line,100,fid)!=NULL ) {
|
|
char* line2 = line;
|
|
List_cx[count] = strtod(line2,&line2);
|
|
List_cy[count] = strtod(line2,&line2);
|
|
List_cz[count] = strtod(line2,&line2);
|
|
List_rad[count] = strtod(line2,&line2);
|
|
count++;
|
|
}
|
|
cout << "Number of spheres extracted is: " << count << endl;
|
|
INSIST( count==nspheres, "Specified number of spheres is probably incorrect!" );
|
|
// .............................................................
|
|
}
|
|
|
|
void AssignLocalSolidID(char *ID, int nspheres, double *List_cx, double *List_cy, double *List_cz, double *List_rad,
|
|
double Lx, double Ly, double Lz, int Nx, int Ny, int Nz,
|
|
int iproc, int jproc, int kproc, int nprocx, int nprocy, int nprocz)
|
|
{
|
|
// Use sphere lists to determine which nodes are in porespace
|
|
// Write out binary file for nodes
|
|
char value;
|
|
int N = Nx*Ny*Nz; // Domain size, including the halo
|
|
double hx,hy,hz;
|
|
double x,y,z;
|
|
double cx,cy,cz,r;
|
|
int imin,imax,jmin,jmax,kmin,kmax;
|
|
int p,i,j,k,n;
|
|
//............................................
|
|
double min_x,min_y,min_z;
|
|
// double max_x,max_y,max_z;
|
|
//............................................
|
|
// Lattice spacing for the entire domain
|
|
// It should generally be true that hx=hy=hz
|
|
// Otherwise, you will end up with ellipsoids
|
|
hx = Lx/(Nx*nprocx-1);
|
|
hy = Ly/(Ny*nprocy-1);
|
|
hz = Lz/(Nz*nprocz-1);
|
|
//............................................
|
|
// Get maximum and minimum for this domain
|
|
// Halo is included !
|
|
min_x = double(iproc*Nx-1)*hx;
|
|
min_y = double(jproc*Ny-1)*hy;
|
|
min_z = double(kproc*Nz-1)*hz;
|
|
// max_x = ((iproc+1)*Nx+1)*hx;
|
|
// max_y = ((jproc+1)*Ny+1)*hy;
|
|
// max_z = ((kproc+1)*Nz+1)*hz;
|
|
//............................................
|
|
|
|
//............................................
|
|
// Pre-initialize local ID
|
|
for (n=0;n<N;n++){
|
|
ID[n]=1;
|
|
}
|
|
//............................................
|
|
|
|
//............................................
|
|
// .........Loop over the spheres.............
|
|
for (p=0;p<nspheres;p++){
|
|
// Get the sphere from the list, map to local min
|
|
cx = List_cx[p] - min_x;
|
|
cy = List_cy[p] - min_y;
|
|
cz = List_cz[p] - min_z;
|
|
r = List_rad[p];
|
|
// Check if
|
|
// Range for this sphere in global indexing
|
|
imin = int ((cx-r)/hx)-1;
|
|
imax = int ((cx+r)/hx)+1;
|
|
jmin = int ((cy-r)/hy)-1;
|
|
jmax = int ((cy+r)/hy)+1;
|
|
kmin = int ((cz-r)/hz)-1;
|
|
kmax = int ((cz+r)/hz)+1;
|
|
// Obviously we have to do something at the edges
|
|
if (imin<0) imin = 0;
|
|
if (imin>Nx) imin = Nx;
|
|
if (imax<0) imax = 0;
|
|
if (imax>Nx) imax = Nx;
|
|
if (jmin<0) jmin = 0;
|
|
if (jmin>Ny) jmin = Ny;
|
|
if (jmax<0) jmax = 0;
|
|
if (jmax>Ny) jmax = Ny;
|
|
if (kmin<0) kmin = 0;
|
|
if (kmin>Nz) kmin = Nz;
|
|
if (kmax<0) kmax = 0;
|
|
if (kmax>Nz) kmax = Nz;
|
|
// Loop over the domain for this sphere (may be null)
|
|
for (i=imin;i<imax;i++){
|
|
for (j=jmin;j<jmax;j++){
|
|
for (k=kmin;k<kmax;k++){
|
|
// Initialize ID value to 'fluid (=1)'
|
|
x = i*hx;
|
|
y = j*hy;
|
|
z = k*hz;
|
|
value = 1;
|
|
// if inside sphere, set to zero
|
|
if ( (cx-x)*(cx-x)+(cy-y)*(cy-y)+(cz-z)*(cz-z) < r*r){
|
|
value=0;
|
|
}
|
|
// get the position in the list
|
|
n = k*Nx*Ny+j*Nx+i;
|
|
if ( ID[n] != 0 ){
|
|
ID[n] = value;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void SignedDistance(double *Distance, int nspheres, double *List_cx, double *List_cy, double *List_cz, double *List_rad,
|
|
double Lx, double Ly, double Lz, int Nx, int Ny, int Nz,
|
|
int iproc, int jproc, int kproc, int nprocx, int nprocy, int nprocz)
|
|
{
|
|
// Use sphere lists to determine which nodes are in porespace
|
|
// Write out binary file for nodes
|
|
int N = Nx*Ny*Nz; // Domain size, including the halo
|
|
double hx,hy,hz;
|
|
double x,y,z;
|
|
double cx,cy,cz,r;
|
|
int imin,imax,jmin,jmax,kmin,kmax;
|
|
int p,i,j,k,n;
|
|
//............................................
|
|
double min_x,min_y,min_z;
|
|
double distance;
|
|
//............................................
|
|
// Lattice spacing for the entire domain
|
|
// It should generally be true that hx=hy=hz
|
|
// Otherwise, you will end up with ellipsoids
|
|
hx = Lx/((Nx-2)*nprocx-1);
|
|
hy = Ly/((Ny-2)*nprocy-1);
|
|
hz = Lz/((Nz-2)*nprocz-1);
|
|
//............................................
|
|
// Get maximum and minimum for this domain
|
|
// Halo is included !
|
|
min_x = double(iproc*(Nx-2)-1)*hx;
|
|
min_y = double(jproc*(Ny-2)-1)*hy;
|
|
min_z = double(kproc*(Nz-2)-1)*hz;
|
|
//............................................
|
|
|
|
//............................................
|
|
// Pre-initialize Distance
|
|
for (n=0;n<N;n++){
|
|
Distance[n]=100.0;
|
|
}
|
|
//............................................
|
|
|
|
//............................................
|
|
// .........Loop over the spheres.............
|
|
for (p=0;p<nspheres;p++){
|
|
// Get the sphere from the list, map to local min
|
|
cx = List_cx[p] - min_x;
|
|
cy = List_cy[p] - min_y;
|
|
cz = List_cz[p] - min_z;
|
|
r = List_rad[p];
|
|
// Check if
|
|
// Range for this sphere in global indexing
|
|
imin = int ((cx-2*r)/hx);
|
|
imax = int ((cx+2*r)/hx)+2;
|
|
jmin = int ((cy-2*r)/hy);
|
|
jmax = int ((cy+2*r)/hy)+2;
|
|
kmin = int ((cz-2*r)/hz);
|
|
kmax = int ((cz+2*r)/hz)+2;
|
|
// Obviously we have to do something at the edges
|
|
if (imin<0) imin = 0;
|
|
if (imin>Nx) imin = Nx;
|
|
if (imax<0) imax = 0;
|
|
if (imax>Nx) imax = Nx;
|
|
if (jmin<0) jmin = 0;
|
|
if (jmin>Ny) jmin = Ny;
|
|
if (jmax<0) jmax = 0;
|
|
if (jmax>Ny) jmax = Ny;
|
|
if (kmin<0) kmin = 0;
|
|
if (kmin>Nz) kmin = Nz;
|
|
if (kmax<0) kmax = 0;
|
|
if (kmax>Nz) kmax = Nz;
|
|
// Loop over the domain for this sphere (may be null)
|
|
for (i=imin;i<imax;i++){
|
|
for (j=jmin;j<jmax;j++){
|
|
for (k=kmin;k<kmax;k++){
|
|
// x,y,z is distance in physical units
|
|
x = i*hx;
|
|
y = j*hy;
|
|
z = k*hz;
|
|
// if inside sphere, set to zero
|
|
// get the position in the list
|
|
n = k*Nx*Ny+j*Nx+i;
|
|
// Compute the distance
|
|
distance = sqrt((cx-x)*(cx-x)+(cy-y)*(cy-y)+(cz-z)*(cz-z)) - r;
|
|
// Assign the minimum distance
|
|
if (distance < Distance[n]) Distance[n] = distance;
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Map the distance to lattice units
|
|
for (n=0; n<N; n++) Distance[n] = Distance[n]/hx;
|
|
}
|