Files
LBPM/tests/TestColorGrad.cpp
2021-01-13 21:44:23 -05:00

253 lines
7.3 KiB
C++

//*************************************************************************
// Lattice Boltzmann Simulator for Single Phase Flow in Porous Media
// James E. McCLure
//*************************************************************************
#include <stdio.h>
#include <iostream>
#include <fstream>
#include "common/ScaLBL.h"
#include "common/MPI_Helpers.h"
using namespace std;
//***************************************************************************************
int main(int argc, char **argv)
{
//*****************************************
// ***** MPI STUFF ****************
//*****************************************
// Initialize MPI
Utilities::startup( argc, argv );
Utilities::MPI comm( MPI_COMM_WORLD );
int rank = comm.getRank();
int nprocs = comm.getSize();
int check;
{
// parallel domain size (# of sub-domains)
int nprocx,nprocy,nprocz;
int iproc,jproc,kproc;
if (rank == 0){
printf("********************************************************\n");
printf("Running Color Model: TestColor \n");
printf("********************************************************\n");
}
// BGK Model parameters
string FILENAME;
unsigned int nBlocks, nthreads;
int timestepMax, interval;
double Fx,Fy,Fz,tol;
// Domain variables
double Lx,Ly,Lz;
int nspheres;
int Nx,Ny,Nz;
int i,j,k,n;
int dim = 3;
//if (rank == 0) printf("dim=%d\n",dim);
int timestep = 0;
int timesteps = 100;
int centralNode = 2;
double tauA = 1.0;
double tauB = 1.0;
double rhoA = 1.0;
double rhoB = 1.0;
double alpha = 0.005;
double beta = 0.95;
double tau = 1.0;
double mu=(tau-0.5)/3.0;
double rlx_setA=1.0/tau;
double rlx_setB = 8.f*(2.f-rlx_setA)/(8.f-rlx_setA);
Fx = Fy = 0.f;
Fz = 0.f;
if (rank==0){
//.......................................................................
// Reading the domain information file
//.......................................................................
if (nprocs==1){
nprocx=nprocy=nprocz=1;
Nx=Ny=Nz=3;
nspheres=0;
Lx=Ly=Lz=1;
}
else if (nprocs==2){
nprocx=2; nprocy=1;
nprocz=1;
Nx=Ny=Nz=dim;
Nx = dim; Ny = dim; Nz = dim;
nspheres=0;
Lx=Ly=Lz=1;
}
else if (nprocs==4){
nprocx=nprocy=2;
nprocz=1;
Nx=Ny=Nz=dim;
nspheres=0;
Lx=Ly=Lz=1;
}
else if (nprocs==8){
nprocx=nprocy=nprocz=2;
Nx=Ny=Nz=dim;
nspheres=0;
Lx=Ly=Lz=1;
}
//.......................................................................
}
// **************************************************************
// Broadcast simulation parameters from rank 0 to all other procs
MPI_Barrier(comm);
//.................................................
MPI_Bcast(&Nx,1,MPI_INT,0,comm);
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
MPI_Bcast(&Nz,1,MPI_INT,0,comm);
MPI_Bcast(&nprocx,1,MPI_INT,0,comm);
MPI_Bcast(&nprocy,1,MPI_INT,0,comm);
MPI_Bcast(&nprocz,1,MPI_INT,0,comm);
MPI_Bcast(&nspheres,1,MPI_INT,0,comm);
MPI_Bcast(&Lx,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Ly,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Lz,1,MPI_DOUBLE,0,comm);
//.................................................
MPI_Barrier(comm);
// **************************************************************
// **************************************************************
if (nprocs != nprocx*nprocy*nprocz){
printf("nprocx = %i \n",nprocx);
printf("nprocy = %i \n",nprocy);
printf("nprocz = %i \n",nprocz);
INSIST(nprocs == nprocx*nprocy*nprocz,"Fatal error in processor count!");
}
if (rank==0){
printf("********************************************************\n");
printf("Sub-domain size = %i x %i x %i\n",Nx,Ny,Nz);
printf("********************************************************\n");
}
MPI_Barrier(comm);
double iVol_global = 1.0/Nx/Ny/Nz/nprocx/nprocy/nprocz;
int BoundaryCondition=0;
std::shared_ptr<Domain> Dm = std::shared_ptr<Domain>(new Domain(Nx,Ny,Nz,rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BoundaryCondition));
Nx += 2;
Ny += 2;
Nz += 2;
int N = Nx*Ny*Nz;
int Np=0; // number of local pore nodes
double *PhaseLabel;
PhaseLabel = new double[N];
//.......................................................................
for (k=0;k<Nz;k++){
for (j=0;j<Ny;j++){
for (i=0;i<Nx;i++){
n = k*Nx*Ny+j*Nx+i;
Dm->id[n]=1;
Np++;
// Initialize gradient ColorGrad = (1,2,3)
double value=double(3*k+2*j+i);
PhaseLabel[n]= value;
}
}
}
Dm->CommInit();
MPI_Barrier(comm);
if (rank == 0) cout << "Domain set." << endl;
if (rank==0) printf ("Create ScaLBL_Communicator \n");
//Create a second communicator based on the regular data layout
ScaLBL_Communicator ScaLBL_Comm_Regular(Dm);
ScaLBL_Communicator ScaLBL_Comm(Dm);
// LBM variables
if (rank==0) printf ("Set up the neighborlist \n");
int neighborSize=18*Np*sizeof(int);
int *neighborList;
IntArray Map(Nx,Ny,Nz);
neighborList= new int[18*Np];
ScaLBL_Comm.MemoryOptimizedLayoutAA(Map,neighborList,Dm->id,Np,1);
MPI_Barrier(comm);
//......................device distributions.................................
int dist_mem_size = Np*sizeof(double);
if (rank==0) printf ("Allocating distributions \n");
int *NeighborList;
int *dvcMap;
double *Phi;
double *ColorGrad;
//...........................................................................
ScaLBL_AllocateDeviceMemory((void **) &NeighborList, neighborSize);
ScaLBL_AllocateDeviceMemory((void **) &dvcMap, sizeof(int)*Np);
ScaLBL_AllocateDeviceMemory((void **) &Phi, sizeof(double)*Nx*Ny*Nz);
ScaLBL_AllocateDeviceMemory((void **) &ColorGrad, 3*sizeof(double)*Np);
//...........................................................................
// Update GPU data structures
if (rank==0) printf ("Setting up device map and neighbor list \n");
int *TmpMap;
TmpMap=new int[Np*sizeof(int)];
for (k=1; k<Nz-1; k++){
for (j=1; j<Ny-1; j++){
for (i=1; i<Nx-1; i++){
int idx=Map(i,j,k);
if (!(idx < 0))
TmpMap[idx] = k*Nx*Ny+j*Nx+i;
}
}
}
ScaLBL_CopyToDevice(dvcMap, TmpMap, sizeof(int)*Np);
ScaLBL_DeviceBarrier();
delete [] TmpMap;
// copy the neighbor list
ScaLBL_CopyToDevice(NeighborList, neighborList, neighborSize);
// initialize phi based on PhaseLabel (include solid component labels)
ScaLBL_CopyToDevice(Phi, PhaseLabel, N*sizeof(double));
//...........................................................................
ScaLBL_D3Q19_Gradient(dvcMap, Phi, ColorGrad, 0, Np, Np, Nx, Ny, Nz);
double *COLORGRAD;
COLORGRAD= new double [3*Np];
int SIZE=3*Np*sizeof(double);
ScaLBL_CopyToHost(&COLORGRAD[0],&ColorGrad[0],SIZE);
double CX,CY,CZ;
for (k=1;k<Nz-1;k++){
for (j=1;j<Ny-1;j++){
for (i=1;i<Nx-1;i++){
n = k*Nx*Ny+j*Nx+i;
if (Dm->id[n] > 0){
int idx = Map(i,j,k);
CX=COLORGRAD[idx];
CY=COLORGRAD[Np+idx];
CZ=COLORGRAD[2*Np+idx];
double error=sqrt((CX-1.0)*(CX-1.0)+(CY-2.0)*(CY-2.0)+ (CZ-3.0)*(CZ-3.0));
if (error > 1e-8)
printf("i,j,k=%i,%i,%i: Color gradient=%f,%f,%f \n",i,j,k,CX,CY,CZ);
}
}
}
}
}
// ****************************************************
comm.barrier();
Utilities::shutdown();
// ****************************************************
return check;
}