402 lines
13 KiB
C++
402 lines
13 KiB
C++
// Compute the signed distance from a digitized image
|
|
// Two phases are present
|
|
// Phase 1 has value -1
|
|
// Phase 2 has value 1
|
|
// this code uses the segmented image to generate the signed distance
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include <Array.h>
|
|
|
|
inline void SSO(DoubleArray &Distance, char *ID, int timesteps){
|
|
|
|
int Q=26;
|
|
int q,i,j,k,n;
|
|
int Nx = Distance.m;
|
|
int Ny = Distance.n;
|
|
int Nz = Distance.o;
|
|
const static int D3Q27[26][3]={{1,0,0},{-1,0,0},{0,1,0},{0,-1,0},{0,0,1},{0,0,-1},
|
|
{1,1,0},{-1,-1,0},{1,-1,0},{-1,1,0},{1,0,1},{-1,0,-1},{1,0,-1},{-1,0,1},
|
|
{0,1,1},{0,-1,-1},{0,1,-1},{0,-1,1},{1,1,1},{-1,-1,-1},{1,1,-1},{-1,-1,1},
|
|
{-1,1,-1},{1,-1,1},{1,-1,-1},{-1,1,1}};
|
|
|
|
double weights[26];
|
|
// Compute the weights from the finite differences
|
|
for (q=0; q<Q; q++){
|
|
weights[q] = sqrt(1.0*(D3Q27[q][0]*D3Q27[q][0]) + 1.0*(D3Q27[q][1]*D3Q27[q][1]) + 1.0*(D3Q27[q][2]*D3Q27[q][2]));
|
|
}
|
|
|
|
// Initialize the Distance from ID
|
|
// for (i=0; i<Nx*Ny*Nz; i++) Distance.data[i] = -0.5;
|
|
for (k=0;k<Nz;k++){
|
|
for (j=0;j<Ny;j++){
|
|
for (i=0;i<Nx;i++){
|
|
n=k*Nx*Ny+j*Nx+i;
|
|
// Initialize distance to +/- 1
|
|
Distance(i,j,k) = 1.0*ID[n]-0.5;
|
|
}
|
|
}
|
|
}
|
|
|
|
int count = 0;
|
|
double dt=0.1;
|
|
int in,jn,kn,nn;
|
|
double Dqx,Dqy,Dqz,Dx,Dy,Dz,W;
|
|
double nx,ny,nz,Cqx,Cqy,Cqz,sign,norm;
|
|
double f1,f2,f3,f4,f5,f6,f7,f8,f9,f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
|
|
|
printf("Number of timesteps is %i \n",timesteps);
|
|
printf("Mesh is %i,%i,%i \n",Nx,Ny,Nz);
|
|
|
|
while (count < timesteps){
|
|
|
|
printf("count=%i \n",count);
|
|
for (k=0;k<Nz;k++){
|
|
for (j=0;j<Ny;j++){
|
|
for (i=0;i<Nx;i++){
|
|
|
|
n = k*Nx*Ny + j*Nx + i;
|
|
sign = Distance.data[n] / fabs(Distance.data[n]);
|
|
|
|
//............Compute the Gradient...................................
|
|
if (!(i+1<Nx)) nx=0.5*Distance(i,j,k);
|
|
else nx=0.5*Distance(i+1,j,k);;
|
|
if (!(j+1<Ny)) ny=0.5*Distance(i,j,k);
|
|
else ny=0.5*Distance(i,j+1,k);
|
|
if (!(k+1<Nz)) nz=0.5*Distance(i,j,k);
|
|
else nz=0.5*Distance(i,j,k+1);
|
|
if (i<1) nx-=0.5*Distance(i,j,k);
|
|
else nx-=0.5*Distance(i-1,j,k);
|
|
if (j<1) ny-=0.5*Distance(i,j,k);
|
|
else ny-=0.5*Distance(i,j-1,k);
|
|
if (k<1) nz-=0.5*Distance(i,j,k);
|
|
else nz-=0.5*Distance(i,j,k-1);
|
|
|
|
// nx = 0.5*(Distance(i+1,j,k) - Distance(i-1,j,k));
|
|
// ny = 0.5*(Distance(i,j+1,k) - Distance(i,j-1,k));
|
|
// nz = 0.5*(Distance(i,j,k+1) - Distance(i,j,k-1));
|
|
|
|
W = 0.0; Dx = Dy = Dz = 0.0;
|
|
if (nx*nx+ny*ny+nz*nz > 0.0){
|
|
for (q=0; q<26; q++){
|
|
Cqx = 1.0*D3Q27[q][0];
|
|
Cqy = 1.0*D3Q27[q][1];
|
|
Cqz = 1.0*D3Q27[q][2];
|
|
// get the associated neighbor
|
|
in = i + D3Q27[q][0];
|
|
jn = j + D3Q27[q][1];
|
|
kn = k + D3Q27[q][2];
|
|
// make sure the neighbor is in the domain (periodic BC)
|
|
/* if (in < 0 ) in +=Nx;
|
|
if (jn < 0 ) jn +=Ny;
|
|
if (kn < 0 ) kn +=Nz;
|
|
if (!(in < Nx) ) in -=Nx;
|
|
if (!(jn < Ny) ) jn -=Ny;
|
|
if (!(kn < Nz) ) kn -=Nz;
|
|
*/ // symmetric boundary
|
|
if (in < 0 ) in = i;
|
|
if (jn < 0 ) jn = j;
|
|
if (kn < 0 ) kn = k;
|
|
if (!(in < Nx) ) in = i;
|
|
if (!(jn < Ny) ) jn = k;
|
|
if (!(kn < Nz) ) kn = k;
|
|
// 1-D index
|
|
nn = kn*Nx*Ny + jn*Nx + in;
|
|
|
|
// Compute the gradient using upwind finite differences
|
|
Dqx = weights[q]*(Distance.data[n] - Distance.data[nn])*Cqx;
|
|
Dqy = weights[q]*(Distance.data[n] - Distance.data[nn])*Cqy;
|
|
Dqz = weights[q]*(Distance.data[n] - Distance.data[nn])*Cqz;
|
|
|
|
// Only include upwind derivatives
|
|
if (sign*(nx*Cqx + ny*Cqy + nz*Cqz) < 0.0 ){
|
|
|
|
Dx += Dqx;
|
|
Dy += Dqy;
|
|
Dz += Dqz;
|
|
W += weights[q];
|
|
}
|
|
}
|
|
// Normalize by the weight to get the approximation to the gradient
|
|
Dx /= W;
|
|
Dy /= W;
|
|
Dz /= W;
|
|
|
|
norm = sqrt(Dx*Dx+Dy*Dy+Dz*Dz);
|
|
}
|
|
else{
|
|
norm = 0.0;
|
|
}
|
|
Distance.data[n] += dt*sign*(1.0 - norm);
|
|
|
|
// Disallow any change in phase
|
|
if (Distance.data[n]*2.0*(ID[n]-1.0) < 0) Distance.data[n] = -Distance.data[n];
|
|
}
|
|
}
|
|
}
|
|
|
|
count++;
|
|
}
|
|
}
|
|
|
|
int main(){
|
|
|
|
int i,j,k,n,nn;
|
|
int Nx, Ny, Nz, N;
|
|
Nx = Ny = Nz = 50;
|
|
N = Nx*Ny*Nz;
|
|
|
|
double err = 1.0;
|
|
double err_prev=1.0;
|
|
double tol = 1e-6;
|
|
double f_x, f_y, f_z, norm;
|
|
double f1,f2,f3,f4,f5,f6,f7,f8,f9;
|
|
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
|
|
|
double fxm,fym,fzm,fxp,fyp,fzp;
|
|
double fxy,fXy,fxY,fXY,fxz,fXz,fxZ,fXZ,fyz,fYz,fyZ,fYZ;
|
|
double nx,ny,nz;
|
|
|
|
int ip,im,jp,jm,kp,km;
|
|
|
|
int count = 0;
|
|
double sign;
|
|
double dt=1.0;
|
|
printf("Nx=%i, Ny=%i, Nz= %i, \n",Nx,Ny,Nz);
|
|
|
|
char *id;
|
|
|
|
#ifdef READMEDIA
|
|
Nx = 347;
|
|
Ny = 347;
|
|
Nz = 235;
|
|
Nx = 512;
|
|
Ny = 512;
|
|
Nz = 512;
|
|
N = Nx*Ny*Nz;
|
|
id = new char [N];
|
|
|
|
FILE *INPUT = fopen("Solid.dat","rb");
|
|
fread(id,1,Nx*Ny*Nz,INPUT);
|
|
fclose(INPUT);
|
|
#else
|
|
id = new char [N];
|
|
double BubbleRadius = 5;
|
|
// Initialize the bubble
|
|
for (k=0;k<Nz;k++){
|
|
for (j=0;j<Ny;j++){
|
|
for (i=0;i<Nx;i++){
|
|
n = k*Nx*Ny + j*Nz + i;
|
|
// Initialize phase positions field
|
|
if ((i-0.5*Nx)*(i-0.5*Nx)+(j-0.5*Ny)*(j-0.5*Ny)+(k-0.5*Nz)*(k-0.5*Nz) < BubbleRadius*BubbleRadius){
|
|
id[n] = 0;
|
|
}
|
|
else{
|
|
id[n]=1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
DoubleArray Distance(Nx,Ny,Nz);
|
|
// Initialize the signed distance function
|
|
for (k=0;k<Nz;k++){
|
|
for (j=0;j<Ny;j++){
|
|
for (i=0;i<Nx;i++){
|
|
n=k*Nx*Ny+j*Nx+i;
|
|
// Initialize distance to +/- 1
|
|
Distance(i,j,k) = 2.0*ID[n]-1.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
printf("Initialized! Converting to Signed Distance function \n");
|
|
SSO(Distance,id,20);
|
|
|
|
/* double *f,*f_old,*f_new;
|
|
f = new double[N];
|
|
f_old = new double[N];
|
|
f_new = new double[N];
|
|
|
|
for (int n=0; n<N; n++) Distance.data[n] = 0.5*(id[n]-1);
|
|
for (int n=0; n<N; n++) f_old[n] = Distance.data[n];
|
|
for (int n=0; n<N; n++) f_new[n] = Distance.data[n];
|
|
for (int n=0; n<N; n++) f[n] = Distance.data[n];
|
|
|
|
count=0;
|
|
dt=1.0;
|
|
while (count < 10 && dt > 1.0e-6){
|
|
|
|
err = 0.0;
|
|
for (k=0;k<Nz;k++){
|
|
for (j=0;j<Ny;j++){
|
|
for (i=0;i<Nx;i++){
|
|
|
|
n = k*Nx*Ny + j*Nx + i;
|
|
|
|
ip = i+1;
|
|
im = i-1;
|
|
jp = j+1;
|
|
jm = j-1;
|
|
kp = k+1;
|
|
km = k-1;
|
|
if (!(ip<Nx)) ip-=Nx;
|
|
if (im < 0) im+=Nx;
|
|
if (!(jp<Ny)) jp-=Ny;
|
|
if (jm < 0) jm+=Ny;
|
|
if (!(kp<Nz)) kp-=Nz;
|
|
if (km < 0) km+=Nz;
|
|
|
|
//........................................................................
|
|
// COMPUTE THE COLOR GRADIENT
|
|
//........................................................................
|
|
//.................Read Phase Indicator Values............................
|
|
//........................................................................
|
|
nn = n-1; // neighbor index (get convention)
|
|
if (i-1<0) nn += Nx; // periodic BC along the x-boundary
|
|
f1 = f[nn]; // get neighbor for phi - 1
|
|
//........................................................................
|
|
nn = n+1; // neighbor index (get convention)
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
f2 = f[nn]; // get neighbor for phi - 2
|
|
//........................................................................
|
|
nn = n-Nx; // neighbor index (get convention)
|
|
if (j-1<0) nn += Nx*Ny; // Perioidic BC along the y-boundary
|
|
f3 = f[nn]; // get neighbor for phi - 3
|
|
//........................................................................
|
|
nn = n+Nx; // neighbor index (get convention)
|
|
if (!(j+1<Ny)) nn -= Nx*Ny; // Perioidic BC along the y-boundary
|
|
f4 = f[nn]; // get neighbor for phi - 4
|
|
//........................................................................
|
|
nn = n-Nx*Ny; // neighbor index (get convention)
|
|
if (k-1<0) nn += Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f5 = f[nn]; // get neighbor for phi - 5
|
|
//........................................................................
|
|
nn = n+Nx*Ny; // neighbor index (get convention)
|
|
if (!(k+1<Nz)) nn -= Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f6 = f[nn]; // get neighbor for phi - 6
|
|
//........................................................................
|
|
nn = n-Nx-1; // neighbor index (get convention)
|
|
if (i-1<0) nn += Nx; // periodic BC along the x-boundary
|
|
if (j-1<0) nn += Nx*Ny; // Perioidic BC along the y-boundary
|
|
f7 = f[nn]; // get neighbor for phi - 7
|
|
//........................................................................
|
|
nn = n+Nx+1; // neighbor index (get convention)
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
if (!(j+1<Ny)) nn -= Nx*Ny; // Perioidic BC along the y-boundary
|
|
f8 = f[nn]; // get neighbor for phi - 8
|
|
//........................................................................
|
|
nn = n+Nx-1; // neighbor index (get convention)
|
|
if (i-1<0) nn += Nx; // periodic BC along the x-boundary
|
|
if (!(j+1<Ny)) nn -= Nx*Ny; // Perioidic BC along the y-boundary
|
|
f9 = f[nn]; // get neighbor for phi - 9
|
|
//........................................................................
|
|
nn = n-Nx+1; // neighbor index (get convention)
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
if (j-1<0) nn += Nx*Ny; // Perioidic BC along the y-boundary
|
|
f10 = f[nn]; // get neighbor for phi - 10
|
|
//........................................................................
|
|
nn = n-Nx*Ny-1; // neighbor index (get convention)
|
|
if (i-1<0) nn += Nx; // periodic BC along the x-boundary
|
|
if (k-1<0) nn += Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f11 = f[nn]; // get neighbor for phi - 11
|
|
//........................................................................
|
|
nn = n+Nx*Ny+1; // neighbor index (get convention)
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
if (!(k+1<Nz)) nn -= Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f12 = f[nn]; // get neighbor for phi - 12
|
|
//........................................................................
|
|
nn = n+Nx*Ny-1; // neighbor index (get convention)
|
|
if (i-1<0) nn += Nx; // periodic BC along the x-boundary
|
|
if (!(k+1<Nz)) nn -= Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f13 = f[nn]; // get neighbor for phi - 13
|
|
//........................................................................
|
|
nn = n-Nx*Ny+1; // neighbor index (get convention)
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
if (k-1<0) nn += Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f14 = f[nn]; // get neighbor for phi - 14
|
|
//........................................................................
|
|
nn = n-Nx*Ny-Nx; // neighbor index (get convention)
|
|
if (j-1<0) nn += Nx*Ny; // Perioidic BC along the y-boundary
|
|
if (k-1<0) nn += Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f15 = f[nn]; // get neighbor for phi - 15
|
|
//........................................................................
|
|
nn = n+Nx*Ny+Nx; // neighbor index (get convention)
|
|
if (!(j+1<Ny)) nn -= Nx*Ny; // Perioidic BC along the y-boundary
|
|
if (!(k+1<Nz)) nn -= Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f16 = f[nn]; // get neighbor for phi - 16
|
|
//........................................................................
|
|
nn = n+Nx*Ny-Nx; // neighbor index (get convention)
|
|
if (j-1<0) nn += Nx*Ny; // Perioidic BC along the y-boundary
|
|
if (!(k+1<Nz)) nn -= Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f17 = f[nn]; // get neighbor for phi - 17
|
|
//........................................................................
|
|
nn = n-Nx*Ny+Nx; // neighbor index (get convention)
|
|
if (!(j+1<Ny)) nn -= Nx*Ny; // Perioidic BC along the y-boundary
|
|
if (k-1<0) nn += Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
f18 = f[nn]; // get neighbor for phi - 18
|
|
//............Compute the Color Gradient...................................
|
|
nx = -(f1-f2+0.5*(f7-f8+f9-f10+f11-f12+f13-f14));
|
|
ny = -(f3-f4+0.5*(f7-f8-f9+f10+f15-f16+f17-f18));
|
|
nz = -(f5-f6+0.5*(f11-f12-f13+f14+f15-f16-f17+f18));
|
|
//...........Normalize the Color Gradient.................................
|
|
|
|
f_x = 0.5*(f[k*Nx*Ny + j*Nx + ip] - f[k*Nx*Ny + j*Nx + im]);
|
|
f_y = 0.5*(f[k*Nx*Ny + jp*Nx + i] - f[k*Nx*Ny + jm*Nx + i]);
|
|
f_z = 0.5*(f[kp*Nx*Ny + j*Nx + i] - f[km*Nx*Ny + j*Nx + i]);
|
|
|
|
if (id[n] < 0){
|
|
if ( nx > 0.0) f_x = fxp;
|
|
else f_x = fxm;
|
|
if ( ny > 0.0) f_y = fyp;
|
|
else f_y = fym;
|
|
if ( nz > 0.0) f_z = fzp;
|
|
else f_z = fzm;
|
|
}
|
|
else{
|
|
if ( nx > 0.0) f_x = fxm;
|
|
else f_x = fxp;
|
|
if ( ny > 0.0) f_y = fym;
|
|
else f_y = fyp;
|
|
if ( nz > 0.0) f_z = fzm;
|
|
else f_z = fzp;
|
|
}
|
|
|
|
norm = sqrt(f_x*f_x+f_y*f_y+f_z*f_z);
|
|
|
|
if (err < (1.0 - norm)) err = (1.0 - norm);
|
|
|
|
if (fabs(1.0-norm) > err) err = fabs(1.0-norm);
|
|
|
|
sign =1.0;
|
|
if (!(id[n] > 0)) sign = -1.0;
|
|
|
|
f_new[n] = f_old[n] + dt*sign*(1.0 - norm);
|
|
|
|
}
|
|
}
|
|
}
|
|
|
|
for (int n=0; n<N; n++) f[n] = f_new[n];
|
|
for (int n=0; n<N; n++) f_old[n] = f[n];
|
|
|
|
printf("Error %i = %f \n",count,err);
|
|
|
|
if (err > err_prev) dt *= 0.2;
|
|
err_prev = err;
|
|
|
|
count++;
|
|
}
|
|
*/
|
|
|
|
FILE *DIST;
|
|
DIST = fopen("SignDist","wb");
|
|
fwrite(Distance.data,8,N,DIST);
|
|
fclose(DIST);
|
|
|
|
}
|