181 lines
4.4 KiB
C++
181 lines
4.4 KiB
C++
#include "analysis/filters.h"
|
|
#include "math.h"
|
|
#include "ProfilerApp.h"
|
|
|
|
void Mean3D( const Array<float> &Input, Array<float> &Output )
|
|
{
|
|
PROFILE_START("Mean3D");
|
|
// Perform a 3D Mean filter on Input array
|
|
int i,j,k,ii,jj,kk;
|
|
int imin,jmin,kmin,imax,jmax,kmax;
|
|
|
|
float *List;
|
|
List=new float[27];
|
|
|
|
int Nx = int(Input.size(0));
|
|
int Ny = int(Input.size(1));
|
|
int Nz = int(Input.size(2));
|
|
|
|
for (k=1; k<Nz-1; k++){
|
|
for (j=1; j<Ny-1; j++){
|
|
for (i=1; i<Nx-1; i++){
|
|
double MeanValue = Input(i,j,k);
|
|
// next neighbors
|
|
MeanValue += Input(i+1,j,k)+Input(i,j+1,k)+Input(i,j,k+1)+Input(i-1,j,k)+Input(i,j-1,k)+Input(i,j,k-1);
|
|
MeanValue += Input(i+1,j+1,k)+Input(i-1,j+1,k)+Input(i+1,j-1,k)+Input(i-1,j-1,k);
|
|
MeanValue += Input(i+1,j,k+1)+Input(i-1,j,k+1)+Input(i+1,j,k-1)+Input(i-1,j,k-1);
|
|
MeanValue += Input(i,j+1,k+1)+Input(i,j-1,k+1)+Input(i,j+1,k-1)+Input(i,j-1,k-1);
|
|
MeanValue += Input(i+1,j+1,k+1)+Input(i-1,j+1,k+1)+Input(i+1,j-1,k+1)+Input(i-1,j-1,k+1);
|
|
MeanValue += Input(i+1,j+1,k-1)+Input(i-1,j+1,k-1)+Input(i+1,j-1,k-1)+Input(i-1,j-1,k-1);
|
|
Output(i,j,k) = MeanValue/27.0;
|
|
}
|
|
}
|
|
}
|
|
PROFILE_STOP("Mean3D");
|
|
}
|
|
|
|
void Med3D( const Array<float> &Input, Array<float> &Output )
|
|
{
|
|
PROFILE_START("Med3D");
|
|
// Perform a 3D Median filter on Input array with specified width
|
|
int i,j,k,ii,jj,kk;
|
|
int imin,jmin,kmin,imax,jmax,kmax;
|
|
|
|
float *List;
|
|
List=new float[27];
|
|
|
|
int Nx = int(Input.size(0));
|
|
int Ny = int(Input.size(1));
|
|
int Nz = int(Input.size(2));
|
|
|
|
for (k=1; k<Nz-1; k++){
|
|
for (j=1; j<Ny-1; j++){
|
|
for (i=1; i<Nx-1; i++){
|
|
|
|
// Just use a 3x3x3 window (hit recursively if needed)
|
|
imin = i-1;
|
|
jmin = j-1;
|
|
kmin = k-1;
|
|
imax = i+2;
|
|
jmax = j+2;
|
|
kmax = k+2;
|
|
|
|
// Populate the list with values in the window
|
|
int Number=0;
|
|
for (kk=kmin; kk<kmax; kk++){
|
|
for (jj=jmin; jj<jmax; jj++){
|
|
for (ii=imin; ii<imax; ii++){
|
|
List[Number++] = Input(ii,jj,kk);
|
|
}
|
|
}
|
|
}
|
|
// Sort the first 5 entries and return the median
|
|
for (ii=0; ii<14; ii++){
|
|
for (jj=ii+1; jj<27; jj++){
|
|
if (List[jj] < List[ii]){
|
|
float tmp = List[ii];
|
|
List[ii] = List[jj];
|
|
List[jj] = tmp;
|
|
}
|
|
}
|
|
}
|
|
// Return the median
|
|
Output(i,j,k) = List[13];
|
|
}
|
|
}
|
|
}
|
|
PROFILE_STOP("Med3D");
|
|
}
|
|
|
|
|
|
int NLM3D( const Array<float> &Input, Array<float> &Mean,
|
|
const Array<float> &Distance, Array<float> &Output, const int d, const float h)
|
|
{
|
|
PROFILE_START("NLM3D");
|
|
// Implemenation of 3D non-local means filter
|
|
// d determines the width of the search volume
|
|
// h is a free parameter for non-local means (i.e. 1/sigma^2)
|
|
// Distance is the signed distance function
|
|
// If Distance(i,j,k) > THRESHOLD_DIST then don't compute NLM
|
|
|
|
float THRESHOLD_DIST = float(d);
|
|
float weight, sum;
|
|
int i,j,k,ii,jj,kk;
|
|
int imin,jmin,kmin,imax,jmax,kmax;
|
|
int returnCount=0;
|
|
|
|
int Nx = int(Input.size(0));
|
|
int Ny = int(Input.size(1));
|
|
int Nz = int(Input.size(2));
|
|
|
|
// Compute the local means
|
|
for (k=1; k<Nz-1; k++){
|
|
for (j=1; j<Ny-1; j++){
|
|
for (i=1; i<Nx-1; i++){
|
|
|
|
imin = std::max(0,i-d);
|
|
jmin = std::max(0,j-d);
|
|
kmin = std::max(0,k-d);
|
|
imax = std::min(Nx-1,i+d);
|
|
jmax = std::min(Ny-1,j+d);
|
|
kmax = std::min(Nz-1,k+d);
|
|
|
|
// Populate the list with values in the window
|
|
sum = 0; weight=0;
|
|
for (kk=kmin; kk<kmax; kk++){
|
|
for (jj=jmin; jj<jmax; jj++){
|
|
for (ii=imin; ii<imax; ii++){
|
|
sum += Input(ii,jj,kk);
|
|
weight++;
|
|
}
|
|
}
|
|
}
|
|
|
|
Mean(i,j,k) = sum / weight;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute the non-local means
|
|
for (k=1; k<Nz-1; k++){
|
|
for (j=1; j<Ny-1; j++){
|
|
for (i=1; i<Nx-1; i++){
|
|
|
|
|
|
if (fabs(Distance(i,j,k)) < THRESHOLD_DIST){
|
|
// compute the expensive non-local means
|
|
sum = 0; weight=0;
|
|
|
|
imin = std::max(0,i-d);
|
|
jmin = std::max(0,j-d);
|
|
kmin = std::max(0,k-d);
|
|
imax = std::min(Nx-1,i+d);
|
|
jmax = std::min(Ny-1,j+d);
|
|
kmax = std::min(Nz-1,k+d);
|
|
|
|
for (kk=kmin; kk<kmax; kk++){
|
|
for (jj=jmin; jj<jmax; jj++){
|
|
for (ii=imin; ii<imax; ii++){
|
|
float tmp = Mean(i,j,k) - Mean(ii,jj,kk);
|
|
sum += exp(-tmp*tmp*h)*Input(ii,jj,kk);
|
|
weight += exp(-tmp*tmp*h);
|
|
}
|
|
}
|
|
}
|
|
|
|
returnCount++;
|
|
//Output(i,j,k) = Mean(i,j,k);
|
|
Output(i,j,k) = sum / weight;
|
|
}
|
|
else{
|
|
// Just return the mean
|
|
Output(i,j,k) = Mean(i,j,k);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Return the number of sites where NLM was applied
|
|
PROFILE_STOP("NLM3D");
|
|
return returnCount;
|
|
}
|