Files
LBPM/common/Domain.h
2016-06-27 11:15:42 -04:00

603 lines
22 KiB
C++
Executable File

#ifndef Domain_INC
#define Domain_INC
// Created by James McClure
// Copyright 2008-2013
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include <fstream>
#include <math.h>
#include <time.h>
#include <exception> // std::exception
#include <stdexcept>
#include "common/Array.h"
#include "common/Utilities.h"
#include "common/MPI_Helpers.h"
#include "common/Communication.h"
using namespace std;
//! Read the domain information file
void read_domain( int rank, int nprocs, MPI_Comm comm,
int& nprocx, int& nprocy, int& nprocz, int& nx, int& ny, int& nz,
int& nspheres, double& Lx, double& Ly, double& Lz );
//! Class to hold domain info
struct Domain{
// Default constructor
Domain(int nx, int ny, int nz, int rnk, int npx, int npy, int npz,
double lx, double ly, double lz, int BC);
// Destructor
~Domain();
// Basic domain information
int Nx,Ny,Nz,N;
int iproc,jproc,kproc;
int nprocx,nprocy,nprocz;
double Lx,Ly,Lz,Volume;
int rank;
int BoundaryCondition;
RankInfoStruct rank_info;
MPI_Group Group; // Group of processors associated with this domain
MPI_Comm Comm; // MPI Communicator for this domain
//**********************************
// MPI ranks for all 18 neighbors
//**********************************
int rank_x,rank_y,rank_z,rank_X,rank_Y,rank_Z;
int rank_xy,rank_XY,rank_xY,rank_Xy;
int rank_xz,rank_XZ,rank_xZ,rank_Xz;
int rank_yz,rank_YZ,rank_yZ,rank_Yz;
//**********************************
//......................................................................................
// Get the actual D3Q19 communication counts (based on location of solid phase)
// Discrete velocity set symmetry implies the sendcount = recvcount
//......................................................................................
int sendCount_x, sendCount_y, sendCount_z, sendCount_X, sendCount_Y, sendCount_Z;
int sendCount_xy, sendCount_yz, sendCount_xz, sendCount_Xy, sendCount_Yz, sendCount_xZ;
int sendCount_xY, sendCount_yZ, sendCount_Xz, sendCount_XY, sendCount_YZ, sendCount_XZ;
//......................................................................................
int *sendList_x, *sendList_y, *sendList_z, *sendList_X, *sendList_Y, *sendList_Z;
int *sendList_xy, *sendList_yz, *sendList_xz, *sendList_Xy, *sendList_Yz, *sendList_xZ;
int *sendList_xY, *sendList_yZ, *sendList_Xz, *sendList_XY, *sendList_YZ, *sendList_XZ;
//......................................................................................
int *sendBuf_x, *sendBuf_y, *sendBuf_z, *sendBuf_X, *sendBuf_Y, *sendBuf_Z;
int *sendBuf_xy, *sendBuf_yz, *sendBuf_xz, *sendBuf_Xy, *sendBuf_Yz, *sendBuf_xZ;
int *sendBuf_xY, *sendBuf_yZ, *sendBuf_Xz, *sendBuf_XY, *sendBuf_YZ, *sendBuf_XZ;
//......................................................................................
int recvCount_x, recvCount_y, recvCount_z, recvCount_X, recvCount_Y, recvCount_Z;
int recvCount_xy, recvCount_yz, recvCount_xz, recvCount_Xy, recvCount_Yz, recvCount_xZ;
int recvCount_xY, recvCount_yZ, recvCount_Xz, recvCount_XY, recvCount_YZ, recvCount_XZ;
//......................................................................................
int *recvList_x, *recvList_y, *recvList_z, *recvList_X, *recvList_Y, *recvList_Z;
int *recvList_xy, *recvList_yz, *recvList_xz, *recvList_Xy, *recvList_Yz, *recvList_xZ;
int *recvList_xY, *recvList_yZ, *recvList_Xz, *recvList_XY, *recvList_YZ, *recvList_XZ;
//......................................................................................
int *recvBuf_x, *recvBuf_y, *recvBuf_z, *recvBuf_X, *recvBuf_Y, *recvBuf_Z;
int *recvBuf_xy, *recvBuf_yz, *recvBuf_xz, *recvBuf_Xy, *recvBuf_Yz, *recvBuf_xZ;
int *recvBuf_xY, *recvBuf_yZ, *recvBuf_Xz, *recvBuf_XY, *recvBuf_YZ, *recvBuf_XZ;
//......................................................................................
double *sendData_x, *sendData_y, *sendData_z, *sendData_X, *sendData_Y, *sendData_Z;
double *sendData_xy, *sendData_yz, *sendData_xz, *sendData_Xy, *sendData_Yz, *sendData_xZ;
double *sendData_xY, *sendData_yZ, *sendData_Xz, *sendData_XY, *sendData_YZ, *sendData_XZ;
double *recvData_x, *recvData_y, *recvData_z, *recvData_X, *recvData_Y, *recvData_Z;
double *recvData_xy, *recvData_yz, *recvData_xz, *recvData_Xy, *recvData_Yz, *recvData_xZ;
double *recvData_xY, *recvData_yZ, *recvData_Xz, *recvData_XY, *recvData_YZ, *recvData_XZ;
// Solid indicator function
char *id;
// Blob information
IntArray BlobLabel;
IntArray BlobGraph;
void InitializeRanks();
void CommInit(MPI_Comm comm);
void CommunicateMeshHalo(DoubleArray &Mesh);
void BlobComm(MPI_Comm comm);
void AssignBlobConnections();
private:
inline int getRankForBlock( int i, int j, int k )
{
int i2 = (i+nprocx)%nprocx;
int j2 = (j+nprocy)%nprocy;
int k2 = (k+nprocz)%nprocz;
return i2 + j2*nprocx + k2*nprocx*nprocy;
}
inline void PackBlobData(int *list, int count, int *sendbuf, int *data){
// Fill in the phase ID values from neighboring processors
// This packs up the values that need to be sent from one processor to another
int idx,n;
for (idx=0; idx<count; idx++){
n = list[idx];
sendbuf[idx] = data[n];
}
}
inline void UnpackBlobData(int *list, int count, int *recvbuf, int *data){
// Fill in the phase ID values from neighboring processors
// This unpacks the values once they have been recieved from neighbors
int idx,n;
for (idx=0; idx<count; idx++){
n = list[idx];
data[n] = recvbuf[idx];
}
}
int VoxelConnection(int n);
void getBlobConnections(int * List, int count, int neighbor, int direction);
};
// Inline function to read line without a return argument
static inline void fgetl( char * str, int num, FILE * stream )
{
char* ptr = fgets( str, num, stream );
if ( 0 ) {char *temp = (char *)&ptr; temp++;}
}
inline double SSO(DoubleArray &Distance, char *ID, Domain &Dm, int timesteps){
/*
* This routine converts the data in the Distance array to a signed distance
* by solving the equation df/dt = sign(1-|grad f|), where Distance provides
* the values of f on the mesh associated with domain Dm
* It has been tested with segmented data initialized to values [-1,1]
* and will converge toward the signed distance to the surface bounding the associated phases
*/
int Q=26;
int q,i,j,k;
double dt=0.1;
int in,jn,kn;
double Dqx,Dqy,Dqz,Dx,Dy,Dz,W;
double nx,ny,nz,Cqx,Cqy,Cqz,sign,norm;
double TotalVariation=0.0;
const static int D3Q27[26][3]={{1,0,0},{-1,0,0},{0,1,0},{0,-1,0},{0,0,1},{0,0,-1},
{1,1,0},{-1,-1,0},{1,-1,0},{-1,1,0},{1,0,1},{-1,0,-1},{1,0,-1},{-1,0,1},
{0,1,1},{0,-1,-1},{0,1,-1},{0,-1,1},{1,1,1},{-1,-1,-1},{1,1,-1},{-1,-1,1},
{-1,1,-1},{1,-1,1},{1,-1,-1},{-1,1,1}};
double weights[26];
// Compute the weights from the finite differences
for (q=0; q<Q; q++){
weights[q] = sqrt(1.0*(D3Q27[q][0]*D3Q27[q][0]) + 1.0*(D3Q27[q][1]*D3Q27[q][1]) + 1.0*(D3Q27[q][2]*D3Q27[q][2]));
}
int xdim,ydim,zdim;
xdim=Dm.Nx-2;
ydim=Dm.Ny-2;
zdim=Dm.Nz-2;
fillHalo<double> fillData(Dm.Comm, Dm.rank_info,xdim,ydim,zdim,1,1,1,0,1);
int count = 0;
while (count < timesteps){
// Communicate the halo of values
fillData.fill(Distance);
TotalVariation=0.0;
// Execute the next timestep
for (k=1;k<Dm.Nz-1;k++){
for (j=1;j<Dm.Ny-1;j++){
for (i=1;i<Dm.Nx-1;i++){
int n = k*Dm.Nx*Dm.Ny + j*Dm.Nx + i;
//sign = Distance(i,j,k) / fabs(Distance(i,j,k));
sign = -1;
if (ID[n] == 1) sign = 1;
/*
if (!(i+1<Nx)) nx=0.5*Distance(i,j,k);
else nx=0.5*Distance(i+1,j,k);;
if (!(j+1<Ny)) ny=0.5*Distance(i,j,k);
else ny=0.5*Distance(i,j+1,k);
if (!(k+1<Nz)) nz=0.5*Distance(i,j,k);
else nz=0.5*Distance(i,j,k+1);
if (i<1) nx-=0.5*Distance(i,j,k);
else nx-=0.5*Distance(i-1,j,k);
if (j<1) ny-=0.5*Distance(i,j,k);
else ny-=0.5*Distance(i,j-1,k);
if (k<1) nz-=0.5*Distance(i,j,k);
else nz-=0.5*Distance(i,j,k-1);
*/
//............Compute the Gradient...................................
nx = 0.5*(Distance(i+1,j,k) - Distance(i-1,j,k));
ny = 0.5*(Distance(i,j+1,k) - Distance(i,j-1,k));
nz = 0.5*(Distance(i,j,k+1) - Distance(i,j,k-1));
W = 0.0; Dx = Dy = Dz = 0.0;
// also ignore places where the gradient is zero since this will not
// result in any local change to Distance
if (nx*nx+ny*ny+nz*nz > 0.0 ){
for (q=0; q<26; q++){
Cqx = 1.0*D3Q27[q][0];
Cqy = 1.0*D3Q27[q][1];
Cqz = 1.0*D3Q27[q][2];
// get the associated neighbor
in = i + D3Q27[q][0];
jn = j + D3Q27[q][1];
kn = k + D3Q27[q][2];
// make sure the neighbor is in the domain (periodic BC)
/* if (in < 0 ) in +=Nx;
* don't need this in parallel since MPI handles the halos
if (jn < 0 ) jn +=Ny;
if (kn < 0 ) kn +=Nz;
if (!(in < Nx) ) in -=Nx;
if (!(jn < Ny) ) jn -=Ny;
if (!(kn < Nz) ) kn -=Nz;
// symmetric boundary
if (in < 0 ) in = i;
if (jn < 0 ) jn = j;
if (kn < 0 ) kn = k;
if (!(in < Nx) ) in = i;
if (!(jn < Ny) ) jn = k;
if (!(kn < Nz) ) kn = k;
*/
// Compute the gradient using upwind finite differences
Dqx = weights[q]*(Distance(i,j,k) - Distance(in,jn,kn))*Cqx;
Dqy = weights[q]*(Distance(i,j,k) - Distance(in,jn,kn))*Cqy;
Dqz = weights[q]*(Distance(i,j,k) - Distance(in,jn,kn))*Cqz;
// Only include upwind derivatives
if (sign*(nx*Cqx + ny*Cqy + nz*Cqz) < 0.0 ){
Dx += Dqx;
Dy += Dqy;
Dz += Dqz;
W += weights[q];
}
}
// Normalize by the weight to get the approximation to the gradient
if (fabs(W) > 0.0){
Dx /= W;
Dy /= W;
Dz /= W;
}
norm = sqrt(Dx*Dx+Dy*Dy+Dz*Dz);
}
else{
norm = 0.0;
}
Distance(i,j,k) += dt*sign*(1.0 - norm);
TotalVariation += dt*sign*(1.0 - norm);
// Disallow any change in phase
// if (Distance(i,j,k)*2.0*(ID[n]-1.0) < 0) Distance(i,j,k) = -Distance(i,j,k);
}
}
}
TotalVariation /= (Dm.Nx-2)*(Dm.Ny-2)*(Dm.Nz-2);
count++;
}
return TotalVariation;
}
inline void ReadSpherePacking(int nspheres, double *List_cx, double *List_cy, double *List_cz, double *List_rad)
{
// Read in the full sphere pack
//...... READ IN THE SPHERES...................................
cout << "Reading the packing file..." << endl;
FILE *fid = fopen("pack.out","rb");
INSIST(fid!=NULL,"Error opening pack.out");
//.........Trash the header lines..........
char line[100];
fgetl(line, 100, fid);
fgetl(line, 100, fid);
fgetl(line, 100, fid);
fgetl(line, 100, fid);
fgetl(line, 100, fid);
//........read the spheres..................
// We will read until a blank like or end-of-file is reached
int count = 0;
while ( !feof(fid) && fgets(line,100,fid)!=NULL ) {
char* line2 = line;
List_cx[count] = strtod(line2,&line2);
List_cy[count] = strtod(line2,&line2);
List_cz[count] = strtod(line2,&line2);
List_rad[count] = strtod(line2,&line2);
count++;
}
cout << "Number of spheres extracted is: " << count << endl;
INSIST( count==nspheres, "Specified number of spheres is probably incorrect!" );
// .............................................................
}
inline void AssignLocalSolidID(char *ID, int nspheres, double *List_cx, double *List_cy, double *List_cz, double *List_rad,
double Lx, double Ly, double Lz, int Nx, int Ny, int Nz,
int iproc, int jproc, int kproc, int nprocx, int nprocy, int nprocz)
{
// Use sphere lists to determine which nodes are in porespace
// Write out binary file for nodes
char value;
int N = Nx*Ny*Nz; // Domain size, including the halo
double hx,hy,hz;
double x,y,z;
double cx,cy,cz,r;
int imin,imax,jmin,jmax,kmin,kmax;
int p,i,j,k,n;
//............................................
double min_x,min_y,min_z;
// double max_x,max_y,max_z;
//............................................
// Lattice spacing for the entire domain
// It should generally be true that hx=hy=hz
// Otherwise, you will end up with ellipsoids
hx = Lx/(Nx*nprocx-1);
hy = Ly/(Ny*nprocy-1);
hz = Lz/(Nz*nprocz-1);
//............................................
// Get maximum and minimum for this domain
// Halo is included !
min_x = double(iproc*Nx-1)*hx;
min_y = double(jproc*Ny-1)*hy;
min_z = double(kproc*Nz-1)*hz;
// max_x = ((iproc+1)*Nx+1)*hx;
// max_y = ((jproc+1)*Ny+1)*hy;
// max_z = ((kproc+1)*Nz+1)*hz;
//............................................
//............................................
// Pre-initialize local ID
for (n=0;n<N;n++){
ID[n]=1;
}
//............................................
//............................................
// .........Loop over the spheres.............
for (p=0;p<nspheres;p++){
// Get the sphere from the list, map to local min
cx = List_cx[p] - min_x;
cy = List_cy[p] - min_y;
cz = List_cz[p] - min_z;
r = List_rad[p];
// Check if
// Range for this sphere in global indexing
imin = int ((cx-r)/hx)-1;
imax = int ((cx+r)/hx)+1;
jmin = int ((cy-r)/hy)-1;
jmax = int ((cy+r)/hy)+1;
kmin = int ((cz-r)/hz)-1;
kmax = int ((cz+r)/hz)+1;
// Obviously we have to do something at the edges
if (imin<0) imin = 0;
if (imin>Nx) imin = Nx;
if (imax<0) imax = 0;
if (imax>Nx) imax = Nx;
if (jmin<0) jmin = 0;
if (jmin>Ny) jmin = Ny;
if (jmax<0) jmax = 0;
if (jmax>Ny) jmax = Ny;
if (kmin<0) kmin = 0;
if (kmin>Nz) kmin = Nz;
if (kmax<0) kmax = 0;
if (kmax>Nz) kmax = Nz;
// Loop over the domain for this sphere (may be null)
for (i=imin;i<imax;i++){
for (j=jmin;j<jmax;j++){
for (k=kmin;k<kmax;k++){
// Initialize ID value to 'fluid (=1)'
x = i*hx;
y = j*hy;
z = k*hz;
value = 1;
// if inside sphere, set to zero
if ( (cx-x)*(cx-x)+(cy-y)*(cy-y)+(cz-z)*(cz-z) < r*r){
value=0;
}
// get the position in the list
n = k*Nx*Ny+j*Nx+i;
if ( ID[n] != 0 ){
ID[n] = value;
}
}
}
}
}
}
inline void SignedDistance(double *Distance, int nspheres, double *List_cx, double *List_cy, double *List_cz, double *List_rad,
double Lx, double Ly, double Lz, int Nx, int Ny, int Nz,
int iproc, int jproc, int kproc, int nprocx, int nprocy, int nprocz)
{
// Use sphere lists to determine which nodes are in porespace
// Write out binary file for nodes
int N = Nx*Ny*Nz; // Domain size, including the halo
double hx,hy,hz;
double x,y,z;
double cx,cy,cz,r;
int imin,imax,jmin,jmax,kmin,kmax;
int p,i,j,k,n;
//............................................
double min_x,min_y,min_z;
double distance;
//............................................
// Lattice spacing for the entire domain
// It should generally be true that hx=hy=hz
// Otherwise, you will end up with ellipsoids
hx = Lx/((Nx-2)*nprocx-1);
hy = Ly/((Ny-2)*nprocy-1);
hz = Lz/((Nz-2)*nprocz-1);
//............................................
// Get maximum and minimum for this domain
// Halo is included !
min_x = double(iproc*(Nx-2)-1)*hx;
min_y = double(jproc*(Ny-2)-1)*hy;
min_z = double(kproc*(Nz-2)-1)*hz;
//............................................
//............................................
// Pre-initialize Distance
for (n=0;n<N;n++){
Distance[n]=100.0;
}
//............................................
//............................................
// .........Loop over the spheres.............
for (p=0;p<nspheres;p++){
// Get the sphere from the list, map to local min
cx = List_cx[p] - min_x;
cy = List_cy[p] - min_y;
cz = List_cz[p] - min_z;
r = List_rad[p];
// Check if
// Range for this sphere in global indexing
imin = int ((cx-2*r)/hx);
imax = int ((cx+2*r)/hx)+2;
jmin = int ((cy-2*r)/hy);
jmax = int ((cy+2*r)/hy)+2;
kmin = int ((cz-2*r)/hz);
kmax = int ((cz+2*r)/hz)+2;
// Obviously we have to do something at the edges
if (imin<0) imin = 0;
if (imin>Nx) imin = Nx;
if (imax<0) imax = 0;
if (imax>Nx) imax = Nx;
if (jmin<0) jmin = 0;
if (jmin>Ny) jmin = Ny;
if (jmax<0) jmax = 0;
if (jmax>Ny) jmax = Ny;
if (kmin<0) kmin = 0;
if (kmin>Nz) kmin = Nz;
if (kmax<0) kmax = 0;
if (kmax>Nz) kmax = Nz;
// Loop over the domain for this sphere (may be null)
for (i=imin;i<imax;i++){
for (j=jmin;j<jmax;j++){
for (k=kmin;k<kmax;k++){
// x,y,z is distance in physical units
x = i*hx;
y = j*hy;
z = k*hz;
// if inside sphere, set to zero
// get the position in the list
n = k*Nx*Ny+j*Nx+i;
// Compute the distance
distance = sqrt((cx-x)*(cx-x)+(cy-y)*(cy-y)+(cz-z)*(cz-z)) - r;
// Assign the minimum distance
if (distance < Distance[n]) Distance[n] = distance;
}
}
}
}
// Map the distance to lattice units
for (n=0; n<N; n++) Distance[n] = Distance[n]/hx;
}
inline void WriteLocalSolidID(char *FILENAME, char *ID, int N)
{
char value;
ofstream File(FILENAME,ios::binary);
for (int n=0; n<N; n++){
value = ID[n];
File.write((char*) &value, sizeof(value));
}
File.close();
}
inline void WriteLocalSolidDistance(char *FILENAME, double *Distance, int N)
{
double value;
ofstream File(FILENAME,ios::binary);
for (int n=0; n<N; n++){
value = Distance[n];
File.write((char*) &value, sizeof(value));
}
File.close();
}
inline void WriteCheckpoint(const char *FILENAME, const double *cDen, const double *cDistEven, const double *cDistOdd, int N)
{
int q,n;
double value;
ofstream File(FILENAME,ios::binary);
for (n=0; n<N; n++){
// Write the two density values
value = cDen[n];
File.write((char*) &value, sizeof(value));
value = cDen[N+n];
File.write((char*) &value, sizeof(value));
// Write the even distributions
for (q=0; q<10; q++){
value = cDistEven[q*N+n];
File.write((char*) &value, sizeof(value));
}
// Write the odd distributions
for (q=0; q<9; q++){
value = cDistOdd[q*N+n];
File.write((char*) &value, sizeof(value));
}
}
File.close();
}
inline void ReadCheckpoint(char *FILENAME, double *cDen, double *cDistEven, double *cDistOdd, int N)
{
int q=0, n=0;
double value=0;
ifstream File(FILENAME,ios::binary);
for (n=0; n<N; n++){
// Write the two density values
File.read((char*) &value, sizeof(value));
cDen[n] = value;
// if (n== 66276) printf("Density a = %f \n",value);
File.read((char*) &value, sizeof(value));
cDen[N+n] = value;
// if (n== 66276) printf("Density b = %f \n",value);
// Read the even distributions
for (q=0; q<10; q++){
File.read((char*) &value, sizeof(value));
cDistEven[q*N+n] = value;
// if (n== 66276) printf("dist even %i = %f \n",q,value);
}
// Read the odd distributions
for (q=0; q<9; q++){
File.read((char*) &value, sizeof(value));
cDistOdd[q*N+n] = value;
// if (n== 66276) printf("dist even %i = %f \n",q,value);
}
}
File.close();
}
inline void ReadBinaryFile(char *FILENAME, double *Data, int N)
{
int n;
double value;
ifstream File(FILENAME,ios::binary);
if (File.good()){
for (n=0; n<N; n++){
// Write the two density values
File.read((char*) &value, sizeof(value));
Data[n] = value;
}
}
else {
for (n=0; n<N; n++) Data[n] = 1.2e-34;
}
File.close();
}
#endif