504 lines
17 KiB
C++
504 lines
17 KiB
C++
//*************************************************************************
|
|
// Lattice Boltzmann Simulator for Single Phase Flow in Porous Media
|
|
// James E. McCLure
|
|
//*************************************************************************
|
|
#include <stdio.h>
|
|
#include <iostream>
|
|
#include <fstream>
|
|
#include "common/ScaLBL.h"
|
|
#include "common/MPI_Helpers.h"
|
|
|
|
using namespace std;
|
|
|
|
|
|
extern void GlobalFlipScaLBL_D3Q19_Init(double *dist_even, double *dist_odd, int Nx, int Ny, int Nz,
|
|
int iproc, int jproc, int kproc, int nprocx, int nprocy, int nprocz)
|
|
{
|
|
// Set of Discrete velocities for the D3Q19 Model
|
|
static int D3Q19[18][3]={{1,0,0},{-1,0,0},{0,1,0},{0,-1,0},{0,0,1},{0,0,-1},
|
|
{1,1,0},{-1,-1,0},{1,-1,0},{-1,1,0},{1,0,1},{-1,0,-1},{1,0,-1},{-1,0,1},
|
|
{0,1,1},{0,-1,-1},{0,1,-1},{0,-1,1}};
|
|
|
|
int q,i,j,k,n,N;
|
|
int Cqx,Cqy,Cqz; // Discrete velocity
|
|
int x,y,z; // Global indices
|
|
int xn,yn,zn; // Global indices of neighbor
|
|
int X,Y,Z; // Global size
|
|
X = Nx*nprocx;
|
|
Y = Ny*nprocy;
|
|
Z = Nz*nprocz;
|
|
NULL_USE(Z);
|
|
N = (Nx+2)*(Ny+2)*(Nz+2); // size of the array including halo
|
|
for (k=0; k<Nz; k++){
|
|
for (j=0; j<Ny; j++){
|
|
for (i=0; i<Nx; i++){
|
|
|
|
n = (k+1)*(Nx+2)*(Ny+2) + (j+1)*(Nx+2) + i+1;
|
|
|
|
// Get the 'global' index
|
|
x = iproc*Nx+i;
|
|
y = jproc*Ny+j;
|
|
z = kproc*Nz+k;
|
|
for (q=0; q<9; q++){
|
|
// Odd distribution
|
|
Cqx = D3Q19[2*q][0];
|
|
Cqy = D3Q19[2*q][1];
|
|
Cqz = D3Q19[2*q][2];
|
|
xn = x - Cqx;
|
|
yn = y - Cqy;
|
|
zn = z - Cqz;
|
|
if (xn < 0) xn += nprocx*Nx;
|
|
if (yn < 0) yn += nprocy*Ny;
|
|
if (zn < 0) zn += nprocz*Nz;
|
|
if (!(xn < nprocx*Nx)) xn -= nprocx*Nx;
|
|
if (!(yn < nprocy*Ny)) yn -= nprocy*Ny;
|
|
if (!(zn < nprocz*Nz)) zn -= nprocz*Nz;
|
|
|
|
dist_even[(q+1)*N+n] = (zn*X*Y+yn*X+xn) + (2*q+1)*0.01;
|
|
|
|
// Odd distribution
|
|
xn = x + Cqx;
|
|
yn = y + Cqy;
|
|
zn = z + Cqz;
|
|
if (xn < 0) xn += nprocx*Nx;
|
|
if (yn < 0) yn += nprocy*Ny;
|
|
if (zn < 0) zn += nprocz*Nz;
|
|
if (!(xn < nprocx*Nx)) xn -= nprocx*Nx;
|
|
if (!(yn < nprocy*Ny)) yn -= nprocy*Ny;
|
|
if (!(zn < nprocz*Nz)) zn -= nprocz*Nz;
|
|
|
|
dist_odd[q*N+n] = (zn*X*Y+yn*X+xn) + 2*(q+1)*0.01;
|
|
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
extern int GlobalCheckDebugDist(double *dist_even, double *dist_odd, int Nx, int Ny, int Nz,
|
|
int iproc, int jproc, int kproc, int nprocx, int nprocy, int nprocz)
|
|
{
|
|
|
|
int returnValue = 0;
|
|
int q,i,j,k,n,N;
|
|
int Cqx,Cqy,Cqz; // Discrete velocity
|
|
int x,y,z; // Global indices
|
|
int xn,yn,zn; // Global indices of neighbor
|
|
int X,Y,Z; // Global size
|
|
X = Nx*nprocx;
|
|
Y = Ny*nprocy;
|
|
Z = Nz*nprocz;
|
|
NULL_USE(Z);
|
|
N = (Nx+2)*(Ny+2)*(Nz+2); // size of the array including halo
|
|
for (k=0; k<Nz; k++){
|
|
for (j=0; j<Ny; j++){
|
|
for (i=0; i<Nx; i++){
|
|
|
|
n = (k+1)*(Nx+2)*(Ny+2) + (j+1)*(Nx+2) + i+1;
|
|
|
|
// Get the 'global' index
|
|
x = iproc*Nx+i;
|
|
y = jproc*Ny+j;
|
|
z = kproc*Nz+k;
|
|
for (q=0; q<9; q++){
|
|
|
|
if (dist_even[(q+1)*N+n] != (z*X*Y+y*X+x) + 2*(q+1)*0.01){
|
|
printf("******************************************\n");
|
|
printf("error in even distribution q = %i \n", 2*(q+1));
|
|
printf("i,j,k= %i, %i, %i \n", x,y,z);
|
|
printf("dist = %5.2f \n", dist_even[(q+1)*N+n]);
|
|
printf("n= %i \n",z*X*Y+y*X+x);
|
|
returnValue++;
|
|
}
|
|
|
|
|
|
if (dist_odd[q*N+n] != (z*X*Y+y*X+x) + (2*q+1)*0.01){
|
|
printf("******************************************\n");
|
|
printf("error in odd distribution q = %i \n", 2*q+1);
|
|
printf("i,j,k= %i, %i, %i \n", x,y,z);
|
|
printf("dist = %5.2f \n", dist_odd[q*N+n]);
|
|
printf("n= %i \n",z*X*Y+y*X+x);
|
|
returnValue++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return returnValue;
|
|
}
|
|
|
|
inline void PackID(int *list, int count, char *sendbuf, char *ID){
|
|
// Fill in the phase ID values from neighboring processors
|
|
// This packs up the values that need to be sent from one processor to another
|
|
int idx,n;
|
|
|
|
for (idx=0; idx<count; idx++){
|
|
n = list[idx];
|
|
sendbuf[idx] = ID[n];
|
|
}
|
|
}
|
|
//***************************************************************************************
|
|
inline void UnpackID(int *list, int count, char *recvbuf, char *ID){
|
|
// Fill in the phase ID values from neighboring processors
|
|
// This unpacks the values once they have been recieved from neighbors
|
|
int idx,n;
|
|
|
|
for (idx=0; idx<count; idx++){
|
|
n = list[idx];
|
|
ID[n] = recvbuf[idx];
|
|
}
|
|
}
|
|
//***************************************************************************************
|
|
int main(int argc, char **argv)
|
|
{
|
|
//*****************************************
|
|
// ***** MPI STUFF ****************
|
|
//*****************************************
|
|
// Initialize MPI
|
|
int rank,nprocs;
|
|
MPI_Init(&argc,&argv);
|
|
MPI_Comm comm = MPI_COMM_WORLD;
|
|
MPI_Comm_rank(comm,&rank);
|
|
MPI_Comm_size(comm,&nprocs);
|
|
int check;
|
|
|
|
{
|
|
// parallel domain size (# of sub-domains)
|
|
int nprocx,nprocy,nprocz;
|
|
int iproc,jproc,kproc;
|
|
//*****************************************
|
|
// MPI ranks for all 18 neighbors
|
|
//**********************************
|
|
int rank_x,rank_y,rank_z,rank_X,rank_Y,rank_Z;
|
|
int rank_xy,rank_XY,rank_xY,rank_Xy;
|
|
int rank_xz,rank_XZ,rank_xZ,rank_Xz;
|
|
int rank_yz,rank_YZ,rank_yZ,rank_Yz;
|
|
//**********************************
|
|
MPI_Request req1[18],req2[18];
|
|
MPI_Status stat1[18],stat2[18];
|
|
|
|
if (rank == 0){
|
|
printf("********************************************************\n");
|
|
printf("Running Unit Test for D3Q19 MPI Communication \n");
|
|
printf("********************************************************\n");
|
|
}
|
|
|
|
// BGK Model parameters
|
|
string FILENAME;
|
|
unsigned int nBlocks, nthreads;
|
|
int timestepMax, interval;
|
|
double tau,Fx,Fy,Fz,tol;
|
|
// Domain variables
|
|
double Lx,Ly,Lz;
|
|
int nspheres;
|
|
int Nx,Ny,Nz;
|
|
int i,j,k,n;
|
|
|
|
if (rank==0){
|
|
//.......................................................................
|
|
// Reading the domain information file
|
|
//.......................................................................
|
|
ifstream domain("Domain.in");
|
|
if (domain.good()){
|
|
domain >> nprocx;
|
|
domain >> nprocy;
|
|
domain >> nprocz;
|
|
domain >> Nx;
|
|
domain >> Ny;
|
|
domain >> Nz;
|
|
domain >> nspheres;
|
|
domain >> Lx;
|
|
domain >> Ly;
|
|
domain >> Lz;
|
|
}
|
|
else if (nprocs==1){
|
|
nprocx=nprocy=nprocz=1;
|
|
Nx=Ny=Nz=50;
|
|
nspheres=0;
|
|
Lx=Ly=Lz=1;
|
|
}
|
|
else if (nprocs==2){
|
|
nprocx=nprocy=1;
|
|
nprocz=2;
|
|
Nx=Ny=Nz=50;
|
|
nspheres=0;
|
|
Lx=Ly=Lz=1;
|
|
}
|
|
else if (nprocs==4){
|
|
nprocx=nprocy=2;
|
|
nprocz=1;
|
|
Nx=Ny=Nz=50;
|
|
nspheres=0;
|
|
Lx=Ly=Lz=1;
|
|
}
|
|
else if (nprocs==8){
|
|
nprocx=nprocy=nprocz=2;
|
|
Nx=Ny=Nz=50;
|
|
nspheres=0;
|
|
Lx=Ly=Lz=1;
|
|
}
|
|
//.......................................................................
|
|
}
|
|
// **************************************************************
|
|
// Broadcast simulation parameters from rank 0 to all other procs
|
|
MPI_Barrier(comm);
|
|
//.................................................
|
|
MPI_Bcast(&Nx,1,MPI_INT,0,comm);
|
|
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
|
|
MPI_Bcast(&Nz,1,MPI_INT,0,comm);
|
|
MPI_Bcast(&nBlocks,1,MPI_UNSIGNED,0,comm);
|
|
MPI_Bcast(&nthreads,1,MPI_UNSIGNED,0,comm);
|
|
MPI_Bcast(×tepMax,1,MPI_INT,0,comm);
|
|
|
|
MPI_Bcast(&Nx,1,MPI_INT,0,comm);
|
|
MPI_Bcast(&Ny,1,MPI_INT,0,comm);
|
|
MPI_Bcast(&Nz,1,MPI_INT,0,comm);
|
|
MPI_Bcast(&nprocx,1,MPI_INT,0,comm);
|
|
MPI_Bcast(&nprocy,1,MPI_INT,0,comm);
|
|
MPI_Bcast(&nprocz,1,MPI_INT,0,comm);
|
|
MPI_Bcast(&nspheres,1,MPI_INT,0,comm);
|
|
MPI_Bcast(&Lx,1,MPI_DOUBLE,0,comm);
|
|
MPI_Bcast(&Ly,1,MPI_DOUBLE,0,comm);
|
|
MPI_Bcast(&Lz,1,MPI_DOUBLE,0,comm);
|
|
//.................................................
|
|
MPI_Barrier(comm);
|
|
// **************************************************************
|
|
// **************************************************************
|
|
|
|
if (nprocs != nprocx*nprocy*nprocz){
|
|
printf("nprocx = %i \n",nprocx);
|
|
printf("nprocy = %i \n",nprocy);
|
|
printf("nprocz = %i \n",nprocz);
|
|
INSIST(nprocs == nprocx*nprocy*nprocz,"Fatal error in processor count!");
|
|
}
|
|
|
|
if (rank==0){
|
|
printf("********************************************************\n");
|
|
printf("Sub-domain size = %i x %i x %i\n",Nz,Nz,Nz);
|
|
printf("Parallel domain size = %i x %i x %i\n",nprocx,nprocy,nprocz);
|
|
printf("********************************************************\n");
|
|
}
|
|
|
|
MPI_Barrier(comm);
|
|
kproc = rank/(nprocx*nprocy);
|
|
jproc = (rank-nprocx*nprocy*kproc)/nprocx;
|
|
iproc = rank-nprocx*nprocy*kproc-nprocz*jproc;
|
|
|
|
double iVol_global = 1.0/Nx/Ny/Nz/nprocx/nprocy/nprocz;
|
|
int BoundaryCondition=0;
|
|
Domain Dm(Nx,Ny,Nz,rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BoundaryCondition);
|
|
|
|
InitializeRanks( rank, nprocx, nprocy, nprocz, iproc, jproc, kproc,
|
|
rank_x, rank_y, rank_z, rank_X, rank_Y, rank_Z,
|
|
rank_xy, rank_XY, rank_xY, rank_Xy, rank_xz, rank_XZ, rank_xZ, rank_Xz,
|
|
rank_yz, rank_YZ, rank_yZ, rank_Yz );
|
|
|
|
Nx += 2;
|
|
Ny += 2;
|
|
Nz += 2;
|
|
int N = Nx*Ny*Nz;
|
|
int dist_mem_size = N*sizeof(double);
|
|
|
|
//.......................................................................
|
|
// Assign the phase ID field
|
|
//.......................................................................
|
|
char LocalRankString[8];
|
|
sprintf(LocalRankString,"%05d",rank);
|
|
char LocalRankFilename[40];
|
|
sprintf(LocalRankFilename,"ID.%05i",rank);
|
|
|
|
char *id;
|
|
id = new char[Nx*Ny*Nz];
|
|
|
|
/*
|
|
* if (rank==0) printf("Assigning phase ID from file \n");
|
|
* if (rank==0) printf("Initialize from segmented data: solid=0, NWP=1, WP=2 \n");
|
|
FILE *IDFILE = fopen(LocalRankFilename,"rb");
|
|
if (IDFILE==NULL) ERROR("Error opening file: ID.xxxxx");
|
|
fread(id,1,N,IDFILE);
|
|
fclose(IDFILE);
|
|
*/
|
|
// Setup the domain
|
|
for (k=0;k<Nz;k++){
|
|
for (j=0;j<Ny;j++){
|
|
for (i=0;i<Nx;i++){
|
|
n = k*Nx*Ny+j*Nx+i;
|
|
id[n] = 1;
|
|
Dm.id[n] = id[n];
|
|
}
|
|
}
|
|
}
|
|
Dm.CommInit(comm);
|
|
|
|
//.......................................................................
|
|
// Compute the media porosity
|
|
//.......................................................................
|
|
double sum;
|
|
double sum_local=0.0, porosity;
|
|
char component = 0; // solid phase
|
|
for (k=1;k<Nz-1;k++){
|
|
for (j=1;j<Ny-1;j++){
|
|
for (i=1;i<Nx-1;i++){
|
|
n = k*Nx*Ny+j*Nx+i;
|
|
if (id[n] == component){
|
|
sum_local+=1.0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
MPI_Allreduce(&sum_local,&sum,1,MPI_DOUBLE,MPI_SUM,comm);
|
|
porosity = 1.0-sum*iVol_global;
|
|
if (rank==0) printf("Media porosity = %f \n",porosity);
|
|
//.......................................................................
|
|
|
|
//...........................................................................
|
|
MPI_Barrier(comm);
|
|
if (rank == 0) cout << "Domain set." << endl;
|
|
//...........................................................................
|
|
|
|
//...........................................................................
|
|
if (rank==0) printf ("Create ScaLBL_Communicator \n");
|
|
// Create a communicator for the device
|
|
ScaLBL_Communicator ScaLBL_Comm(Dm);
|
|
|
|
//...........device phase ID.................................................
|
|
if (rank==0) printf ("Copying phase ID to device \n");
|
|
char *ID;
|
|
ScaLBL_AllocateDeviceMemory((void **) &ID, N); // Allocate device memory
|
|
// Copy to the device
|
|
ScaLBL_CopyToDevice(ID, id, N);
|
|
//...........................................................................
|
|
|
|
//...........................................................................
|
|
// MAIN VARIABLES ALLOCATED HERE
|
|
//...........................................................................
|
|
// LBM variables
|
|
if (rank==0) printf ("Allocating distributions \n");
|
|
//......................device distributions.................................
|
|
double *f_even,*f_odd;
|
|
//...........................................................................
|
|
ScaLBL_AllocateDeviceMemory((void **) &f_even, 10*dist_mem_size); // Allocate device memory
|
|
ScaLBL_AllocateDeviceMemory((void **) &f_odd, 9*dist_mem_size); // Allocate device memory
|
|
//...........................................................................
|
|
double *f_even_host,*f_odd_host;
|
|
f_even_host = new double [10*N];
|
|
f_odd_host = new double [9*N];
|
|
//...........................................................................
|
|
|
|
/* // Write the communcation structure into a file for debugging
|
|
char LocalCommFile[40];
|
|
sprintf(LocalCommFile,"%s%s","Comm.",LocalRankString);
|
|
FILE *CommFile;
|
|
CommFile = fopen(LocalCommFile,"w");
|
|
fprintf(CommFile,"rank=%d, ",rank);
|
|
fprintf(CommFile,"i=%d,j=%d,k=%d :",iproc,jproc,kproc);
|
|
fprintf(CommFile,"x=%d, ",rank_x);
|
|
fprintf(CommFile,"X=%d, ",rank_X);
|
|
fprintf(CommFile,"y=%d, ",rank_y);
|
|
fprintf(CommFile,"Y=%d, ",rank_Y);
|
|
fprintf(CommFile,"z=%d, ",rank_z);
|
|
fprintf(CommFile,"Z=%d, ",rank_Z);
|
|
fprintf(CommFile,"xy=%d, ",rank_xy);
|
|
fprintf(CommFile,"XY=%d, ",rank_XY);
|
|
fprintf(CommFile,"xY=%d, ",rank_xY);
|
|
fprintf(CommFile,"Xy=%d, ",rank_Xy);
|
|
fprintf(CommFile,"xz=%d, ",rank_xz);
|
|
fprintf(CommFile,"XZ=%d, ",rank_XZ);
|
|
fprintf(CommFile,"xZ=%d, ",rank_xZ);
|
|
fprintf(CommFile,"Xz=%d, ",rank_Xz);
|
|
fprintf(CommFile,"yz=%d, ",rank_yz);
|
|
fprintf(CommFile,"YZ=%d, ",rank_YZ);
|
|
fprintf(CommFile,"yZ=%d, ",rank_yZ);
|
|
fprintf(CommFile,"Yz=%d, ",rank_Yz);
|
|
fprintf(CommFile,"\n");
|
|
fclose(CommFile);
|
|
*/
|
|
if (rank==0) printf("Setting the distributions, size = : %i\n", N);
|
|
//...........................................................................
|
|
GlobalFlipScaLBL_D3Q19_Init(f_even_host, f_odd_host, Nx-2, Ny-2, Nz-2,iproc,jproc,kproc,nprocx,nprocy,nprocz);
|
|
ScaLBL_CopyToDevice(f_even, f_even_host, 10*dist_mem_size);
|
|
ScaLBL_CopyToDevice(f_odd, f_odd_host, 9*dist_mem_size);
|
|
ScaLBL_DeviceBarrier();
|
|
MPI_Barrier(comm);
|
|
//*************************************************************************
|
|
// Pack and send the D3Q19 distributions
|
|
ScaLBL_Comm.SendD3Q19(f_even, f_odd);
|
|
//*************************************************************************
|
|
// Swap the distributions for momentum transport
|
|
//*************************************************************************
|
|
ScaLBL_D3Q19_Swap(ID, f_even, f_odd, Nx, Ny, Nz);
|
|
//*************************************************************************
|
|
// Wait for communications to complete and unpack the distributions
|
|
ScaLBL_Comm.RecvD3Q19(f_even, f_odd);
|
|
//*************************************************************************
|
|
|
|
//...........................................................................
|
|
ScaLBL_CopyToHost(f_even_host,f_even,10*N*sizeof(double));
|
|
ScaLBL_CopyToHost(f_odd_host,f_odd,9*N*sizeof(double));
|
|
check = GlobalCheckDebugDist(f_even_host, f_odd_host, Nx-2, Ny-2, Nz-2,iproc,jproc,kproc,nprocx,nprocy,nprocz);
|
|
//...........................................................................
|
|
|
|
int timestep = 0;
|
|
if (rank==0) printf("********************************************************\n");
|
|
if (rank==0) printf("No. of timesteps for timing: %i \n", 100);
|
|
|
|
//.......create and start timer............
|
|
double starttime,stoptime,cputime;
|
|
MPI_Barrier(comm);
|
|
starttime = MPI_Wtime();
|
|
//.........................................
|
|
|
|
|
|
//************ MAIN ITERATION LOOP (timing communications)***************************************/
|
|
while (timestep < 100){
|
|
|
|
//*************************************************************************
|
|
// Pack and send the D3Q19 distributions
|
|
ScaLBL_Comm.SendD3Q19(f_even, f_odd);
|
|
//*************************************************************************
|
|
// Swap the distributions for momentum transport
|
|
//*************************************************************************
|
|
ScaLBL_D3Q19_Swap(ID, f_even, f_odd, Nx, Ny, Nz);
|
|
//*************************************************************************
|
|
// Wait for communications to complete and unpack the distributions
|
|
ScaLBL_Comm.RecvD3Q19(f_even, f_odd);
|
|
//*************************************************************************
|
|
|
|
ScaLBL_DeviceBarrier();
|
|
MPI_Barrier(comm);
|
|
// Iteration completed!
|
|
timestep++;
|
|
//...................................................................
|
|
}
|
|
//************************************************************************/
|
|
stoptime = MPI_Wtime();
|
|
// cout << "CPU time: " << (stoptime - starttime) << " seconds" << endl;
|
|
cputime = stoptime - starttime;
|
|
// cout << "Lattice update rate: "<< double(Nx*Ny*Nz*timestep)/cputime/1000000 << " MLUPS" << endl;
|
|
double MLUPS = double(Nx*Ny*Nz*timestep)/cputime/1000000;
|
|
if (rank==0) printf("********************************************************\n");
|
|
if (rank==0) printf("CPU time = %f \n", cputime);
|
|
if (rank==0) printf("Lattice update rate (per process)= %f MLUPS \n", MLUPS);
|
|
MLUPS *= nprocs;
|
|
if (rank==0) printf("Lattice update rate (process)= %f MLUPS \n", MLUPS);
|
|
if (rank==0) printf("********************************************************\n");
|
|
|
|
// Number of memory references from the swap algorithm (per timestep)
|
|
// 18 reads and 18 writes for each lattice site
|
|
double MemoryRefs = (Nx-2)*(Ny-2)*(Nz-2)*36;
|
|
// number of memory references for the swap algorithm - GigaBytes / second
|
|
if (rank==0) printf("DRAM bandwidth (per process)= %f GB/sec \n",MemoryRefs*8*timestep/1e9);
|
|
// Report bandwidth in Gigabits per second
|
|
// communication bandwidth includes both send and recieve
|
|
if (rank==0) printf("Communication bandwidth (per process)= %f Gbit/sec \n",ScaLBL_Comm.CommunicationCount*64*timestep/1e9);
|
|
if (rank==0) printf("Aggregated communication bandwidth = %f Gbit/sec \n",nprocs*ScaLBL_Comm.CommunicationCount*64*timestep/1e9);
|
|
}
|
|
// ****************************************************
|
|
MPI_Barrier(comm);
|
|
MPI_Finalize();
|
|
// ****************************************************
|
|
|
|
return check;
|
|
}
|