Files
LBPM/common/Array.h
2018-09-23 00:00:14 -04:00

810 lines
25 KiB
C++

/*
Copyright 2013--2018 James E. McClure, Virginia Polytechnic & State University
This file is part of the Open Porous Media project (OPM).
OPM is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OPM is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OPM. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef included_ArrayClass
#define included_ArrayClass
#include "common/ArraySize.h"
#include <array>
#include <functional>
#include <initializer_list>
#include <iostream>
#include <memory>
#include <vector>
/*!
* Class Array is a multi-dimensional array class written by Mark Berrill
*/
template<class TYPE, class FUN, class Allocator>
class Array final
{
public: // Constructors / assignment operators
/*!
* Create a new empty Array
*/
Array();
/*!
* Create an Array with the given size
* @param N Size of the array
*/
explicit Array( const ArraySize &N );
/*!
* Create a new 1D Array with the given number of elements
* @param N Number of elements in the array
*/
explicit Array( size_t N );
/*!
* Create a new 2D Array with the given number of rows and columns
* @param N_rows Number of rows
* @param N_columns Number of columns
*/
explicit Array( size_t N_rows, size_t N_columns );
/*!
* Create a new 3D Array with the given number of rows and columns
* @param N1 Number of rows
* @param N2 Number of columns
* @param N3 Number of elements in the third dimension
*/
explicit Array( size_t N1, size_t N2, size_t N3 );
/*!
* Create a new 4D Array with the given number of rows and columns
* @param N1 Number of elements in the first dimension
* @param N2 Number of elements in the second dimension
* @param N3 Number of elements in the third dimension
* @param N4 Number of elements in the fourth dimension
*/
explicit Array( size_t N1, size_t N2, size_t N3, size_t N4 );
/*!
* Create a new 4D Array with the given number of rows and columns
* @param N1 Number of elements in the first dimension
* @param N2 Number of elements in the second dimension
* @param N3 Number of elements in the third dimension
* @param N4 Number of elements in the fourth dimension
* @param N5 Number of elements in the fifth dimension
*/
explicit Array( size_t N1, size_t N2, size_t N3, size_t N4, size_t N5 );
/*!
* Create a multi-dimensional Array with the given number of elements
* @param N Number of elements in each dimension
* @param data Optional raw array to copy the src data
*/
explicit Array( const std::vector<size_t> &N, const TYPE *data = NULL );
/*!
* Create a 1D Array with the range
* @param range Range of the data
*/
explicit Array( const Range<TYPE> &range );
/*!
* Create a 1D Array using a string that mimic's MATLAB
* @param range Range of the data
*/
explicit Array( std::string range );
/*!
* Create a 1D Array with the given initializer list
* @param data Input data
*/
Array( std::initializer_list<TYPE> data );
/*!
* Copy constructor
* @param rhs Array to copy
*/
Array( const Array &rhs );
/*!
* Move constructor
* @param rhs Array to copy
*/
Array( Array &&rhs );
/*!
* Assignment operator
* @param rhs Array to copy
*/
Array &operator=( const Array &rhs );
/*!
* Move assignment operator
* @param rhs Array to copy
*/
Array &operator=( Array &&rhs );
/*!
* Assignment operator
* @param rhs std::vector to copy
*/
Array &operator=( const std::vector<TYPE> &rhs );
//! Is copyable?
inline bool isCopyable() const { return d_isCopyable; }
//! Set is copyable
inline void setCopyable( bool flag ) { d_isCopyable = flag; }
//! Is fixed size?
inline bool isFixedSize() const { return d_isFixedSize; }
//! Set is copyable
inline void setFixedSize( bool flag ) { d_isFixedSize = flag; }
public: // Views/copies/subset
/*!
* Create a multi-dimensional Array view to a raw block of data
* @param N Number of elements in each dimension
* @param data Pointer to the data
*/
static std::unique_ptr<Array> view( const ArraySize &N, std::shared_ptr<TYPE> &data );
/*!
* Create a multi-dimensional Array view to a raw block of data
* @param N Number of elements in each dimension
* @param data Pointer to the data
*/
static std::unique_ptr<const Array> constView(
const ArraySize &N, std::shared_ptr<const TYPE> const &data );
/*!
* Make this object a view of the src
* @param src Source vector to take the view of
*/
void view2( Array &src );
/*!
* Make this object a view of the data
* @param N Number of elements in each dimension
* @param data Pointer to the data
*/
void view2( const ArraySize &N, std::shared_ptr<TYPE> const &data );
/*!
* Make this object a view of the raw data (expert use only).
* Use view2( N, shared_ptr(data,[](TYPE*){}) ) instead.
* Note: this interface is not recommended as it does not protect from
* the src data being deleted while still being used by the Array.
* Additionally for maximum performance it does not set the internal shared_ptr
* so functions like getPtr and resize will not work correctly.
* @param ndim Number of dimensions
* @param dims Number of elements in each dimension
* @param data Pointer to the data
* @param isCopyable Once the view is created, can the array be copied
* @param isFixedSize Once the view is created, is the array size fixed
*/
inline void viewRaw(
int ndim, const size_t *dims, TYPE *data, bool isCopyable = true, bool isFixedSize = true )
{
viewRaw( ArraySize( ndim, dims ), data, isCopyable, isFixedSize );
}
/*!
* Make this object a view of the raw data (expert use only).
* Use view2( N, shared_ptr(data,[](TYPE*){}) ) instead.
* Note: this interface is not recommended as it does not protect from
* the src data being deleted while still being used by the Array.
* Additionally for maximum performance it does not set the internal shared_ptr
* so functions like getPtr and resize will not work correctly.
* @param N Number of elements in each dimension
* @param data Pointer to the data
* @param isCopyable Once the view is created, can the array be copied
* @param isFixedSize Once the view is created, is the array size fixed
*/
void viewRaw( const ArraySize &N, TYPE *data, bool isCopyable = true, bool isFixedSize = true );
/*!
* Convert an array of one type to another. This may or may not allocate new memory.
* @param array Input array
*/
template<class TYPE2>
static inline std::unique_ptr<Array<TYPE2, FUN, Allocator>> convert(
std::shared_ptr<Array<TYPE, FUN, Allocator>> array )
{
auto array2 = std::make_unique<Array<TYPE2>>( array->size() );
array2.copy( *array );
return array2;
}
/*!
* Convert an array of one type to another. This may or may not allocate new memory.
* @param array Input array
*/
template<class TYPE2>
static inline std::unique_ptr<const Array<TYPE2, FUN, Allocator>> convert(
std::shared_ptr<const Array<TYPE, FUN, Allocator>> array )
{
auto array2 = std::make_unique<Array<TYPE2>>( array->size() );
array2.copy( *array );
return array2;
}
/*!
* Copy and convert data from another array to this array
* @param array Source array
*/
template<class TYPE2>
void inline copy( const Array<TYPE2, FUN, Allocator> &array )
{
resize( array.size() );
copy( array.data() );
}
/*!
* Copy and convert data from a raw vector to this array.
* Note: The current array must be allocated to the proper size first.
* @param array Source array
*/
template<class TYPE2>
void inline copy( const TYPE2 *data )
{
for ( size_t i = 0; i < d_size.length(); i++ )
d_data[i] = static_cast<TYPE>( data[i] );
}
/*!
* Copy and convert data from this array to a raw vector.
* @param array Source array
*/
template<class TYPE2>
void inline copyTo( TYPE2 *data ) const
{
for ( size_t i = 0; i < d_size.length(); i++ )
data[i] = static_cast<TYPE2>( d_data[i] );
}
/*!
* Copy and convert data from this array to a new array
*/
template<class TYPE2>
Array<TYPE2, FUN, Allocator> inline cloneTo() const
{
Array<TYPE2, FUN> dst( this->size() );
copyTo( dst.data() );
return dst;
}
/*! swap the raw data pointers for the Arrays after checking for compatibility */
void swap( Array &other );
/*!
* Fill the array with the given value
* @param value Value to fill
*/
void fill( const TYPE &value );
/*!
* Scale the array by the given value
* @param scale Value to scale by
*/
void scale( const TYPE &scale );
/*!
* Set the values of this array to pow(base, exp)
* @param base Base array
* @param exp Exponent value
*/
void pow( const Array &base, const TYPE &exp );
//! Destructor
~Array();
//! Clear the data in the array
void clear();
//! Return the size of the Array
inline int ndim() const { return d_size.ndim(); }
//! Return the size of the Array
inline const ArraySize &size() const { return d_size; }
//! Return the size of the Array
inline size_t size( int d ) const { return d_size[d]; }
//! Return the size of the Array
inline size_t length() const { return d_size.length(); }
//! Return true if the Array is empty
inline bool empty() const { return d_size.length() == 0; }
/*!
* Resize the Array
* @param N NUmber of elements
*/
inline void resize( size_t N ) { resize( ArraySize( N ) ); }
/*!
* Resize the Array
* @param N_row Number of rows
* @param N_col Number of columns
*/
inline void resize( size_t N_row, size_t N_col ) { resize( ArraySize( N_row, N_col ) ); }
/*!
* Resize the Array
* @param N1 Number of rows
* @param N2 Number of columns
* @param N3 Number of elements in the third dimension
*/
inline void resize( size_t N1, size_t N2, size_t N3 ) { resize( ArraySize( N1, N2, N3 ) ); }
/*!
* Resize the Array
* @param N Number of elements in each dimension
*/
void resize( const ArraySize &N );
/*!
* Resize the given dimension of the array
* @param dim The dimension to resize
* @param N Number of elements for the given dimension
* @param value Value to initialize new elements
*/
void resizeDim( int dim, size_t N, const TYPE &value );
/*!
* Reshape the Array (total size of array will not change)
* @param N Number of elements in each dimension
*/
void reshape( const ArraySize &N );
/*!
* Reshape the Array so that the number of dimensions is the
* max of ndim and the largest dim>1.
* @param ndim Desired number of dimensions
*/
inline void setNdim( int ndim ) { d_size.setNdim( ndim ); }
/*!
* Subset the Array
* @param index Index to subset (imin,imax,jmin,jmax,kmin,kmax,...)
*/
Array subset( const std::vector<size_t> &index ) const;
/*!
* Subset the Array
* @param index Index to subset (ix:kx:jx,iy:ky:jy,...)
*/
Array subset( const std::vector<Range<size_t>> &index ) const;
/*!
* Copy data from an array into a subset of this array
* @param index Index of the subset (imin,imax,jmin,jmax,kmin,kmax,...)
* @param subset The subset array to copy from
*/
void copySubset( const std::vector<size_t> &index, const Array &subset );
/*!
* Copy data from an array into a subset of this array
* @param index Index of the subset
* @param subset The subset array to copy from
*/
void copySubset( const std::vector<Range<size_t>> &index, const Array &subset );
/*!
* Add data from an array into a subset of this array
* @param index Index of the subset (imin,imax,jmin,jmax,kmin,kmax,...)
* @param subset The subset array to add from
*/
void addSubset( const std::vector<size_t> &index, const Array &subset );
/*!
* Add data from an array into a subset of this array
* @param index Index of the subset
* @param subset The subset array to add from
*/
void addSubset( const std::vector<Range<size_t>> &index, const Array &subset );
public: // Accessors
/*!
* Access the desired element
* @param i The row index
*/
ARRAY_ATTRIBUTE inline TYPE &operator()( size_t i ) { return d_data[d_size.index( i )]; }
/*!
* Access the desired element
* @param i The row index
*/
ARRAY_ATTRIBUTE inline const TYPE &operator()( size_t i ) const
{
return d_data[d_size.index( i )];
}
/*!
* Access the desired element
* @param i The row index
* @param j The column index
*/
ARRAY_ATTRIBUTE inline TYPE &operator()( size_t i, size_t j )
{
return d_data[d_size.index( i, j )];
}
/*!
* Access the desired element
* @param i The row index
* @param j The column index
*/
ARRAY_ATTRIBUTE inline const TYPE &operator()( size_t i, size_t j ) const
{
return d_data[d_size.index( i, j )];
}
/*!
* Access the desired element
* @param i The row index
* @param j The column index
* @param k The third index
*/
ARRAY_ATTRIBUTE inline TYPE &operator()( size_t i, size_t j, size_t k )
{
return d_data[d_size.index( i, j, k )];
}
/*!
* Access the desired element
* @param i The row index
* @param j The column index
* @param k The third index
*/
ARRAY_ATTRIBUTE inline const TYPE &operator()( size_t i, size_t j, size_t k ) const
{
return d_data[d_size.index( i, j, k )];
}
/*!
* Access the desired element
* @param i1 The first index
* @param i2 The second index
* @param i3 The third index
* @param i4 The fourth index
*/
ARRAY_ATTRIBUTE inline TYPE &operator()( size_t i1, size_t i2, size_t i3, size_t i4 )
{
return d_data[d_size.index( i1, i2, i3, i4 )];
}
/*!
* Access the desired element
* @param i1 The first index
* @param i2 The second index
* @param i3 The third index
* @param i4 The fourth index
*/
ARRAY_ATTRIBUTE inline const TYPE &operator()(
size_t i1, size_t i2, size_t i3, size_t i4 ) const
{
return d_data[d_size.index( i1, i2, i3, i4 )];
}
/*!
* Access the desired element
* @param i1 The first index
* @param i2 The second index
* @param i3 The third index
* @param i4 The fourth index
* @param i5 The fifth index
*/
ARRAY_ATTRIBUTE inline TYPE &operator()( size_t i1, size_t i2, size_t i3, size_t i4, size_t i5 )
{
return d_data[d_size.index( i1, i2, i3, i4, i5 )];
}
/*!
* Access the desired element
* @param i1 The first index
* @param i2 The second index
* @param i3 The third index
* @param i4 The fourth index
* @param i5 The fifth index
*/
ARRAY_ATTRIBUTE inline const TYPE &operator()(
size_t i1, size_t i2, size_t i3, size_t i4, size_t i5 ) const
{
return d_data[d_size.index( i1, i2, i3, i4, i5 )];
}
/*!
* Access the desired element as a raw pointer
* @param i The global index
*/
ARRAY_ATTRIBUTE inline TYPE *ptr( size_t i )
{
return i >= d_size.length() ? nullptr : &d_data[i];
}
/*!
* Access the desired element as a raw pointer
* @param i The global index
*/
ARRAY_ATTRIBUTE inline const TYPE *ptr( size_t i ) const
{
return i >= d_size.length() ? nullptr : &d_data[i];
}
//! Get iterator to beginning of data
inline TYPE *begin() { return d_data; }
//! Get iterator to beginning of data
inline const TYPE *begin() const { return d_data; }
//! Get iterator to beginning of data
inline TYPE *end() { return d_data + d_size.length(); }
//! Get iterator to beginning of data
inline const TYPE *end() const { return d_data + d_size.length(); }
//! Return the pointer to the raw data
inline std::shared_ptr<TYPE> getPtr() { return d_ptr; }
//! Return the pointer to the raw data
inline std::shared_ptr<const TYPE> getPtr() const { return d_ptr; }
//! Return the pointer to the raw data
ARRAY_ATTRIBUTE inline TYPE *data() { return d_data; }
//! Return the pointer to the raw data
ARRAY_ATTRIBUTE inline const TYPE *data() const { return d_data; }
public: // Operator overloading
//! Check if two matrices are equal
// Equality means the dimensions and data have to be identical
bool operator==( const Array &rhs ) const;
//! Check if two matrices are not equal
inline bool operator!=( const Array &rhs ) const { return !this->operator==( rhs ); }
//! Add another array
Array &operator+=( const Array &rhs );
//! Subtract another array
Array &operator-=( const Array &rhs );
//! Add a scalar
Array &operator+=( const TYPE &rhs );
//! Subtract a scalar
Array &operator-=( const TYPE &rhs );
public: // Math operations
//! Concatenates the arrays along the dimension dim.
static Array cat( const std::vector<Array> &x, int dim = 0 );
//! Concatenates a given array with the current array
void cat( const Array &x, int dim = 0 );
//! Initialize the array with random values (defined from the function table)
void rand();
//! Return true if NaNs are present
bool NaNs() const;
//! Return the smallest value
TYPE min() const;
//! Return the largest value
TYPE max() const;
//! Return the sum of all elements
TYPE sum() const;
//! Return the mean of all elements
TYPE mean() const;
//! Return the min of all elements in a given direction
Array min( int dir ) const;
//! Return the max of all elements in a given direction
Array max( int dir ) const;
//! Return the sum of all elements in a given direction
Array sum( int dir ) const;
//! Return the smallest value
TYPE min( const std::vector<size_t> &index ) const;
//! Return the largest value
TYPE max( const std::vector<size_t> &index ) const;
//! Return the sum of all elements
TYPE sum( const std::vector<size_t> &index ) const;
//! Return the mean of all elements
TYPE mean( const std::vector<size_t> &index ) const;
//! Return the smallest value
TYPE min( const std::vector<Range<size_t>> &index ) const;
//! Return the largest value
TYPE max( const std::vector<Range<size_t>> &index ) const;
//! Return the sum of all elements
TYPE sum( const std::vector<Range<size_t>> &index ) const;
//! Return the mean of all elements
TYPE mean( const std::vector<Range<size_t>> &index ) const;
//! Find all elements that match the operator
std::vector<size_t> find(
const TYPE &value, std::function<bool( const TYPE &, const TYPE & )> compare ) const;
//! Print an array
void print(
std::ostream &os, const std::string &name = "A", const std::string &prefix = "" ) const;
//! Multiply two arrays
static Array multiply( const Array &a, const Array &b );
//! Transpose an array
Array reverseDim() const;
//! Replicate an array a given number of times in each direction
Array repmat( const std::vector<size_t> &N ) const;
//! Coarsen an array using the given filter
Array coarsen( const Array &filter ) const;
//! Coarsen an array using the given filter
Array coarsen(
const std::vector<size_t> &ratio, std::function<TYPE( const Array & )> filter ) const;
/*!
* Perform a element-wise operation y = f(x)
* @param[in] fun The function operation
* @param[in] x The input array
*/
static Array transform( std::function<TYPE( const TYPE & )> fun, const Array &x );
/*!
* Perform a element-wise operation z = f(x,y)
* @param[in] fun The function operation
* @param[in] x The first array
* @param[in] y The second array
*/
static Array transform(
std::function<TYPE( const TYPE &, const TYPE & )> fun, const Array &x, const Array &y );
/*!
* axpby operation: this = alpha*x + beta*this
* @param[in] alpha alpha
* @param[in] x x
* @param[in] beta beta
*/
void axpby( const TYPE &alpha, const Array &x, const TYPE &beta );
/*!
* Linear interpolation
* @param[in] x Position as a decimal index
*/
TYPE interp( const std::vector<double> &x ) const;
/**
* \fn equals (Array & const rhs, TYPE tol )
* \brief Determine if two Arrays are equal using an absolute tolerance
* \param[in] rhs Vector to compare to
* \param[in] tol Tolerance of comparison
* \return True iff \f$||\mathit{rhs} - x||_\infty < \mathit{tol}\f$
*/
bool equals( const Array &rhs, TYPE tol = 0.000001 ) const;
private:
bool d_isCopyable; // Can the array be copied
bool d_isFixedSize; // Can the array be resized
ArraySize d_size; // Size of each dimension
TYPE *d_data; // Raw pointer to data in array
std::shared_ptr<TYPE> d_ptr; // Shared pointer to data in array
void allocate( const ArraySize &N );
private:
inline void checkSubsetIndex( const std::vector<Range<size_t>> &range ) const;
inline std::vector<Range<size_t>> convert( const std::vector<size_t> &index ) const;
static inline void getSubsetArrays( const std::vector<Range<size_t>> &range,
std::array<size_t, 5> &first, std::array<size_t, 5> &last, std::array<size_t, 5> &inc,
std::array<size_t, 5> &N );
};
/********************************************************
* ostream operator *
********************************************************/
inline std::ostream &operator<<( std::ostream &out, const ArraySize &s )
{
out << "[" << s[0];
for ( size_t i = 1; i < s.ndim(); i++ )
out << "," << s[i];
out << "]";
return out;
}
/********************************************************
* Math operations *
********************************************************/
template<class TYPE, class FUN, class Allocator>
inline Array<TYPE, FUN, Allocator> operator+(
const Array<TYPE, FUN, Allocator> &a, const Array<TYPE, FUN, Allocator> &b )
{
Array<TYPE, FUN, Allocator> c;
const auto &fun = []( const TYPE &a, const TYPE &b ) { return a + b; };
FUN::transform( fun, a, b, c );
return c;
}
template<class TYPE, class FUN, class Allocator>
inline Array<TYPE, FUN, Allocator> operator-(
const Array<TYPE, FUN, Allocator> &a, const Array<TYPE, FUN, Allocator> &b )
{
Array<TYPE, FUN, Allocator> c;
const auto &fun = []( const TYPE &a, const TYPE &b ) { return a - b; };
FUN::transform( fun, a, b, c );
return c;
}
template<class TYPE, class FUN, class Allocator>
inline Array<TYPE, FUN, Allocator> operator*(
const Array<TYPE, FUN, Allocator> &a, const Array<TYPE, FUN, Allocator> &b )
{
return Array<TYPE, FUN, Allocator>::multiply( a, b );
}
template<class TYPE, class FUN, class Allocator>
inline Array<TYPE, FUN, Allocator> operator*(
const Array<TYPE, FUN, Allocator> &a, const std::vector<TYPE> &b )
{
Array<TYPE, FUN, Allocator> b2;
b2.viewRaw( { b.size() }, const_cast<TYPE *>( b.data() ) );
return Array<TYPE, FUN, Allocator>::multiply( a, b2 );
}
/********************************************************
* Convience typedefs *
********************************************************/
typedef Array<double> DoubleArray;
typedef Array<int> IntArray;
#endif