Files
LBPM/workflows/Morphological_Analysis/morphological_analysis_utils.py

400 lines
21 KiB
Python

#!/usr/bin/env python
# TODO: double check the issue of the "view of the array" for all the following functions
# make sure it is the copy of the array, not the view of the array is used for any
# subprocesses.
import numpy as np
import scipy.stats as stats
import scipy.ndimage.morphology as morphology
import scipy.ndimage.measurements as measurements
#from dist_func_utils import *
def generate_morph_imbib_config(seg_image_input,R_critical):
# This funciton works well at high-Pc-low-Sw
# There is no retarded Sw when the curvature is high
# The method of this functions:
# 1. Perform erosion with the radius of R_critical
# 2. Perform dilation with the radius of R_critical
if seg_image_input.ndim ==2 :
seg_image = seg_image_input>0.0
pore_vol = 1.0*seg_image.sum()
radius = R_critical
# Step 1.1: Create structuring element
domain_size = int(np.rint(radius*2)+2)
grid = np.indices((domain_size,domain_size))
mk_circle = (grid[0]-domain_size/2)**2 + (grid[1]-domain_size/2)**2 <= radius**2
circle = np.zeros((domain_size,domain_size),dtype=np.uint8)
circle[mk_circle]=1
circle = extract_shape(circle).astype(bool)
# Step 1.2: Perform erosion with radius of R_critical
seg_image_ero = morphology.binary_erosion(seg_image,structure=circle,border_value=1)
# NOTE: Be careful with the 'border_value' of the erosion - should be 'border_value=1'
# Step 2: Perform dilation with radius of R_critical
seg_image_dil = morphology.binary_dilation(seg_image_ero,structure=circle,border_value=0)
# NOTE: 'border_value' for dilation should be 'False'
# NOTE: the dtype of the array after dilation is 'bool'
seg_image_dil = seg_image_dil.astype(np.uint8)
seg_image_dil[np.logical_not(seg_image_dil)]=2
seg_image_dil[np.logical_not(seg_image)] = 0
Sw = (seg_image_dil==2).sum()/pore_vol
else: # 3D
seg_image = seg_image_input>0.0
pore_vol = 1.0*seg_image.sum()
radius = R_critical
# Step 1.1: Create structuring element
domain_size = int(np.rint(radius*2)+2)
grid = np.indices((domain_size,domain_size,domain_size))
mk_circle = (grid[0]-domain_size/2)**2 + (grid[1]-domain_size/2)**2 + (grid[2]-domain_size/2)**2 <= radius**2
circle = np.zeros((domain_size,domain_size,domain_size),dtype=np.uint8)
circle[mk_circle]=1
circle = extract_shape(circle).astype(bool)
# Step 1.2: Perform erosion with radius of R_critical
seg_image_ero = morphology.binary_erosion(seg_image,structure=circle,border_value=1)
# NOTE: Be careful with the 'border_value' of the erosion - should be 'border_value=1'
# Step 2: Perform dilation with radius of R_critical
seg_image_dil = morphology.binary_dilation(seg_image_ero,structure=circle,border_value=0)
# NOTE: 'border_value' for dilation should be 'False'
# NOTE: the dtype of the array after dilation is 'bool'
seg_image_dil = seg_image_dil.astype(np.uint8)
seg_image_dil[np.logical_not(seg_image_dil)]=2
seg_image_dil[np.logical_not(seg_image)] = 0
Sw = (seg_image_dil==2).sum()/pore_vol
#end if
return (seg_image_dil,Sw)
#end def
def generate_morph_imbib_curv(seg_image_input,R_critical):
# This funciton works well at high-Pc-low-Sw
# There is no retarded Sw when the curvature is high
# The method of this functions:
# 1. Perform erosion with the radius of R_critical
# 2. Perform dilation with the radius of R_critical
# *********************************************************************
# Input: seg_image: a well shaped segmented image with size (lz,ly,lx)
# seg_image has values as : NW phase -> 1
# W phase -> 2
# solid phase -> 0
# *********************************************************************
if seg_image_input.ndim == 2:
pore_vol = 1.0*(seg_image_input>0.0).sum()
radius = R_critical
print 'Morphological Imbibition: processing critical radius: '+str(radius)+' now......'
# Step 1.1: Create structuring element
domain_size = int(np.rint(radius*2)+2)
grid = np.indices((domain_size,domain_size))
mk_circle = (grid[0]-domain_size/2)**2 + (grid[1]-domain_size/2)**2 <= radius**2
circle = np.zeros((domain_size,domain_size),dtype=np.uint8)
circle[mk_circle]=1
circle = extract_shape(circle).astype(bool)
# Step 1.2: Perform erosion with radius of R_critical
seg_image_ero = morphology.binary_erosion(seg_image_input>0.0,structure=circle,border_value=1)
# NOTE: Be careful with the 'border_value' of the erosion - should be 'border_value=1'
# Step 2: Perform dilation with radius of R_critical
seg_image_ero_dil = morphology.binary_dilation(seg_image_ero,structure=circle,border_value=0)
# NOTE: 'border_value' for dilation should be 'False'
# NOTE: the dtype of the array after dilation is 'bool'
seg_image_ero_dil[seg_image_input<=0.0]=False
Sw = 1.0 - seg_image_ero_dil.sum()/pore_vol
else:
pore_vol = 1.0*(seg_image_input>0.0).sum()
radius = R_critical
print 'Morphological Imbibition: processing critical radius: '+str(radius)+' now......'
# Step 1.1: Create structuring element
domain_size = int(np.rint(radius*2)+2)
grid = np.indices((domain_size,domain_size,domain_size))
mk_circle = (grid[0]-domain_size/2)**2 + (grid[1]-domain_size/2)**2 + (grid[2]-domain_size/2)**2 <= radius**2
circle = np.zeros((domain_size,domain_size,domain_size),dtype=np.uint8)
circle[mk_circle]=1
circle = extract_shape(circle).astype(bool)
# Step 1.2: Perform erosion with radius of R_critical
seg_image_ero = morphology.binary_erosion(seg_image_input>0.0,structure=circle,border_value=1)
# NOTE: Be careful with the 'border_value' of the erosion - should be 'border_value=1'
# Step 2: Perform dilation with radius of R_critical
seg_image_ero_dil = morphology.binary_dilation(seg_image_ero,structure=circle,border_value=0)
# NOTE: 'border_value' for dilation should be 'False'
# NOTE: the dtype of the array after dilation is 'bool'
seg_image_ero_dil[seg_image_input<=0.0]=False
Sw = 1.0 - seg_image_ero_dil.sum()/pore_vol
#end if
return Sw
#end def
def generate_morph_drain_config(seg_image_input,R_critical):
# The method for this function follows Hilper & Miller AWR(2001)
# 1. Perform erosion for the pore space with radius of R_critical
# 2. Label the eroded pore space, and leave only the pore space that is still
# connected with the non-wetting phase reservoir
# 3. Perform the dilation for the labelled pore space with radius of R_critical
# **************************************************************************
# Input: seg_image: a well shaped segmented image with size (lz,ly,lx)
# seg_image has values as : NW phase -> 1
# W phase -> 2
# solid phase -> 0
# **************************************************************************
if seg_image_input.ndim ==2:
seg_image = seg_image_input>0.0
pore_vol = 1.0*seg_image.sum()
radius = R_critical
# Step 1.1: Create structuring element
domain_size = int(np.rint(radius*2)+2)
grid = np.indices((domain_size,domain_size))
mk_circle = (grid[0]-domain_size/2)**2 + (grid[1]-domain_size/2)**2 <= radius**2
circle = np.zeros((domain_size,domain_size),dtype=np.uint8)
circle[mk_circle]=1
circle = extract_shape(circle).astype(bool)
# Step 1.2: Perform erosion on the pore space
# NOTE: the dtype of 'seg_im_ero' is 'bool'
seg_im_ero = morphology.binary_erosion(seg_image,structure=circle,border_value=1)
# NOTE: 'border_value' for erosion should be 'True'
# Step 2: Label the eroded pore space
# NOTE: Assume the NW phase reservoir is at the first layer of the domain
# i.e. at seg_image[0,:] - adjust it if this does not suit your need
# For erosion, assume that diagonals are not considered
# For erosion, assume that diagonals are not considered
seg_im_ero_label_temp,num_features = measurements.label(seg_im_ero,structure=morphology.generate_binary_structure(2,1))
#seg_im_ero_label_temp,num_features = measurements.label(seg_im_ero,structure=morphology.generate_binary_structure(2,2))
# NOTE: Here I assume the inlet is at the first layer of the array's axis=2 (i.e. domain[0,:,:])\
# You can always change to any other layers as the inlet for this drainage.
label_check = seg_im_ero_label_temp[0,seg_im_ero_label_temp[0,:]!=0]
label_check = np.unique(label_check)
# NOTE the following lines are only for your to check things
# ******************** For check *******************************#
# It assign the labelled array as: NW -> 1, W -> 2, Solid -> 0
#seg_im_ero_label_show = seg_im_ero_label.copy()
#seg_im_ero_label_show[seg_im_ero_label_show !=1] = 2
#seg_im_ero_label_show[np.logical_not(seg_image_2d)]=0
# ******************** End: for check **************************#
seg_im_ero_label = np.zeros_like(seg_im_ero_label_temp,dtype=bool)
for labels in label_check:
seg_im_ero_label = np.logical_or(seg_im_ero_label,seg_im_ero_label_temp==labels)
seg_im_ero_label = seg_im_ero_label.astype(np.uint8)
# Step 3: perform dilation on the labelled pore space
seg_im_ero_label_dil = morphology.binary_dilation(seg_im_ero_label,structure=circle,border_value=0)
# NOTE: 'border_value' for dilation should be 'False'
# NOTE: the dtype of 'seg_im_ero_label_dil' is 'bool'
seg_im_ero_label_dil = seg_im_ero_label_dil.astype(np.uint8)
seg_im_ero_label_dil[np.logical_not(seg_im_ero_label_dil)]=2
seg_im_ero_label_dil[np.logical_not(seg_image)]=0
Sw = (seg_im_ero_label_dil==2).sum()/pore_vol
else: # 3D porous medium
seg_image = seg_image_input>0.0
pore_vol = 1.0*seg_image.sum()
radius = R_critical
# Step 1.1: Create structuring element
domain_size = int(np.rint(radius*2)+2)
grid = np.indices((domain_size,domain_size,domain_size))
mk_circle = (grid[0]-domain_size/2)**2 + (grid[1]-domain_size/2)**2 + (grid[2]-domain_size/2)**2 <= radius**2
circle = np.zeros((domain_size,domain_size,domain_size),dtype=np.uint8)
circle[mk_circle]=1
circle = extract_shape(circle).astype(bool)
# Step 1.2: Perform erosion on the pore space
# NOTE: the dtype of 'seg_im_ero' is 'bool'
seg_im_ero = morphology.binary_erosion(seg_image,structure=circle,border_value=1)
# NOTE: 'border_value' for erosion should be 'True'
# Step 2: Label the eroded pore space
# NOTE: Assume the NW phase reservoir is at the first layer of the domain
# i.e. at seg_image[0,:] - adjust it if this does not suit your need
# For erosion, assume that diagonals are not considered
seg_im_ero_label_temp,num_features = measurements.label(seg_im_ero,structure=morphology.generate_binary_structure(3,1))
#seg_im_ero_label_temp,num_features = measurements.label(seg_im_ero,structure=morphology.generate_binary_structure(3,3))
# NOTE: Here I assume the inlet is at the first layer of the array's axis=2 (i.e. domain[0,:,:])\
# You can always change to any other layers as the inlet for this drainage.
label_check = seg_im_ero_label_temp[0,seg_im_ero_label_temp[0,:]!=0]
label_check = np.unique(label_check)
# NOTE the following lines are only for your to check things
# ******************** For check *******************************#
# It assign the labelled array as: NW -> 1, W -> 2, Solid -> 0
#seg_im_ero_label_show = seg_im_ero_label.copy()
#seg_im_ero_label_show[seg_im_ero_label_show !=1] = 2
#seg_im_ero_label_show[np.logical_not(seg_image_2d)]=0
# ******************** End: for check **************************#
seg_im_ero_label = np.zeros_like(seg_im_ero_label_temp,dtype=bool)
for labels in label_check:
seg_im_ero_label = np.logical_or(seg_im_ero_label,seg_im_ero_label_temp==labels)
seg_im_ero_label = seg_im_ero_label.astype(np.uint8)
# Step 3: perform dilation on the labelled pore space
seg_im_ero_label_dil = morphology.binary_dilation(seg_im_ero_label,structure=circle,border_value=0)
# NOTE: 'border_value' for dilation should be 'False'
# NOTE: the dtype of 'seg_im_ero_label_dil' is 'bool'
seg_im_ero_label_dil = seg_im_ero_label_dil.astype(np.uint8)
seg_im_ero_label_dil[np.logical_not(seg_im_ero_label_dil)]=2
seg_im_ero_label_dil[np.logical_not(seg_image)]=0
Sw = (seg_im_ero_label_dil==2).sum()/pore_vol
#end if
return (seg_im_ero_label_dil,Sw)
#end def
def generate_morph_drain_curv(seg_image_input,R_critical):
# The method for this function follows Hilper & Miller AWR(2001)
# 1. Perform erosion for the pore space with radius of R_critical
# 2. Label the eroded pore space, and leave only the pore space that is still
# connected with the non-wetting phase reservoir
# 3. Perform the dilation for the labelled pore space with radius of R_critical
# ****************************************************************************
# Currently I am provided with a 3D SignDist image which has positive values
# in the pore space and 0.0 in the solid phase.
# ****************************************************************************
if seg_image_input.ndim == 2:
pore_vol = 1.0*(seg_image_input>0.0).sum()
radius = R_critical
print 'Morphological Drainage: processing critical radius: '+str(radius)+' now......'
# Step 1.1: Create structuring element
domain_size = int(np.rint(radius*2)+2)
grid = np.indices((domain_size,domain_size))
mk_circle = (grid[0]-domain_size/2)**2 + (grid[1]-domain_size/2)**2 <= radius**2
circle = np.zeros((domain_size,domain_size),dtype=np.uint8)
circle[mk_circle]=1
circle = extract_shape(circle).astype(bool)
# Step 1.2: Perform erosion on the pore space
# NOTE: the dtype of 'seg_im_ero' is 'bool'
seg_im_ero = morphology.binary_erosion(seg_image_input>0.0,structure=circle,border_value=1)
# NOTE: 'border_value' for erosion should be 'True'
# Step 2: Label the eroded pore space
# NOTE: Assume the NW phase reservoir is at the first layer of the domain
# i.e. at seg_image[0,:] - adjust it if this does not suit your need
# For erosion, assume that diagonals are not considered
seg_im_ero_label_temp,num_features = measurements.label(seg_im_ero,structure=morphology.generate_binary_structure(2,1))
#seg_im_ero_label_temp,num_features = measurements.label(seg_im_ero,structure=morphology.generate_binary_structure(2,2))
# NOTE: Here I assume the inlet is at the first layer of the array's axis=2 (i.e. domain[0,:,:])\
# You can always change to any other layers as the inlet for this drainage.
label_check = seg_im_ero_label_temp[0,seg_im_ero_label_temp[0,:]!=0]
label_check = np.unique(label_check)
# NOTE the following lines are only for your to check things
# ******************** For check *******************************#
# It assign the labelled array as: NW -> 1, W -> 2, Solid -> 0
#seg_im_ero_label_show = seg_im_ero_label.copy()
#seg_im_ero_label_show[seg_im_ero_label_show !=1] = 2
#seg_im_ero_label_show[np.logical_not(seg_image_2d)]=0
# ******************** End: for check **************************#
seg_im_ero_label = np.zeros_like(seg_im_ero_label_temp,dtype=bool)
for labels in label_check:
seg_im_ero_label = np.logical_or(seg_im_ero_label,seg_im_ero_label_temp==labels)
#seg_im_ero_label = seg_im_ero_label.astype(np.uint8)
# Step 3: perform dilation on the labelled pore space
seg_im_ero_label_dil = morphology.binary_dilation(seg_im_ero_label,structure=circle,border_value=0)
# NOTE: 'border_value' for dilation should be 'False'
# NOTE: the dtype of 'seg_im_ero_label_dil' is 'bool'
seg_im_ero_label_dil[seg_image_input<=0.0]=False
Sw = 1.0 - seg_im_ero_label_dil.sum()/pore_vol
else:
pore_vol = 1.0*(seg_image_input>0.0).sum()
radius = R_critical
print 'Morphological Drainage: processing critical radius: '+str(radius)+' now......'
# Step 1.1: Create structuring element
domain_size = int(np.rint(radius*2)+2)
grid = np.indices((domain_size,domain_size,domain_size))
mk_circle = (grid[0]-domain_size/2)**2 + (grid[1]-domain_size/2)**2 + (grid[2]-domain_size/2)**2 <= radius**2
circle = np.zeros((domain_size,domain_size,domain_size),dtype=np.uint8)
circle[mk_circle]=1
circle = extract_shape(circle).astype(bool)
# Step 1.2: Perform erosion on the pore space
# NOTE: the dtype of 'seg_im_ero' is 'bool'
seg_im_ero = morphology.binary_erosion(seg_image_input>0.0,structure=circle,border_value=1)
# NOTE: 'border_value' for erosion should be 'True'
# Step 2: Label the eroded pore space
# NOTE: Assume the NW phase reservoir is at the first layer of the domain
# i.e. at seg_image[0,:] - adjust it if this does not suit your need
# For erosion, assume that diagonals are not considered
seg_im_ero_label_temp,num_features = measurements.label(seg_im_ero,structure=morphology.generate_binary_structure(3,1))
#seg_im_ero_label_temp,num_features = measurements.label(seg_im_ero,structure=morphology.generate_binary_structure(3,3))
# NOTE: Here I assume the inlet is at the first layer of the array's axis=2 (i.e. domain[0,:,:])\
# You can always change to any other layers as the inlet for this drainage.
label_check = seg_im_ero_label_temp[0,seg_im_ero_label_temp[0,:]!=0]
label_check = np.unique(label_check)
# NOTE the following lines are only for your to check things
# ******************** For check *******************************#
# It assign the labelled array as: NW -> 1, W -> 2, Solid -> 0
#seg_im_ero_label_show = seg_im_ero_label.copy()
#seg_im_ero_label_show[seg_im_ero_label_show !=1] = 2
#seg_im_ero_label_show[np.logical_not(seg_image_2d)]=0
# ******************** End: for check **************************#
seg_im_ero_label = np.zeros_like(seg_im_ero_label_temp,dtype=bool)
for labels in label_check:
seg_im_ero_label = np.logical_or(seg_im_ero_label,seg_im_ero_label_temp==labels)
#seg_im_ero_label = seg_im_ero_label.astype(np.uint8)
# Step 3: perform dilation on the labelled pore space
seg_im_ero_label_dil = morphology.binary_dilation(seg_im_ero_label,structure=circle,border_value=0)
# NOTE: 'border_value' for dilation should be 'False'
# NOTE: the dtype of 'seg_im_ero_label_dil' is 'bool'
seg_im_ero_label_dil[seg_image_input<=0.0]=False
Sw = 1.0 - seg_im_ero_label_dil.sum()/pore_vol
#end if
return Sw
#end def
def extract_shape(domain):
if domain.ndim == 3:
where_tube = np.where(domain)
zStart = where_tube[0].min()
zEnd = where_tube[0].max()
yStart = where_tube[1].min()
yEnd = where_tube[1].max()
xStart = where_tube[2].min()
xEnd = where_tube[2].max()
domain_seg = domain[zStart:zEnd+1,yStart:yEnd+1,xStart:xEnd+1].copy()
# IMPORTANT: if you have "domain_seg = domain[yStart:yEnd+1,xStart:xEnd+1]"
# then "domain_seg" is only a view of domain, and later on you have
# any changes on your "domain_seg", the "domain" will also be changed
# correspondingly, which might introduce unexpected conflicts and errors
else: # domain.ndim == 2
where_tube = np.where(domain)
yStart = where_tube[0].min()
yEnd = where_tube[0].max()
xStart = where_tube[1].min()
xEnd = where_tube[1].max()
domain_seg = domain[yStart:yEnd+1,xStart:xEnd+1].copy()
return domain_seg
#end def