Files
LBPM/tests/lbpm_uCT_pp.cpp
2016-06-19 13:31:29 -04:00

906 lines
30 KiB
C++

// Sequential blob analysis
// Reads parallel simulation data and performs connectivity analysis
// and averaging on a blob-by-blob basis
// James E. McClure 2014
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <iostream>
#include <fstream>
#include <sstream>
#include <functional>
#include "common/Array.h"
#include "common/Domain.h"
#include "common/Communication.h"
#include "common/MPI_Helpers.h"
#include "common/imfilter.h"
#include "IO/MeshDatabase.h"
#include "IO/Mesh.h"
#include "IO/Writer.h"
#include "IO/netcdf.h"
#include "analysis/analysis.h"
#include "analysis/eikonal.h"
#include "ProfilerApp.h"
template<class T>
inline int sign( T x )
{
if ( x==0 )
return 0;
return x>0 ? 1:-1;
}
inline void Med3D( const Array<float> &Input, Array<float> &Output )
{
PROFILE_START("Med3D");
// Perform a 3D Median filter on Input array with specified width
int i,j,k,ii,jj,kk;
int imin,jmin,kmin,imax,jmax,kmax;
float *List;
List=new float[27];
int Nx = int(Input.size(0));
int Ny = int(Input.size(1));
int Nz = int(Input.size(2));
for (k=1; k<Nz-1; k++){
for (j=1; j<Ny-1; j++){
for (i=1; i<Nx-1; i++){
// Just use a 3x3x3 window (hit recursively if needed)
imin = i-1;
jmin = j-1;
kmin = k-1;
imax = i+2;
jmax = j+2;
kmax = k+2;
// Populate the list with values in the window
int Number=0;
for (kk=kmin; kk<kmax; kk++){
for (jj=jmin; jj<jmax; jj++){
for (ii=imin; ii<imax; ii++){
List[Number++] = Input(ii,jj,kk);
}
}
}
// Sort the first 5 entries and return the median
for (ii=0; ii<14; ii++){
for (jj=ii+1; jj<27; jj++){
if (List[jj] < List[ii]){
float tmp = List[ii];
List[ii] = List[jj];
List[jj] = tmp;
}
}
}
// Return the median
Output(i,j,k) = List[13];
}
}
}
PROFILE_STOP("Med3D");
}
inline float trilinear( float dx, float dy, float dz, float f1, float f2,
float f3, float f4, float f5, float f6, float f7, float f8 )
{
double f, dx2, dy2, dz2, h0, h1;
dx2 = 1.0 - dx;
dy2 = 1.0 - dy;
dz2 = 1.0 - dz;
h0 = ( dx * f2 + dx2 * f1 ) * dy2 + ( dx * f4 + dx2 * f3 ) * dy;
h1 = ( dx * f6 + dx2 * f5 ) * dy2 + ( dx * f8 + dx2 * f7 ) * dy;
f = h0 * dz2 + h1 * dz;
return ( f );
}
inline void InterpolateMesh( const Array<float> &Coarse, Array<float> &Fine )
{
PROFILE_START("InterpolateMesh");
// Interpolate values from a Coarse mesh to a fine one
// This routine assumes cell-centered meshes with 1 ghost cell
// Fine mesh
int Nx = int(Fine.size(0))-2;
int Ny = int(Fine.size(1))-2;
int Nz = int(Fine.size(2))-2;
// Coarse mesh
int nx = int(Coarse.size(0))-2;
int ny = int(Coarse.size(1))-2;
int nz = int(Coarse.size(2))-2;
// compute the stride
int hx = Nx/nx;
int hy = Ny/ny;
int hz = Nz/nz;
ASSERT(nx*hx==Nx);
ASSERT(ny*hy==Ny);
ASSERT(nz*hz==Nz);
// value to map distance between meshes (since distance is in voxels)
// usually hx=hy=hz (or something very close)
// the mapping is not exact
// however, it's assumed the coarse solution will be refined
// a good guess is the goal here!
float mapvalue = sqrt(hx*hx+hy*hy+hz*hz);
// Interpolate to the fine mesh
for (int k=-1; k<Nz+1; k++){
int k0 = floor((k-0.5*hz)/hz);
int k1 = k0+1;
int k2 = k0+2;
float dz = ( (k+0.5) - (k0+0.5)*hz ) / hz;
ASSERT(k0>=-1&&k0<nz+1&&dz>=0&&dz<=1);
for (int j=-1; j<Ny+1; j++){
int j0 = floor((j-0.5*hy)/hy);
int j1 = j0+1;
int j2 = j0+2;
float dy = ( (j+0.5) - (j0+0.5)*hy ) / hy;
ASSERT(j0>=-1&&j0<ny+1&&dy>=0&&dy<=1);
for (int i=-1; i<Nx+1; i++){
int i0 = floor((i-0.5*hx)/hx);
int i1 = i0+1;
int i2 = i0+2;
float dx = ( (i+0.5) - (i0+0.5)*hx ) / hx;
ASSERT(i0>=-1&&i0<nx+1&&dx>=0&&dx<=1);
float val = trilinear( dx, dy, dz,
Coarse(i1,j1,k1), Coarse(i2,j1,k1), Coarse(i1,j2,k1), Coarse(i2,j2,k1),
Coarse(i1,j1,k2), Coarse(i2,j1,k2), Coarse(i1,j2,k2), Coarse(i2,j2,k2) );
Fine(i+1,j+1,k+1) = mapvalue*val;
}
}
}
PROFILE_STOP("InterpolateMesh");
}
inline int NLM3D( const Array<float> &Input, Array<float> &Mean,
const Array<float> &Distance, Array<float> &Output, const int d, const float h)
{
PROFILE_START("NLM3D");
// Implemenation of 3D non-local means filter
// d determines the width of the search volume
// h is a free parameter for non-local means (i.e. 1/sigma^2)
// Distance is the signed distance function
// If Distance(i,j,k) > THRESHOLD_DIST then don't compute NLM
float THRESHOLD_DIST = float(d);
float weight, sum;
int i,j,k,ii,jj,kk;
int imin,jmin,kmin,imax,jmax,kmax;
int returnCount=0;
int Nx = int(Input.size(0));
int Ny = int(Input.size(1));
int Nz = int(Input.size(2));
// Compute the local means
for (k=1; k<Nz-1; k++){
for (j=1; j<Ny-1; j++){
for (i=1; i<Nx-1; i++){
imin = max(0,i-d);
jmin = max(0,j-d);
kmin = max(0,k-d);
imax = min(Nx-1,i+d);
jmax = min(Ny-1,j+d);
kmax = min(Nz-1,k+d);
// Populate the list with values in the window
sum = 0; weight=0;
for (kk=kmin; kk<kmax; kk++){
for (jj=jmin; jj<jmax; jj++){
for (ii=imin; ii<imax; ii++){
sum += Input(ii,jj,kk);
weight++;
}
}
}
Mean(i,j,k) = sum / weight;
}
}
}
// Compute the non-local means
for (k=1; k<Nz-1; k++){
for (j=1; j<Ny-1; j++){
for (i=1; i<Nx-1; i++){
if (fabs(Distance(i,j,k)) < THRESHOLD_DIST){
// compute the expensive non-local means
sum = 0; weight=0;
imin = max(0,i-d);
jmin = max(0,j-d);
kmin = max(0,k-d);
imax = min(Nx-1,i+d);
jmax = min(Ny-1,j+d);
kmax = min(Nz-1,k+d);
for (kk=kmin; kk<kmax; kk++){
for (jj=jmin; jj<jmax; jj++){
for (ii=imin; ii<imax; ii++){
float tmp = Mean(i,j,k) - Mean(ii,jj,kk);
sum += exp(-tmp*tmp*h)*Input(ii,jj,kk);
weight += exp(-tmp*tmp*h);
}
}
}
returnCount++;
//Output(i,j,k) = Mean(i,j,k);
Output(i,j,k) = sum / weight;
}
else{
// Just return the mean
Output(i,j,k) = Mean(i,j,k);
}
}
}
}
// Return the number of sites where NLM was applied
PROFILE_STOP("NLM3D");
return returnCount;
}
// Reading the domain information file
void read_domain( int rank, int nprocs, MPI_Comm comm,
int& nprocx, int& nprocy, int& nprocz, int& nx, int& ny, int& nz,
int& nspheres, double& Lx, double& Ly, double& Lz )
{
if (rank==0){
ifstream domain("Domain.in");
domain >> nprocx;
domain >> nprocy;
domain >> nprocz;
domain >> nx;
domain >> ny;
domain >> nz;
domain >> nspheres;
domain >> Lx;
domain >> Ly;
domain >> Lz;
}
MPI_Barrier(comm);
// Computational domain
//.................................................
MPI_Bcast(&nx,1,MPI_INT,0,comm);
MPI_Bcast(&ny,1,MPI_INT,0,comm);
MPI_Bcast(&nz,1,MPI_INT,0,comm);
MPI_Bcast(&nprocx,1,MPI_INT,0,comm);
MPI_Bcast(&nprocy,1,MPI_INT,0,comm);
MPI_Bcast(&nprocz,1,MPI_INT,0,comm);
MPI_Bcast(&nspheres,1,MPI_INT,0,comm);
MPI_Bcast(&Lx,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Ly,1,MPI_DOUBLE,0,comm);
MPI_Bcast(&Lz,1,MPI_DOUBLE,0,comm);
MPI_Barrier(comm);
}
// Smooth the data using the distance
void smooth( const Array<float>& VOL, const Array<float>& Dist, float sigma, Array<float>& MultiScaleSmooth, fillHalo<float>& fillFloat )
{
for (size_t i=0; i<VOL.length(); i++) {
// use exponential weight based on the distance
float dst = Dist(i);
float tmp = exp(-(dst*dst)/(sigma*sigma));
float value = dst>0 ? -1:1;
MultiScaleSmooth(i) = tmp*VOL(i) + (1-tmp)*value;
}
fillFloat.fill(MultiScaleSmooth);
}
// Segment the data
void segment( const Array<float>& data, Array<char>& ID, float tol )
{
ASSERT(data.size()==ID.size());
for (size_t i=0; i<data.length(); i++) {
if ( data(i) > tol )
ID(i) = 0;
else
ID(i) = 1;
}
}
// Remove disconnected phases
void removeDisconnected( Array<char>& ID, const Domain& Dm )
{
// Run blob identification to remove disconnected volumes
BlobIDArray GlobalBlobID;
DoubleArray SignDist(ID.size());
DoubleArray Phase(ID.size());
for (size_t i=0; i<ID.length(); i++) {
SignDist(i) = (2*ID(i)-1);
Phase(i) = 1;
}
ComputeGlobalBlobIDs( ID.size(0)-2, ID.size(1)-2, ID.size(2)-2,
Dm.rank_info, Phase, SignDist, 0, 0, GlobalBlobID, Dm.Comm );
for (size_t i=0; i<ID.length(); i++) {
if ( GlobalBlobID(i) > 0 )
ID(i) = 0;
ID(i) = GlobalBlobID(i);
}
}
// Solve a level (without any coarse level information)
void solve( const Array<float>& VOL, Array<float>& Mean, Array<char>& ID,
Array<float>& Dist, Array<float>& MultiScaleSmooth, Array<float>& NonLocalMean,
fillHalo<float>& fillFloat, const Domain& Dm, int nprocx )
{
PROFILE_SCOPED(timer,"solve");
// Compute the median filter on the sparse array
Med3D( VOL, Mean );
fillFloat.fill( Mean );
segment( Mean, ID, 0.01 );
// Compute the distance using the segmented volume
Eikonal3D( Dist, ID, Dm, ID.size(0)*nprocx );
fillFloat.fill(Dist);
smooth( VOL, Dist, 2.0, MultiScaleSmooth, fillFloat );
// Compute non-local mean
int depth = 5;
float sigsq=0.1;
int nlm_count = NLM3D( MultiScaleSmooth, Mean, Dist, NonLocalMean, depth, sigsq);
fillFloat.fill(NonLocalMean);
}
// Refine a solution from a coarse grid to a fine grid
void refine( const Array<float>& Dist_coarse,
const Array<float>& VOL, Array<float>& Mean, Array<char>& ID,
Array<float>& Dist, Array<float>& MultiScaleSmooth, Array<float>& NonLocalMean,
fillHalo<float>& fillFloat, const Domain& Dm, int nprocx, int level )
{
PROFILE_SCOPED(timer,"refine");
int ratio[3] = { int(Dist.size(0)/Dist_coarse.size(0)),
int(Dist.size(1)/Dist_coarse.size(1)),
int(Dist.size(2)/Dist_coarse.size(2)) };
// Interpolate the distance from the coarse to fine grid
InterpolateMesh( Dist_coarse, Dist );
// Compute the median filter on the array and segment
Med3D( VOL, Mean );
fillFloat.fill( Mean );
segment( Mean, ID, 0.01 );
// If the ID has the wrong distance, set the distance to 0 and run a simple filter to set neighbors to 0
for (size_t i=0; i<ID.length(); i++) {
char id = Dist(i)>0 ? 1:0;
if ( id != ID(i) )
Dist(i) = 0;
}
fillFloat.fill( Dist );
std::function<float(int,const float*)> filter_1D = []( int N, const float* data )
{
bool zero = data[0]==0 || data[2]==0;
return zero ? data[1]*1e-12 : data[1];
};
std::vector<imfilter::BC> BC(3,imfilter::BC::replicate);
std::vector<std::function<float(int,const float*)>> filter_set(3,filter_1D);
Dist = imfilter::imfilter_separable<float>( Dist, {1,1,1}, filter_set, BC );
fillFloat.fill( Dist );
// Smooth the volume data
float lambda = 2*sqrt(double(ratio[0]*ratio[0]+ratio[1]*ratio[1]+ratio[2]*ratio[2]));
smooth( VOL, Dist, lambda, MultiScaleSmooth, fillFloat );
// Compute non-local mean
int depth = 3;
float sigsq = 0.1;
int nlm_count = NLM3D( MultiScaleSmooth, Mean, Dist, NonLocalMean, depth, sigsq);
fillFloat.fill(NonLocalMean);
segment( NonLocalMean, ID, 0.001 );
for (size_t i=0; i<ID.length(); i++) {
char id = Dist(i)>0 ? 1:0;
if ( id!=ID(i) || fabs(Dist(i))<1 )
Dist(i) = 2.0*ID(i)-1.0;
}
// Remove disconnected domains
//removeDisconnected( ID, Dm );
// Compute the distance using the segmented volume
if ( level > 0 ) {
//Eikonal3D( Dist, ID, Dm, ID.size(0)*nprocx );
//CalcDist3D( Dist, ID, Dm );
CalcDistMultiLevel( Dist, ID, Dm );
fillFloat.fill(Dist);
}
}
// Remove regions that are likely noise by shrinking the volumes by dx,
// removing all values that are more than dx+delta from the surface, and then
// growing by dx+delta and intersecting with the original data
void filter_final( Array<char>& ID, Array<float>& Dist,
fillHalo<float>& fillFloat, const Domain& Dm,
Array<float>& Mean, Array<float>& Dist1, Array<float>& Dist2 )
{
PROFILE_SCOPED(timer,"filter_final");
int rank;
MPI_Comm_rank(Dm.Comm,&rank);
int Nx = Dm.Nx-2;
int Ny = Dm.Ny-2;
int Nz = Dm.Nz-2;
// Calculate the distance
CalcDistMultiLevel( Dist, ID, Dm );
fillFloat.fill(Dist);
// Compute the range to shrink the volume based on the L2 norm of the distance
Array<float> Dist0(Nx,Ny,Nz);
fillFloat.copy(Dist,Dist0);
float tmp = 0;
for (size_t i=0; i<Dist0.length(); i++)
tmp += Dist0(i)*Dist0(i);
tmp = sqrt( sumReduce(Dm.Comm,tmp) / sumReduce(Dm.Comm,(float)Dist0.length()) );
const float dx1 = 0.3*tmp;
const float dx2 = 1.05*dx1;
if (rank==0)
printf(" %0.1f %0.1f %0.1f\n",tmp,dx1,dx2);
// Update the IDs/Distance removing regions that are < dx of the range
Dist1 = Dist;
Dist2 = Dist;
Array<char> ID1 = ID;
Array<char> ID2 = ID;
for (size_t i=0; i<ID.length(); i++) {
ID1(i) = Dist(i)<-dx1 ? 1:0;
ID2(i) = Dist(i)> dx1 ? 1:0;
}
//Array<float> Dist1 = Dist;
//Array<float> Dist2 = Dist;
CalcDistMultiLevel( Dist1, ID1, Dm );
CalcDistMultiLevel( Dist2, ID2, Dm );
fillFloat.fill(Dist1);
fillFloat.fill(Dist2);
// Keep those regions that are within dx2 of the new volumes
Mean = Dist;
for (size_t i=0; i<ID.length(); i++) {
if ( Dist1(i)+dx2>0 && ID(i)<=0 ) {
Mean(i) = -1;
} else if ( Dist2(i)+dx2>0 && ID(i)>0 ) {
Mean(i) = 1;
} else {
Mean(i) = Dist(i)>0 ? 0.5:-0.5;
}
}
// Find regions of uncertainty that are entirely contained within another region
fillHalo<double> fillDouble(Dm.Comm,Dm.rank_info,Nx,Ny,Nz,1,1,1,0,1);
fillHalo<BlobIDType> fillInt(Dm.Comm,Dm.rank_info,Nx,Ny,Nz,1,1,1,0,1);
BlobIDArray GlobalBlobID;
DoubleArray SignDist(ID.size());
for (size_t i=0; i<ID.length(); i++)
SignDist(i) = fabs(Mean(i))==1 ? -1:1;
fillDouble.fill(SignDist);
DoubleArray Phase(ID.size());
Phase.fill(1);
ComputeGlobalBlobIDs( Nx, Ny, Nz, Dm.rank_info, Phase, SignDist, 0, 0, GlobalBlobID, Dm.Comm );
fillInt.fill(GlobalBlobID);
int N_blobs = maxReduce(Dm.Comm,GlobalBlobID.max()+1);
std::vector<float> mean(N_blobs,0);
std::vector<int> count(N_blobs,0);
for (int k=1; k<=Nz; k++) {
for (int j=1; j<=Ny; j++) {
for (int i=1; i<=Nx; i++) {
int id = GlobalBlobID(i,j,k);
if ( id >= 0 ) {
if ( GlobalBlobID(i-1,j,k)<0 ) {
mean[id] += Mean(i-1,j,k);
count[id]++;
}
if ( GlobalBlobID(i+1,j,k)<0 ) {
mean[id] += Mean(i+1,j,k);
count[id]++;
}
if ( GlobalBlobID(i,j-1,k)<0 ) {
mean[id] += Mean(i,j-1,k);
count[id]++;
}
if ( GlobalBlobID(i,j+1,k)<0 ) {
mean[id] += Mean(i,j+1,k);
count[id]++;
}
if ( GlobalBlobID(i,j,k-1)<0 ) {
mean[id] += Mean(i,j,k-1);
count[id]++;
}
if ( GlobalBlobID(i,j,k+1)<0 ) {
mean[id] += Mean(i,j,k+1);
count[id]++;
}
}
}
}
}
mean = sumReduce(Dm.Comm,mean);
count = sumReduce(Dm.Comm,count);
for (size_t i=0; i<mean.size(); i++)
mean[i] /= count[i];
/*if (rank==0) {
for (size_t i=0; i<mean.size(); i++)
printf("%i %0.4f\n",i,mean[i]);
}*/
for (size_t i=0; i<Mean.length(); i++) {
int id = GlobalBlobID(i);
if ( id >= 0 ) {
if ( fabs(mean[id]) > 0.95 ) {
// Isolated domain surrounded by one domain
GlobalBlobID(i) = -2;
Mean(i) = sign(mean[id]);
} else {
// Boarder volume, set to liquid
Mean(i) = 1;
}
}
}
// Perform the final segmentation and update the distance
fillFloat.fill(Mean);
segment( Mean, ID, 0.01 );
CalcDistMultiLevel( Dist, ID, Dm );
fillFloat.fill(Dist);
}
int main(int argc, char **argv)
{
// Initialize MPI
int rank, nprocs;
MPI_Init(&argc,&argv);
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Comm_rank(comm,&rank);
MPI_Comm_size(comm,&nprocs);
Utilities::setErrorHandlers();
PROFILE_START("Main");
//std::vector<std::string> filenames;
if ( argc<2 ) {
if ( rank == 0 )
printf("At least one filename must be specified\n");
return 1;
}
std::string filename = std::string(argv[1]);
if ( rank == 0 )
printf("Input data file: %s\n",filename.c_str());
//.......................................................................
// Reading the domain information file
//.......................................................................
int nprocx, nprocy, nprocz, nx, ny, nz, nspheres;
double Lx, Ly, Lz;
read_domain( rank, nprocs, comm, nprocx, nprocy, nprocz, nx, ny, nz, nspheres, Lx, Ly, Lz );
int BC=0;
// Check that the number of processors >= the number of ranks
if ( rank==0 ) {
printf("Number of MPI ranks required: %i \n", nprocx*nprocy*nprocz);
printf("Number of MPI ranks used: %i \n", nprocs);
printf("Full domain size: %i x %i x %i \n",nx*nprocx,ny*nprocy,nz*nprocz);
}
if ( nprocs < nprocx*nprocy*nprocz ){
ERROR("Insufficient number of processors");
}
// Determine the maximum number of levels for the desired coarsen ratio
int ratio[3] = {4,4,4};
std::vector<int> Nx(1,nx), Ny(1,ny), Nz(1,nz);
while ( Nx.back()%ratio[0]==0 && Nx.back()>8 &&
Ny.back()%ratio[1]==0 && Ny.back()>8 &&
Nz.back()%ratio[2]==0 && Nz.back()>8 )
{
Nx.push_back( Nx.back()/ratio[0] );
Ny.push_back( Ny.back()/ratio[1] );
Nz.push_back( Nz.back()/ratio[2] );
}
int N_levels = Nx.size();
// Initialize the domain
std::vector<std::shared_ptr<Domain>> Dm(N_levels);
for (int i=0; i<N_levels; i++) {
Dm[i].reset( new Domain(Nx[i],Ny[i],Nz[i],rank,nprocx,nprocy,nprocz,Lx,Ly,Lz,BC) );
int N = (Nx[i]+2)*(Ny[i]+2)*(Nz[i]+2);
for (int n=0; n<N; n++)
Dm[i]->id[n] = 1;
Dm[i]->CommInit(comm);
}
// array containing a distance mask
Array<float> MASK(Nx[i]+2,Ny[i]+2,Nz[i]+2);
// Create the level data
std::vector<Array<char>> ID(N_levels);
std::vector<Array<float>> LOCVOL(N_levels);
std::vector<Array<float>> Dist(N_levels);
std::vector<Array<float>> MultiScaleSmooth(N_levels);
std::vector<Array<float>> Mean(N_levels);
std::vector<Array<float>> NonLocalMean(N_levels);
std::vector<std::shared_ptr<fillHalo<double>>> fillDouble(N_levels);
std::vector<std::shared_ptr<fillHalo<float>>> fillFloat(N_levels);
std::vector<std::shared_ptr<fillHalo<char>>> fillChar(N_levels);
for (int i=0; i<N_levels; i++) {
ID[i] = Array<char>(Nx[i]+2,Ny[i]+2,Nz[i]+2);
LOCVOL[i] = Array<float>(Nx[i]+2,Ny[i]+2,Nz[i]+2);
Dist[i] = Array<float>(Nx[i]+2,Ny[i]+2,Nz[i]+2);
MultiScaleSmooth[i] = Array<float>(Nx[i]+2,Ny[i]+2,Nz[i]+2);
Mean[i] = Array<float>(Nx[i]+2,Ny[i]+2,Nz[i]+2);
NonLocalMean[i] = Array<float>(Nx[i]+2,Ny[i]+2,Nz[i]+2);
ID[i].fill(0);
LOCVOL[i].fill(0);
Dist[i].fill(0);
MultiScaleSmooth[i].fill(0);
Mean[i].fill(0);
NonLocalMean[i].fill(0);
fillDouble[i].reset(new fillHalo<double>(Dm[i]->Comm,Dm[i]->rank_info,Nx[i],Ny[i],Nz[i],1,1,1,0,1) );
fillFloat[i].reset(new fillHalo<float>(Dm[i]->Comm,Dm[i]->rank_info,Nx[i],Ny[i],Nz[i],1,1,1,0,1) );
fillChar[i].reset(new fillHalo<char>(Dm[i]->Comm,Dm[i]->rank_info,Nx[i],Ny[i],Nz[i],1,1,1,0,1) );
}
// Read the subvolume of interest on each processor
PROFILE_START("ReadVolume");
int fid = netcdf::open(filename);
std::string varname("VOLUME");
netcdf::VariableType type = netcdf::getVarType( fid, varname );
std::vector<size_t> dim = netcdf::getVarDim( fid, varname );
if ( rank == 0 ) {
printf("Reading %s (%s)\n",varname.c_str(),netcdf::VariableTypeName(type).c_str());
printf(" dims = %i x %i x %i \n",int(dim[0]),int(dim[1]),int(dim[2]));
}
{
RankInfoStruct info( rank, nprocx, nprocy, nprocz );
int x = info.ix*nx;
int y = info.jy*ny;
int z = info.kz*nz;
// Read the local data
Array<short> VOLUME = netcdf::getVar<short>( fid, varname, {x,y,z}, {nx,ny,nz}, {1,1,1} );
// Copy the data and fill the halos
LOCVOL[0].fill(0);
fillFloat[0]->copy( VOLUME, LOCVOL[0] );
fillFloat[0]->fill( LOCVOL[0] );
}
netcdf::close( fid );
MPI_Barrier(comm);
PROFILE_STOP("ReadVolume");
if (rank==0) printf("Read complete\n");
// Filter the original data
PROFILE_START("Filter source data");
{
// Perform a hot-spot filter on the data
std::vector<imfilter::BC> BC = { imfilter::BC::replicate, imfilter::BC::replicate, imfilter::BC::replicate };
std::function<float(const Array<float>&)> filter_3D = []( const Array<float>& data )
{
float min1 = std::min(data(0,1,1),data(2,1,1));
float min2 = std::min(data(1,0,1),data(1,2,1));
float min3 = std::min(data(1,1,0),data(1,1,2));
float max1 = std::max(data(0,1,1),data(2,1,1));
float max2 = std::max(data(1,0,1),data(1,2,1));
float max3 = std::max(data(1,1,0),data(1,1,2));
float min = std::min(min1,std::min(min2,min3));
float max = std::max(max1,std::max(max2,max3));
return std::max(std::min(data(1,1,1),max),min);
};
std::function<float(const Array<float>&)> filter_1D = []( const Array<float>& data )
{
float min = std::min(data(0),data(2));
float max = std::max(data(0),data(2));
return std::max(std::min(data(1),max),min);
};
//LOCVOL[0] = imfilter::imfilter<float>( LOCVOL[0], {1,1,1}, filter_3D, BC );
std::vector<std::function<float(const Array<float>&)>> filter_set(3,filter_1D);
LOCVOL[0] = imfilter::imfilter_separable<float>( LOCVOL[0], {1,1,1}, filter_set, BC );
fillFloat[0]->fill( LOCVOL[0] );
// Perform a gaussian filter on the data
int Nh[3] = { 2, 2, 2 };
float sigma[3] = { 1.0, 1.0, 1.0 };
std::vector<Array<float>> H(3);
H[0] = imfilter::create_filter<float>( { Nh[0] }, "gaussian", &sigma[0] );
H[1] = imfilter::create_filter<float>( { Nh[1] }, "gaussian", &sigma[1] );
H[2] = imfilter::create_filter<float>( { Nh[2] }, "gaussian", &sigma[2] );
LOCVOL[0] = imfilter::imfilter_separable( LOCVOL[0], H, BC );
fillFloat[0]->fill( LOCVOL[0] );
}
PROFILE_STOP("Filter source data");
// Compute the means for the high/low regions
// (should use automated mixture model to approximate histograms)
float THRESHOLD = 0.05*maxReduce( Dm[0]->Comm, std::max( LOCVOL[0].max(), fabs(LOCVOL[0].min()) ) );
float mean_plus=0;
float mean_minus=0;
int count_plus=0;
int count_minus=0;
for (int k=1;k<Nz[0]+1;k++) {
for (int j=1;j<Ny[0]+1;j++) {
for (int i=1;i<Nx[0]+1;i++) {
auto tmp = LOCVOL[0](i,j,k);
if ( tmp > THRESHOLD ) {
mean_plus += tmp;
count_plus++;
} else if ( tmp < -THRESHOLD ) {
mean_minus += tmp;
count_minus++;
}
}
}
}
mean_plus = sumReduce( Dm[0]->Comm, mean_plus ) / sumReduce( Dm[0]->Comm, count_plus );
mean_minus = sumReduce( Dm[0]->Comm, mean_minus ) / sumReduce( Dm[0]->Comm, count_minus );
if (rank==0) printf(" Region 1 mean (+): %f, Region 2 mean (-): %f \n",mean_plus, mean_minus);
// Scale the source data to +-1.0
for (size_t i=0; i<LOCVOL[0].length(); i++) {
if ( LOCVOL[0](i) >= 0 ) {
LOCVOL[0](i) /= mean_plus;
LOCVOL[0](i) = std::min( LOCVOL[0](i), 1.0f );
} else {
LOCVOL[0](i) /= -mean_minus;
LOCVOL[0](i) = std::max( LOCVOL[0](i), -1.0f );
}
}
// Fill the source data for the coarse meshes
PROFILE_START("CoarsenMesh");
for (int i=1; i<N_levels; i++) {
Array<float> filter(ratio[0],ratio[1],ratio[2]);
filter.fill(1.0f/filter.length());
Array<float> tmp(Nx[i-1],Ny[i-1],Nz[i-1]);
fillFloat[i-1]->copy( LOCVOL[i-1], tmp );
Array<float> coarse = tmp.coarsen( filter );
fillFloat[i]->copy( coarse, LOCVOL[i] );
fillFloat[i]->fill( LOCVOL[i] );
}
PROFILE_STOP("CoarsenMesh");
// Initialize the coarse level
PROFILE_START("Solve coarse mesh");
if (rank==0)
printf("Initialize coarse mesh\n");
solve( LOCVOL.back(), Mean.back(), ID.back(), Dist.back(), MultiScaleSmooth.back(),
NonLocalMean.back(), *fillFloat.back(), *Dm.back(), nprocx );
PROFILE_STOP("Solve coarse mesh");
// Refine the solution
PROFILE_START("Refine distance");
if (rank==0)
printf("Refine mesh\n");
for (int i=int(Nx.size())-2; i>=0; i--) {
if (rank==0)
printf(" Refining to level %i\n",int(i));
refine( Dist[i+1], LOCVOL[i], Mean[i], ID[i], Dist[i], MultiScaleSmooth[i],
NonLocalMean[i], *fillFloat[i], *Dm[i], nprocx, i );
}
PROFILE_STOP("Refine distance");
// Perform a final filter
PROFILE_START("Filtering final domains");
if (rank==0)
printf("Filtering final domains\n");
Array<float> filter_Mean, filter_Dist1, filter_Dist2;
filter_final( ID[0], Dist[0], *fillFloat[0], *Dm[0], filter_Mean, filter_Dist1, filter_Dist2 );
PROFILE_STOP("Filtering final domains");
//removeDisconnected( ID[0], *Dm[0] );
// Write the results to visit
if (rank==0) printf("Writing output \n");
std::vector<IO::MeshDataStruct> meshData(N_levels);
for (size_t i=0; i<Nx.size(); i++) {
// Mesh
meshData[i].meshName = "Level " + std::to_string(i+1);
meshData[i].mesh = std::shared_ptr<IO::DomainMesh>( new IO::DomainMesh(Dm[i]->rank_info,Nx[i],Ny[i],Nz[i],Lx,Ly,Lz) );
// Source data
std::shared_ptr<IO::Variable> OrigData( new IO::Variable() );
OrigData->name = "Source Data";
OrigData->type = IO::VolumeVariable;
OrigData->dim = 1;
OrigData->data.resize(Nx[i],Ny[i],Nz[i]);
meshData[i].vars.push_back(OrigData);
fillDouble[i]->copy( LOCVOL[i], OrigData->data );
// Non-Local Mean
std::shared_ptr<IO::Variable> NonLocMean( new IO::Variable() );
NonLocMean->name = "Non-Local Mean";
NonLocMean->type = IO::VolumeVariable;
NonLocMean->dim = 1;
NonLocMean->data.resize(Nx[i],Ny[i],Nz[i]);
meshData[i].vars.push_back(NonLocMean);
fillDouble[i]->copy( NonLocalMean[i], NonLocMean->data );
// Segmented Data
std::shared_ptr<IO::Variable> SegData( new IO::Variable() );
SegData->name = "Segmented Data";
SegData->type = IO::VolumeVariable;
SegData->dim = 1;
SegData->data.resize(Nx[i],Ny[i],Nz[i]);
meshData[i].vars.push_back(SegData);
fillDouble[i]->copy( ID[i], SegData->data );
// Signed Distance
std::shared_ptr<IO::Variable> DistData( new IO::Variable() );
DistData->name = "Signed Distance";
DistData->type = IO::VolumeVariable;
DistData->dim = 1;
DistData->data.resize(Nx[i],Ny[i],Nz[i]);
meshData[i].vars.push_back(DistData);
fillDouble[i]->copy( Dist[i], DistData->data );
// Smoothed Data
std::shared_ptr<IO::Variable> SmoothData( new IO::Variable() );
SmoothData->name = "Smoothed Data";
SmoothData->type = IO::VolumeVariable;
SmoothData->dim = 1;
SmoothData->data.resize(Nx[i],Ny[i],Nz[i]);
meshData[i].vars.push_back(SmoothData);
fillDouble[i]->copy( MultiScaleSmooth[i], SmoothData->data );
}
#if 0
std::shared_ptr<IO::Variable> filter_Mean_var( new IO::Variable() );
filter_Mean_var->name = "Mean";
filter_Mean_var->type = IO::VolumeVariable;
filter_Mean_var->dim = 1;
filter_Mean_var->data.resize(Nx[0],Ny[0],Nz[0]);
meshData[0].vars.push_back(filter_Mean_var);
fillDouble[0]->copy( filter_Mean, filter_Mean_var->data );
std::shared_ptr<IO::Variable> filter_Dist1_var( new IO::Variable() );
filter_Dist1_var->name = "Dist1";
filter_Dist1_var->type = IO::VolumeVariable;
filter_Dist1_var->dim = 1;
filter_Dist1_var->data.resize(Nx[0],Ny[0],Nz[0]);
meshData[0].vars.push_back(filter_Dist1_var);
fillDouble[0]->copy( filter_Dist1, filter_Dist1_var->data );
std::shared_ptr<IO::Variable> filter_Dist2_var( new IO::Variable() );
filter_Dist2_var->name = "Dist2";
filter_Dist2_var->type = IO::VolumeVariable;
filter_Dist2_var->dim = 1;
filter_Dist2_var->data.resize(Nx[0],Ny[0],Nz[0]);
meshData[0].vars.push_back(filter_Dist2_var);
fillDouble[0]->copy( filter_Dist2, filter_Dist2_var->data );
#endif
// Write visulization data
IO::writeData( 0, meshData, 2, comm );
if (rank==0) printf("Finished. \n");
/* for (k=0;k<nz;k++){
for (j=0;j<ny;j++){
for (i=0;i<nx;i++){
n = k*nx*ny+j*nx+i;
if (Dm.id[n]==char(SOLID)) Dm.id[n] = 0;
else if (Dm.id[n]==char(NWP)) Dm.id[n] = 1;
else Dm.id[n] = 2;
}
}
}
if (rank==0) printf("Domain set \n");
// Write the local volume files
char LocalRankString[8];
char LocalRankFilename[40];
sprintf(LocalRankString,"%05d",rank);
sprintf(LocalRankFilename,"Seg.%s",LocalRankString);
FILE * SEG;
SEG=fopen(LocalRankFilename,"wb");
fwrite(LOCVOL.get(),4,N,SEG);
fclose(SEG);
*/
PROFILE_STOP("Main");
PROFILE_SAVE("lbpm_uCT_pp",true);
MPI_Barrier(comm);
MPI_Finalize();
return 0;
}