LBPM/models/ColorModel.cpp
2018-10-23 00:43:59 -04:00

695 lines
23 KiB
C++

/*
color lattice boltzmann model
*/
#include "models/ColorModel.h"
#include "analysis/distance.h"
ScaLBL_ColorModel::ScaLBL_ColorModel(int RANK, int NP, MPI_Comm COMM):
rank(RANK), nprocs(NP), Restart(0),timestep(0),timestepMax(0),tauA(0),tauB(0),rhoA(0),rhoB(0),alpha(0),beta(0),
Fx(0),Fy(0),Fz(0),flux(0),din(0),dout(0),inletA(0),inletB(0),outletA(0),outletB(0),
Nx(0),Ny(0),Nz(0),N(0),Np(0),nprocx(0),nprocy(0),nprocz(0),BoundaryCondition(0),Lx(0),Ly(0),Lz(0),comm(COMM)
{
}
ScaLBL_ColorModel::~ScaLBL_ColorModel(){
}
/*void ScaLBL_ColorModel::WriteCheckpoint(const char *FILENAME, const double *cPhi, const double *cfq, int Np)
{
int q,n;
double value;
ofstream File(FILENAME,ios::binary);
for (n=0; n<Np; n++){
// Write the two density values
value = cPhi[n];
File.write((char*) &value, sizeof(value));
// Write the even distributions
for (q=0; q<19; q++){
value = cfq[q*Np+n];
File.write((char*) &value, sizeof(value));
}
}
File.close();
}
void ScaLBL_ColorModel::ReadCheckpoint(char *FILENAME, double *cPhi, double *cfq, int Np)
{
int q=0, n=0;
double value=0;
ifstream File(FILENAME,ios::binary);
for (n=0; n<Np; n++){
File.read((char*) &value, sizeof(value));
cPhi[n] = value;
// Read the distributions
for (q=0; q<19; q++){
File.read((char*) &value, sizeof(value));
cfq[q*Np+n] = value;
}
}
File.close();
}
*/
void ScaLBL_ColorModel::ReadParams(string filename){
// read the input database
db = std::make_shared<Database>( filename );
domain_db = db->getDatabase( "Domain" );
color_db = db->getDatabase( "Color" );
analysis_db = db->getDatabase( "Analysis" );
// Color Model parameters
timestepMax = color_db->getScalar<int>( "timestepMax" );
tauA = color_db->getScalar<double>( "tauA" );
tauB = color_db->getScalar<double>( "tauB" );
rhoA = color_db->getScalar<double>( "rhoA" );
rhoB = color_db->getScalar<double>( "rhoB" );
Fx = color_db->getVector<double>( "F" )[0];
Fy = color_db->getVector<double>( "F" )[1];
Fz = color_db->getVector<double>( "F" )[2];
alpha = color_db->getScalar<double>( "alpha" );
beta = color_db->getScalar<double>( "beta" );
Restart = color_db->getScalar<bool>( "Restart" );
din = color_db->getScalar<double>( "din" );
dout = color_db->getScalar<double>( "dout" );
flux = color_db->getScalar<double>( "flux" );
inletA=1.f;
inletB=0.f;
outletA=0.f;
outletB=1.f;
if (BoundaryCondition==4) flux *= rhoA; // mass flux must adjust for density (see formulation for details)
// Read domain parameters
auto L = domain_db->getVector<double>( "L" );
auto size = domain_db->getVector<int>( "n" );
auto nproc = domain_db->getVector<int>( "nproc" );
BoundaryCondition = domain_db->getScalar<int>( "BC" );
Nx = size[0];
Ny = size[1];
Nz = size[2];
Lx = L[0];
Ly = L[1];
Lz = L[2];
nprocx = nproc[0];
nprocy = nproc[1];
nprocz = nproc[2];
}
void ScaLBL_ColorModel::SetDomain(){
Dm = std::shared_ptr<Domain>(new Domain(domain_db,comm)); // full domain for analysis
Mask = std::shared_ptr<Domain>(new Domain(domain_db,comm)); // mask domain removes immobile phases
Nx+=2; Ny+=2; Nz += 2;
N = Nx*Ny*Nz;
id = new char [N];
for (int i=0; i<Nx*Ny*Nz; i++) Dm->id[i] = 1; // initialize this way
Averages = std::shared_ptr<TwoPhase> ( new TwoPhase(Dm) ); // TwoPhase analysis object
MPI_Barrier(comm);
Dm->CommInit();
MPI_Barrier(comm);
rank = Dm->rank();
}
void ScaLBL_ColorModel::ReadInput(){
size_t readID;
Mask->ReadIDs();
for (int i=0; i<Nx*Ny*Nz; i++) id[i] = Mask->id[i]; // save what was read
sprintf(LocalRankString,"%05d",rank);
sprintf(LocalRankFilename,"%s%s","ID.",LocalRankString);
sprintf(LocalRestartFile,"%s%s","Restart.",LocalRankString);
// Generate the signed distance map
// Initialize the domain and communication
Array<char> id_solid(Nx,Ny,Nz);
int count = 0;
// Solve for the position of the solid phase
for (int k=0;k<Nz;k++){
for (int j=0;j<Ny;j++){
for (int i=0;i<Nx;i++){
int n = k*Nx*Ny+j*Nx+i;
// Initialize the solid phase
if (Mask->id[n] > 0) id_solid(i,j,k) = 1;
else id_solid(i,j,k) = 0;
}
}
}
// Initialize the signed distance function
for (int k=0;k<Nz;k++){
for (int j=0;j<Ny;j++){
for (int i=0;i<Nx;i++){
int n=k*Nx*Ny+j*Nx+i;
// Initialize distance to +/- 1
Averages->SDs(i,j,k) = 2.0*double(id_solid(i,j,k))-1.0;
}
}
}
// MeanFilter(Averages->SDs);
if (rank==0) printf("Initialized solid phase -- Converting to Signed Distance function \n");
CalcDist(Averages->SDs,id_solid,*Mask);
if (rank == 0) cout << "Domain set." << endl;
}
void ScaLBL_ColorModel::AssignComponentLabels(double *phase)
{
size_t NLABELS=0;
char VALUE=0;
double AFFINITY=0.f;
auto LabelList = color_db->getVector<char>( "ComponentLabels" );
auto AffinityList = color_db->getVector<double>( "ComponentAffinity" );
NLABELS=LabelList.size();
if (NLABELS != AffinityList.size()){
ERROR("Error: ComponentLabels and ComponentAffinity must be the same length! \n");
}
if (rank==0){
printf("Components labels: %lu \n",NLABELS);
for (unsigned int idx=0; idx<NLABELS; idx++){
VALUE=LabelList[idx];
AFFINITY=AffinityList[idx];
printf(" label=%i, affinity=%f\n",int(VALUE),AFFINITY);
}
}
// Assign the labels
for (int k=0;k<Nz;k++){
for (int j=0;j<Ny;j++){
for (int i=0;i<Nx;i++){
int n = k*Nx*Ny+j*Nx+i;
VALUE=id[n];
// Assign the affinity from the paired list
for (unsigned int idx=0; idx < NLABELS; idx++){
//printf("rank=%i, idx=%i, value=%i, %i, \n",rank(),idx, VALUE,LabelList[idx]);
if (VALUE == LabelList[idx]){
AFFINITY=AffinityList[idx];
idx = NLABELS;
Mask->id[n] = 0; // set mask to zero since this is an immobile component
}
}
// fluid labels are reserved
if (VALUE == 1) AFFINITY=1.0;
else if (VALUE == 2) AFFINITY=-1.0;
phase[n] = AFFINITY;
}
}
}
// Set Dm to match Mask
for (int i=0; i<Nx*Ny*Nz; i++) Dm->id[i] = Mask->id[i];
}
void ScaLBL_ColorModel::Create(){
/*
* This function creates the variables needed to run a LBM
*/
//.........................................................
// don't perform computations at the eight corners
//id[0] = id[Nx-1] = id[(Ny-1)*Nx] = id[(Ny-1)*Nx + Nx-1] = 0;
//id[(Nz-1)*Nx*Ny] = id[(Nz-1)*Nx*Ny+Nx-1] = id[(Nz-1)*Nx*Ny+(Ny-1)*Nx] = id[(Nz-1)*Nx*Ny+(Ny-1)*Nx + Nx-1] = 0;
//.........................................................
// Initialize communication structures in averaging domain
for (int i=0; i<Nx*Ny*Nz; i++) Dm->id[i] = Mask->id[i];
Mask->CommInit();
Np=Mask->PoreCount();
//...........................................................................
if (rank==0) printf ("Create ScaLBL_Communicator \n");
// Create a communicator for the device (will use optimized layout)
// ScaLBL_Communicator ScaLBL_Comm(Mask); // original
ScaLBL_Comm = std::shared_ptr<ScaLBL_Communicator>(new ScaLBL_Communicator(Mask));
ScaLBL_Comm_Regular = std::shared_ptr<ScaLBL_Communicator>(new ScaLBL_Communicator(Mask));
int Npad=(Np/16 + 2)*16;
if (rank==0) printf ("Set up memory efficient layout, %i | %i | %i \n", Np, Npad, N);
Map.resize(Nx,Ny,Nz); Map.fill(-2);
auto neighborList= new int[18*Npad];
Np = ScaLBL_Comm->MemoryOptimizedLayoutAA(Map,neighborList,Mask->id,Np);
MPI_Barrier(comm);
//...........................................................................
// MAIN VARIABLES ALLOCATED HERE
//...........................................................................
// LBM variables
if (rank==0) printf ("Allocating distributions \n");
//......................device distributions.................................
dist_mem_size = Np*sizeof(double);
neighborSize=18*(Np*sizeof(int));
//...........................................................................
ScaLBL_AllocateDeviceMemory((void **) &NeighborList, neighborSize);
ScaLBL_AllocateDeviceMemory((void **) &dvcMap, sizeof(int)*Np);
ScaLBL_AllocateDeviceMemory((void **) &fq, 19*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Aq, 7*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Bq, 7*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Den, 2*dist_mem_size);
ScaLBL_AllocateDeviceMemory((void **) &Phi, sizeof(double)*Nx*Ny*Nz);
ScaLBL_AllocateDeviceMemory((void **) &Pressure, sizeof(double)*Np);
ScaLBL_AllocateDeviceMemory((void **) &Velocity, 3*sizeof(double)*Np);
ScaLBL_AllocateDeviceMemory((void **) &ColorGrad, 3*sizeof(double)*Np);
//...........................................................................
// Update GPU data structures
if (rank==0) printf ("Setting up device map and neighbor list \n");
fflush(stdout);
int *TmpMap;
TmpMap=new int[Np];
for (int k=1; k<Nz-1; k++){
for (int j=1; j<Ny-1; j++){
for (int i=1; i<Nx-1; i++){
int idx=Map(i,j,k);
if (!(idx < 0))
TmpMap[idx] = k*Nx*Ny+j*Nx+i;
}
}
}
// check that TmpMap is valid
for (int idx=0; idx<ScaLBL_Comm->LastExterior(); idx++){
int n = TmpMap[idx];
if (n > Nx*Ny*Nz){
printf("Bad value! idx=%i \n");
TmpMap[idx] = Nx*Ny*Nz-1;
}
}
for (int idx=ScaLBL_Comm->FirstInterior(); idx<ScaLBL_Comm->LastInterior(); idx++){
int n = TmpMap[idx];
if (n > Nx*Ny*Nz){
printf("Bad value! idx=%i \n");
TmpMap[idx] = Nx*Ny*Nz-1;
}
}
ScaLBL_CopyToDevice(dvcMap, TmpMap, sizeof(int)*Np);
ScaLBL_DeviceBarrier();
delete [] TmpMap;
// copy the neighbor list
ScaLBL_CopyToDevice(NeighborList, neighborList, neighborSize);
// initialize phi based on PhaseLabel (include solid component labels)
double *PhaseLabel;
PhaseLabel = new double[N];
AssignComponentLabels(PhaseLabel);
ScaLBL_CopyToDevice(Phi, PhaseLabel, N*sizeof(double));
}
/********************************************************
* AssignComponentLabels *
********************************************************/
void ScaLBL_ColorModel::Initialize(){
if (rank==0) printf ("Initializing distributions \n");
ScaLBL_D3Q19_Init(fq, Np);
/*
* This function initializes model
*/
if (Restart == true){
if (rank==0){
printf("Reading restart file! \n");
ifstream restart("Restart.txt");
if (restart.is_open()){
restart >> timestep;
printf("Restarting from timestep =%i \n",timestep);
}
else{
printf("WARNING:No Restart.txt file, setting timestep=0 \n");
timestep=0;
}
}
MPI_Bcast(&timestep,1,MPI_INT,0,comm);
// Read in the restart file to CPU buffers
int *TmpMap;
TmpMap = new int[Np];
double *cPhi, *cDist, *cDen;
cPhi = new double[N];
cDen = new double[2*Np];
cDist = new double[19*Np];
ScaLBL_CopyToHost(TmpMap, dvcMap, Np*sizeof(int));
ScaLBL_CopyToHost(cPhi, Phi, N*sizeof(double));
ifstream File(LocalRestartFile,ios::binary);
int idx;
double value,va,vb;
for (int n=0; n<Np; n++){
File.read((char*) &va, sizeof(va));
File.read((char*) &vb, sizeof(vb));
cDen[n] = va;
cDen[Np+n] = vb;
}
for (int n=0; n<Np; n++){
// Read the distributions
for (int q=0; q<19; q++){
File.read((char*) &value, sizeof(value));
cDist[q*Np+n] = value;
}
}
File.close();
for (int n=0; n<ScaLBL_Comm->LastExterior(); n++){
va = cDen[n];
vb = cDen[Np + n];
value = (va-vb)/(va+vb);
idx = TmpMap[n];
if (!(idx < 0) && idx<N)
cPhi[idx] = value;
}
for (int n=ScaLBL_Comm->FirstInterior(); n<ScaLBL_Comm->LastInterior(); n++){
va = cDen[n];
vb = cDen[Np + n];
value = (va-vb)/(va+vb);
idx = TmpMap[n];
if (!(idx < 0) && idx<N)
cPhi[idx] = value;
}
// Copy the restart data to the GPU
ScaLBL_CopyToDevice(Den,cDen,2*Np*sizeof(double));
ScaLBL_CopyToDevice(fq,cDist,19*Np*sizeof(double));
ScaLBL_CopyToDevice(Phi,cPhi,N*sizeof(double));
ScaLBL_DeviceBarrier();
MPI_Barrier(comm);
}
if (rank==0) printf ("Initializing phase field \n");
ScaLBL_PhaseField_Init(dvcMap, Phi, Den, Aq, Bq, 0, ScaLBL_Comm->LastExterior(), Np);
ScaLBL_PhaseField_Init(dvcMap, Phi, Den, Aq, Bq, ScaLBL_Comm->FirstInterior(), ScaLBL_Comm->LastInterior(), Np);
if (BoundaryCondition >0 ){
if (Dm->kproc()==0){
ScaLBL_SetSlice_z(Phi,1.0,Nx,Ny,Nz,0);
ScaLBL_SetSlice_z(Phi,1.0,Nx,Ny,Nz,1);
ScaLBL_SetSlice_z(Phi,1.0,Nx,Ny,Nz,2);
}
if (Dm->kproc() == nprocz-1){
ScaLBL_SetSlice_z(Phi,-1.0,Nx,Ny,Nz,Nz-1);
ScaLBL_SetSlice_z(Phi,-1.0,Nx,Ny,Nz,Nz-2);
ScaLBL_SetSlice_z(Phi,-1.0,Nx,Ny,Nz,Nz-3);
}
}
}
void ScaLBL_ColorModel::Run(){
int nprocs=nprocx*nprocy*nprocz;
const RankInfoStruct rank_info(rank,nprocx,nprocy,nprocz);
if (rank==0){
printf("********************************************************\n");
printf("No. of timesteps: %i \n", timestepMax);
fflush(stdout);
}
//.......create and start timer............
double starttime,stoptime,cputime;
ScaLBL_DeviceBarrier();
MPI_Barrier(comm);
starttime = MPI_Wtime();
//.........................................
//************ MAIN ITERATION LOOP ***************************************/
PROFILE_START("Loop");
//std::shared_ptr<Database> analysis_db;
bool Regular = false;
runAnalysis analysis( analysis_db, rank_info, ScaLBL_Comm, Dm, Np, Regular, beta, Map );
//analysis.createThreads( analysis_method, 4 );
while (timestep < timestepMax ) {
//if ( rank==0 ) { printf("Running timestep %i (%i MB)\n",timestep+1,(int)(Utilities::getMemoryUsage()/1048576)); }
PROFILE_START("Update");
// *************ODD TIMESTEP*************
timestep++;
// Compute the Phase indicator field
// Read for Aq, Bq happens in this routine (requires communication)
ScaLBL_Comm->BiSendD3Q7AA(Aq,Bq); //READ FROM NORMAL
ScaLBL_D3Q7_AAodd_PhaseField(NeighborList, dvcMap, Aq, Bq, Den, Phi, ScaLBL_Comm->FirstInterior(), ScaLBL_Comm->LastInterior(), Np);
ScaLBL_Comm->BiRecvD3Q7AA(Aq,Bq); //WRITE INTO OPPOSITE
ScaLBL_DeviceBarrier();
ScaLBL_D3Q7_AAodd_PhaseField(NeighborList, dvcMap, Aq, Bq, Den, Phi, 0, ScaLBL_Comm->LastExterior(), Np);
// Perform the collision operation
ScaLBL_Comm->SendD3Q19AA(fq); //READ FROM NORMAL
if (BoundaryCondition > 0){
ScaLBL_Comm->Color_BC_z(dvcMap, Phi, Den, inletA, inletB);
ScaLBL_Comm->Color_BC_Z(dvcMap, Phi, Den, outletA, outletB);
}
// Halo exchange for phase field
ScaLBL_Comm_Regular->SendHalo(Phi);
ScaLBL_D3Q19_AAodd_Color(NeighborList, dvcMap, fq, Aq, Bq, Den, Phi, Velocity, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, ScaLBL_Comm->FirstInterior(), ScaLBL_Comm->LastInterior(), Np);
ScaLBL_Comm_Regular->RecvHalo(Phi);
ScaLBL_Comm->RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
ScaLBL_DeviceBarrier();
// Set BCs
if (BoundaryCondition == 3){
ScaLBL_Comm->D3Q19_Pressure_BC_z(NeighborList, fq, din, timestep);
ScaLBL_Comm->D3Q19_Pressure_BC_Z(NeighborList, fq, dout, timestep);
}
if (BoundaryCondition == 4){
din = ScaLBL_Comm->D3Q19_Flux_BC_z(NeighborList, fq, flux, timestep);
ScaLBL_Comm->D3Q19_Pressure_BC_Z(NeighborList, fq, dout, timestep);
}
ScaLBL_D3Q19_AAodd_Color(NeighborList, dvcMap, fq, Aq, Bq, Den, Phi, Velocity, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, 0, ScaLBL_Comm->LastExterior(), Np);
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
// *************EVEN TIMESTEP*************
timestep++;
// Compute the Phase indicator field
ScaLBL_Comm->BiSendD3Q7AA(Aq,Bq); //READ FROM NORMAL
ScaLBL_D3Q7_AAeven_PhaseField(dvcMap, Aq, Bq, Den, Phi, ScaLBL_Comm->FirstInterior(), ScaLBL_Comm->LastInterior(), Np);
ScaLBL_Comm->BiRecvD3Q7AA(Aq,Bq); //WRITE INTO OPPOSITE
ScaLBL_DeviceBarrier();
ScaLBL_D3Q7_AAeven_PhaseField(dvcMap, Aq, Bq, Den, Phi, 0, ScaLBL_Comm->LastExterior(), Np);
// Perform the collision operation
ScaLBL_Comm->SendD3Q19AA(fq); //READ FORM NORMAL
// Halo exchange for phase field
if (BoundaryCondition > 0){
ScaLBL_Comm->Color_BC_z(dvcMap, Phi, Den, inletA, inletB);
ScaLBL_Comm->Color_BC_Z(dvcMap, Phi, Den, outletA, outletB);
}
ScaLBL_Comm_Regular->SendHalo(Phi);
ScaLBL_D3Q19_AAeven_Color(dvcMap, fq, Aq, Bq, Den, Phi, Velocity, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, ScaLBL_Comm->FirstInterior(), ScaLBL_Comm->LastInterior(), Np);
ScaLBL_Comm_Regular->RecvHalo(Phi);
ScaLBL_Comm->RecvD3Q19AA(fq); //WRITE INTO OPPOSITE
ScaLBL_DeviceBarrier();
// Set boundary conditions
if (BoundaryCondition == 3){
ScaLBL_Comm->D3Q19_Pressure_BC_z(NeighborList, fq, din, timestep);
ScaLBL_Comm->D3Q19_Pressure_BC_Z(NeighborList, fq, dout, timestep);
}
else if (BoundaryCondition == 4){
din = ScaLBL_Comm->D3Q19_Flux_BC_z(NeighborList, fq, flux, timestep);
ScaLBL_Comm->D3Q19_Pressure_BC_Z(NeighborList, fq, dout, timestep);
}
ScaLBL_D3Q19_AAeven_Color(dvcMap, fq, Aq, Bq, Den, Phi, Velocity, rhoA, rhoB, tauA, tauB,
alpha, beta, Fx, Fy, Fz, Nx, Nx*Ny, 0, ScaLBL_Comm->LastExterior(), Np);
ScaLBL_DeviceBarrier(); MPI_Barrier(comm);
//************************************************************************
MPI_Barrier(comm);
PROFILE_STOP("Update");
// Run the analysis
analysis.run( timestep, *Averages, Phi, Pressure, Velocity, fq, Den );
if (timestep%100 == 0){
double morph_delta=0.5;
MorphInit(beta,morph_delta);
MPI_Barrier(comm);
}
}
analysis.finish();
PROFILE_STOP("Loop");
PROFILE_SAVE("lbpm_color_simulator",1);
//************************************************************************
ScaLBL_DeviceBarrier();
MPI_Barrier(comm);
stoptime = MPI_Wtime();
if (rank==0) printf("-------------------------------------------------------------------\n");
// Compute the walltime per timestep
cputime = (stoptime - starttime)/timestep;
// Performance obtained from each node
double MLUPS = double(Np)/cputime/1000000;
if (rank==0) printf("********************************************************\n");
if (rank==0) printf("CPU time = %f \n", cputime);
if (rank==0) printf("Lattice update rate (per core)= %f MLUPS \n", MLUPS);
MLUPS *= nprocs;
if (rank==0) printf("Lattice update rate (total)= %f MLUPS \n", MLUPS);
if (rank==0) printf("********************************************************\n");
// ************************************************************************
}
void ScaLBL_ColorModel::MorphInit(const double beta, const double morph_delta){
const RankInfoStruct rank_info(rank,nprocx,nprocy,nprocz);
double vF = 0.f;
double vS = 0.f;
DoubleArray phase(Nx,Ny,Nz);
IntArray phase_label(Nx,Ny,Nz);;
DoubleArray phase_distance(Nx,Ny,Nz);
Array<char> phase_id(Nx,Ny,Nz);
// Basic algorithm to
// 1. Copy phase field to CPU
//if (rank==0) printf("MorphInit: copy data \n");
ScaLBL_CopyToHost(phase.data(), Phi, N*sizeof(double));
double count,count_global,volume_initial,volume_final;
count = 0.f;
for (int k=0; k<Nz; k++){
for (int j=0; j<Ny; j++){
for (int i=0; i<Nx; i++){
if (phase(i,j,k) > 0.f && Averages->SDs(i,j,k) > 0.f) count+=1.f;
}
}
}
MPI_Allreduce(&count,&count_global,1,MPI_DOUBLE,MPI_SUM,comm);
volume_initial = count_global;
//if (rank==0) printf("MorphInit: get blob ids \n");
// 2. Identify connected components of phase field -> phase_label
BlobIDstruct new_index;
ComputeGlobalBlobIDs(Nx-2,Ny-2,Nz-2,rank_info,phase,Averages->SDs,vF,vS,phase_label,comm);
MPI_Barrier(comm);
/* FILE *IDFILE;
sprintf(LocalRankFilename,"Label.%05i.raw",rank);
IDFILE = fopen(LocalRankFilename,"wb");
fwrite(phase_label.data(),4,N,IDFILE);
fclose(IDFILE);
*/
//if (rank==0) printf("MorphInit: label largest feature \n");
// only operate on component "0"
for (int k=0; k<Nz; k++){
for (int j=0; j<Ny; j++){
for (int i=0; i<Nx; i++){
int label = phase_label(i,j,k);
if (label == 0 ) phase_id(i,j,k) = 0;
else phase_id(i,j,k) = 1;
}
}
}
//if (rank==0) printf("MorphInit: generate distance map \n");
// 3. Generate a distance map to the largest object -> phase_distance
CalcDist(phase_distance,phase_id,*Dm);
double temp,value;
double factor=0.5/beta;
for (int k=0; k<Nz; k++){
for (int j=0; j<Ny; j++){
for (int i=0; i<Nx; i++){
if (phase_distance(i,j,k) < 3.f ){
value = phase(i,j,k);
if (value > 1.f) value=1.f;
if (value < -1.f) value=-1.f;
// temp -- distance based on analytical form McClure, Prins et al, Comp. Phys. Comm.
temp = -factor*log((1.0+value)/(1.0-value));
/// use this approximation close to the object
if (fabs(value) < 0.8 && Averages->SDs(i,j,k) > 1.f ){
phase_distance(i,j,k) = temp;
}
}
}
}
}
// 4. Apply erosion / dilation operation to phase_distance
//if (rank==0) printf("MorphInit: morphological operation \n");
for (int k=0; k<Nz; k++){
for (int j=0; j<Ny; j++){
for (int i=0; i<Nx; i++){
double walldist=Averages->SDs(i,j,k);
double wallweight = 1.f / (1+exp(-5.f*(walldist-1.f)));
phase_distance(i,j,k) -= wallweight*morph_delta;
}
}
}
//if (rank==0) printf("MorphInit: reinitialize phase field \n");
// 5. Update phase indicator field based on new distnace
for (int k=0; k<Nz; k++){
for (int j=0; j<Ny; j++){
for (int i=0; i<Nx; i++){
int n = k*Nx*Ny + j*Nx + i;
double d = phase_distance(i,j,k);
if (Averages->SDs(i,j,k) > 0.f){
// only update phase field in immediate proximity of largest component
if (d < 3.f){
phase(i,j,k) = (2.f*(exp(-2.f*beta*d))/(1.f+exp(-2.f*beta*d))-1.f);
}
}
}
}
}
count = 0.f;
for (int k=0; k<Nz; k++){
for (int j=0; j<Ny; j++){
for (int i=0; i<Nx; i++){
if (phase(i,j,k) > 0.f && Averages->SDs(i,j,k) > 0.f) count+=1.f;
}
}
}
MPI_Allreduce(&count,&count_global,1,MPI_DOUBLE,MPI_SUM,comm);
volume_final=count_global;
if (rank == 0) printf("Morphological operation change volume fraction by %f \n", (volume_final-volume_initial)/volume_initial);
/* FILE *OUTFILE;
sprintf(LocalRankFilename,"Phase.%05i.raw",rank);
OUTFILE = fopen(LocalRankFilename,"wb");
fwrite(phase.data(),8,N,OUTFILE);
fclose(OUTFILE);
FILE *DISTFILE;
sprintf(LocalRankFilename,"Distance.%05i.raw",rank);
DISTFILE = fopen(LocalRankFilename,"wb");
fwrite(phase_distance.data(),8,N,DISTFILE);
fclose(DISTFILE);
*/
// 6. copy back to the device
//if (rank==0) printf("MorphInit: copy data back to device\n");
ScaLBL_CopyToDevice(Phi,phase.data(),N*sizeof(double));
// 7. Re-initialize phase field and density
if (rank==0) printf("MorphInit: re-initialize LBM \n");
ScaLBL_PhaseField_Init(dvcMap, Phi, Den, Aq, Bq, 0, ScaLBL_Comm->LastExterior(), Np);
ScaLBL_PhaseField_Init(dvcMap, Phi, Den, Aq, Bq, ScaLBL_Comm->FirstInterior(), ScaLBL_Comm->LastInterior(), Np);
if (BoundaryCondition >0 ){
if (Dm->kproc()==0){
ScaLBL_SetSlice_z(Phi,1.0,Nx,Ny,Nz,0);
ScaLBL_SetSlice_z(Phi,1.0,Nx,Ny,Nz,1);
ScaLBL_SetSlice_z(Phi,1.0,Nx,Ny,Nz,2);
}
if (Dm->kproc() == nprocz-1){
ScaLBL_SetSlice_z(Phi,-1.0,Nx,Ny,Nz,Nz-1);
ScaLBL_SetSlice_z(Phi,-1.0,Nx,Ny,Nz,Nz-2);
ScaLBL_SetSlice_z(Phi,-1.0,Nx,Ny,Nz,Nz-3);
}
}
}
void ScaLBL_ColorModel::WriteDebug(){
// Copy back final phase indicator field and convert to regular layout
DoubleArray PhaseField(Nx,Ny,Nz);
//ScaLBL_Comm->RegularLayout(Map,Phi,PhaseField);
ScaLBL_CopyToHost(PhaseField.data(), Phi, sizeof(double)*N);
FILE *OUTFILE;
sprintf(LocalRankFilename,"Phase.%05i.raw",rank);
OUTFILE = fopen(LocalRankFilename,"wb");
fwrite(PhaseField.data(),8,N,OUTFILE);
fclose(OUTFILE);
}