229 lines
8.4 KiB
C++
229 lines
8.4 KiB
C++
extern "C" void PackDist(int q, int *list, int start, int count, double *sendbuf, double *dist, int N){
|
|
//....................................................................................
|
|
// Pack distribution q into the send buffer for the listed lattice sites
|
|
// dist may be even or odd distributions stored by stream layout
|
|
//....................................................................................
|
|
int idx,n;
|
|
for (idx=0; idx<count; idx++){
|
|
n = list[idx];
|
|
sendbuf[start+idx] = dist[q*N+n];
|
|
}
|
|
}
|
|
|
|
extern "C" void UnpackDist(int q, int Cqx, int Cqy, int Cqz, int *list, int start, int count,
|
|
double *recvbuf, double *dist, int Nx, int Ny, int Nz){
|
|
//....................................................................................
|
|
// Unack distribution from the recv buffer
|
|
// Distribution q matche Cqx, Cqy, Cqz
|
|
// swap rule means that the distributions in recvbuf are OPPOSITE of q
|
|
// dist may be even or odd distributions stored by stream layout
|
|
//....................................................................................
|
|
int i,j,k,n,nn,idx;
|
|
int N = Nx*Ny*Nz;
|
|
for (idx=0; idx<count; idx++){
|
|
// Get the value from the list -- note that n is the index is from the send (non-local) process
|
|
n = list[idx];
|
|
// Get the 3-D indices
|
|
k = n/(Nx*Ny);
|
|
j = (n-Nx*Ny*k)/Nx;
|
|
i = n-Nx*Ny*k-Nz*j;
|
|
// Streaming for the non-local distribution
|
|
i += Cqx;
|
|
j += Cqy;
|
|
k += Cqz;
|
|
/* if (i < 0) i += Nx;
|
|
if (j < 0) j += Ny;
|
|
if (k < 0) k += Nz;
|
|
if (!(i<Nx)) i -= Nx;
|
|
if (!(j<Ny)) j -= Ny;
|
|
if (!(k<Nz)) k -= Nz;
|
|
*/
|
|
nn = k*Nx*Ny+j*Nx+i;
|
|
// unpack the distribution to the proper location
|
|
// if (recvbuf[start+idx] != dist[q*N+nn]){
|
|
// printf("Stopping to check error \n");
|
|
// printf("recvbuf[start+idx] = %f \n",recvbuf[start+idx]);
|
|
// printf("dist[q*N+nn] = %f \n",dist[q*N+nn]);
|
|
// printf("A bug! Again? \n");
|
|
// idx = count;
|
|
// }
|
|
// list[idx] = nn;
|
|
// Don't unpack distributions into the solid phase
|
|
// if (dist[q*N+nn] > 0.0) dist[q*N+nn] = recvbuf[start+idx];
|
|
dist[q*N+nn] = recvbuf[start+idx];
|
|
}
|
|
}
|
|
|
|
extern "C" void InitD3Q19(char *ID, double *f_even, double *f_odd, int Nx, int Ny, int Nz)
|
|
{
|
|
int n,N;
|
|
N = Nx*Ny*Nz;
|
|
|
|
for (n=0; n<N; n++){
|
|
|
|
if (ID[n] > 0){
|
|
f_even[n] = 0.3333333333333333;
|
|
f_odd[n] = 0.055555555555555555; //double(100*n)+1.f;
|
|
f_even[N+n] = 0.055555555555555555; //double(100*n)+2.f;
|
|
f_odd[N+n] = 0.055555555555555555; //double(100*n)+3.f;
|
|
f_even[2*N+n] = 0.055555555555555555; //double(100*n)+4.f;
|
|
f_odd[2*N+n] = 0.055555555555555555; //double(100*n)+5.f;
|
|
f_even[3*N+n] = 0.055555555555555555; //double(100*n)+6.f;
|
|
f_odd[3*N+n] = 0.0277777777777778; //double(100*n)+7.f;
|
|
f_even[4*N+n] = 0.0277777777777778; //double(100*n)+8.f;
|
|
f_odd[4*N+n] = 0.0277777777777778; //double(100*n)+9.f;
|
|
f_even[5*N+n] = 0.0277777777777778; //double(100*n)+10.f;
|
|
f_odd[5*N+n] = 0.0277777777777778; //double(100*n)+11.f;
|
|
f_even[6*N+n] = 0.0277777777777778; //double(100*n)+12.f;
|
|
f_odd[6*N+n] = 0.0277777777777778; //double(100*n)+13.f;
|
|
f_even[7*N+n] = 0.0277777777777778; //double(100*n)+14.f;
|
|
f_odd[7*N+n] = 0.0277777777777778; //double(100*n)+15.f;
|
|
f_even[8*N+n] = 0.0277777777777778; //double(100*n)+16.f;
|
|
f_odd[8*N+n] = 0.0277777777777778; //double(100*n)+17.f;
|
|
f_even[9*N+n] = 0.0277777777777778; //double(100*n)+18.f;
|
|
}
|
|
else{
|
|
for(int q=0; q<9; q++){
|
|
f_even[q*N+n] = -1.0;
|
|
f_odd[q*N+n] = -1.0;
|
|
}
|
|
f_even[9*N+n] = -1.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
//*************************************************************************
|
|
extern "C" void SwapD3Q19(char *ID, double *disteven, double *distodd, int Nx, int Ny, int Nz)
|
|
{
|
|
int i,j,k,n,nn,N;
|
|
// distributions
|
|
double f1,f2,f3,f4,f5,f6,f7,f8,f9;
|
|
double f10,f11,f12,f13,f14,f15,f16,f17,f18;
|
|
|
|
N = Nx*Ny*Nz;
|
|
|
|
for (n=0; n<N; n++){
|
|
//.......Back out the 3-D indices for node n..............
|
|
k = n/(Nx*Ny);
|
|
j = (n-Nx*Ny*k)/Nx;
|
|
i = n-Nx*Ny*k-Nz*j;
|
|
|
|
if (ID[n] > 0){
|
|
//........................................................................
|
|
// Retrieve even distributions from the local node (swap convention)
|
|
// f0 = disteven[n]; // Does not particupate in streaming
|
|
f1 = distodd[n];
|
|
f3 = distodd[N+n];
|
|
f5 = distodd[2*N+n];
|
|
f7 = distodd[3*N+n];
|
|
f9 = distodd[4*N+n];
|
|
f11 = distodd[5*N+n];
|
|
f13 = distodd[6*N+n];
|
|
f15 = distodd[7*N+n];
|
|
f17 = distodd[8*N+n];
|
|
//........................................................................
|
|
|
|
//........................................................................
|
|
// Retrieve odd distributions from neighboring nodes (swap convention)
|
|
//........................................................................
|
|
nn = n+1; // neighbor index (pull convention)
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
//if (i+1<Nx){
|
|
f2 = disteven[N+nn]; // pull neighbor for distribution 2
|
|
if (f2 > 0){
|
|
distodd[n] = f2;
|
|
disteven[N+nn] = f1;
|
|
}
|
|
//}
|
|
//........................................................................
|
|
nn = n+Nx; // neighbor index (pull convention)
|
|
if (!(j+1<Ny)) nn -= Nx*Ny; // Perioidic BC along the y-boundary
|
|
//if (j+1<Ny){
|
|
f4 = disteven[2*N+nn]; // pull neighbor for distribution 4
|
|
if (f4 > 0){
|
|
distodd[N+n] = f4;
|
|
disteven[2*N+nn] = f3;
|
|
// }
|
|
}
|
|
//........................................................................
|
|
nn = n+Nx*Ny; // neighbor index (pull convention)
|
|
if (!(k+1<Nz)) nn -= Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
//if (k+1<Nz){
|
|
f6 = disteven[3*N+nn]; // pull neighbor for distribution 6
|
|
if (f6 > 0){
|
|
distodd[2*N+n] = f6;
|
|
disteven[3*N+nn] = f5;
|
|
// }
|
|
}
|
|
//........................................................................
|
|
nn = n+Nx+1; // neighbor index (pull convention)
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
if (!(j+1<Ny)) nn -= Nx*Ny; // Perioidic BC along the y-boundary
|
|
//if ((i+1<Nx) && (j+1<Ny)){
|
|
f8 = disteven[4*N+nn]; // pull neighbor for distribution 8
|
|
if (f8 > 0){
|
|
distodd[3*N+n] = f8;
|
|
disteven[4*N+nn] = f7;
|
|
// }
|
|
}
|
|
//........................................................................
|
|
nn = n-Nx+1; // neighbor index (pull convention)
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
if (j-1<0) nn += Nx*Ny; // Perioidic BC along the y-boundary
|
|
//if (!(i-1<0) && (j+1<Ny)){
|
|
f10 = disteven[5*N+nn]; // pull neighbor for distribution 9
|
|
if (f10 > 0){
|
|
distodd[4*N+n] = f10;
|
|
disteven[5*N+nn] = f9;
|
|
// }
|
|
}
|
|
//........................................................................
|
|
nn = n+Nx*Ny+1; // neighbor index (pull convention)
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
if (!(k+1<Nz)) nn -= Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
//if ( !(i-1<0) && !(k-1<0)){
|
|
f12 = disteven[6*N+nn]; // pull distribution 11
|
|
if (f12 > 0){
|
|
distodd[5*N+n] = f12;
|
|
disteven[6*N+nn] = f11;
|
|
// }
|
|
}
|
|
//........................................................................
|
|
nn = n-Nx*Ny+1; // neighbor index (pull convention)
|
|
if (!(i+1<Nx)) nn -= Nx; // periodic BC along the x-boundary
|
|
if (k-1<0) nn += Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
//if (!(i-1<0) && (k+1<Nz)){
|
|
f14 = disteven[7*N+nn]; // pull neighbor for distribution 13
|
|
if (f14 > 0){
|
|
distodd[6*N+n] = f14;
|
|
disteven[7*N+nn] = f13;
|
|
// }
|
|
}
|
|
//........................................................................
|
|
nn = n+Nx*Ny+Nx; // neighbor index (pull convention)
|
|
if (!(j+1<Ny)) nn -= Nx*Ny; // Perioidic BC along the y-boundary
|
|
if (!(k+1<Nz)) nn -= Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
//if (!(j-1<0) && !(k-1<0)){
|
|
f16 = disteven[8*N+nn]; // pull neighbor for distribution 15
|
|
if (f16 > 0){
|
|
distodd[7*N+n] = f16;
|
|
disteven[8*N+nn] = f15;
|
|
// }
|
|
}
|
|
//........................................................................
|
|
nn = n-Nx*Ny+Nx; // neighbor index (pull convention)
|
|
if (!(j+1<Ny)) nn -= Nx*Ny; // Perioidic BC along the y-boundary
|
|
if (k-1<0) nn += Nx*Ny*Nz; // Perioidic BC along the z-boundary
|
|
//if (!(j-1<0) && (k+1<Nz)){
|
|
f18 = disteven[9*N+nn]; // pull neighbor for distribution 17
|
|
if (f18 > 0){
|
|
distodd[8*N+n] = f18;
|
|
disteven[9*N+nn] = f17;
|
|
// }
|
|
}
|
|
//........................................................................
|
|
|
|
}
|
|
}
|
|
}
|